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The self-tuning control assumes that the vibrating system is unknown and the
controller procedure has the ability to identify the process and to update the nec-
essary control law. Such an algorithm provides the relevant regulator parameters
according to the obtained parametric object model. The algorithm can be described
as a combination of the following two procedures: the online identification and the
computation of the controller parameters. Nearly all of the identification procedures
are related to the Least Squares (LS) estimate of a model output. Classified as an
ill-posed problem, it implies that the obtained solution is potentially very sensitive
to the data perturbations. In order to avoid such problems, the regularized version
of the RLS method has been considered in this paper. By solving the linear system
of equations with a non-singular Sylvester matrix, the formulas for the unknown
coefficients of the considered PID-type controller structure have been obtained. The
results of the tests and simulations for the circular plate vibration cancellation have
been also included.

Keywords: self-tuning control, online identification, RLS algorithm, regularization,
Sylvester matrix.

1. Introduction

The majority of the complex industrial systems are characterized by the para-
meters varying with the system operating point change. Conventional controllers,
for which the parameters are computed, are efficient only when the system to be
controlled is characterized by constant parameters. These coefficients are usually
obtained with the well-known methods which have been applied for many years
in automatic control [1]. In the situation where the controlled process parameters
are unknown or time varying, as the errors between controller and actual process
parameters will increase, a not-retuned constant-parameter-controller will lead to
progressive degradation of system operation. The common alternative for improv-
ing the quality of control for such systems is the use of a self-tuning controller,
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which has become possible by the development of IT technology and adaptive
algorithms [5–7]. Such technique can be considered as a combination of two pro-
cedures: (1) – an identification algorithm using measurements to form the system
model; (2) – a control law computation for determination of the regulator para-
meters and the control to be applied to the system [5, 6].

The purpose of the parametric model is to approximate the behavior of the
system as closely as possible, which can be achieved by ensuring the closest
possible match between the predicted and observed outputs. The Recursive Least
Square (RLS ) method has been used for calculating the model parameters of
a considered plate. It is well-known that this algorithm can be classified as an ill-
posed problem because it involves the inversion of covariance matrix which can be
ill-conditioned or even singular. It implies that the achieved solution is potentially
very sensitive to perturbations of the measured data. The most common technique
to overcome the described issue is to apply the regularization methods [7, 8].

The described control procedure was considered by the authors for a plate vi-
bration cancellation [3, 4], where the proposed self-tuning regulator was designed
with the use of results of the online identification and the classic, unregularized
RLS algorithm, to update the control law. In this paper, the structure of the
PID-type algorithm, which is the most frequently used in industry and relatively
easy to implement, has been chosen. The relationship between the model para-
meters and regulator coefficients presented herein, has been obtained by solving
the linear system of equations with the non-singular Sylvester matrix. For this
discrete ill-posed problem, which is indeed difficult to be treated numerically, the
Tikhonov regularization method [8] has been applied.

2. Identification experiment

Identification is a data-driven technique, which enables to construct an ex-
perimental model of the considered system based on the registered response of
the structure as a result of the input signal chosen. For small displacements, the
input/output model can be reasonably approximated by a linear finite-difference
model. Techniques to infer a model from the measured signals typically contain
three steps:

1. Design and conducting of identification experiment.
Identification requires data that accurately represents the behavior of the
system. The well-designed experiment ensures that the chosen variables are
measured with sufficient accuracy and duration to capture the dynamics
of the model.

2. Data analysis and preprocessing.
The measured data should be analyzed and prepared for model calcula-
tion. This step includes basic data-cleaning operations, such as: removing
outliers, offsets and linear trends, filtering, resampling etc.
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3. Estimation and validation of models.
Usually one can estimate several models and chose the simplest one (of the
lowest possible order) that have a desired performance and best describes
the dynamics of the system.

The identification experiment is the most complex and crucial step of the
whole identification process because, not like the other steps, it requires direct in-
terference to the process. The data acquisition process is usually conducted using
PC computers with specially designed input/output interfaces and other measur-
ing track devices like A/D, D/A converters, amplifiers and sensors (see Fig. 1).

Preparing of the experiment involves several choices, where the most impor-
tant of them are:
(1) to pick out the bands of input/output signals,
(2) to choose the sampling frequency,
(3) to decide on the character of the input signal.
When sampling any continuous time system, one must chose a sampling rate

which is neither too fast nor too slow. The minimum value of sampling frequency
fs is described by Shannon’s theorem:

fs ≥ 2fmax, (1)

where fmax is the maximum frequency in output signal spectra. However, experi-
ence has shown [3, 4] that a sampling rate between ten to twelve times the highest
frequency, results in the best performance. The top band of sampling frequency
is also limited because of hardware restriction and numerical errors which can
occur when the differences between two samples are too small. After trying sev-
eral different sampling rates, 10 kHz was found to yield reasonable performance
for the experimental setup constructed.

The other important parameter of identification experiment is the input sig-
nal. One of the most frequently chosen parameters is the chirp signal, which
guarantees that all of the frequencies from the considered interval will occur. As-
suming that the input and the output are recorded for N samples and denoting
input at discrete time k as u(kT ), where T is the sampling time, the chirp signal
can be described by

u(kT ) = u0 + A sat

(
k

0.1N

)
sat

(
N − k

0.1N

)
sin(ωkkT ). (2)

In this expression sat( ) is a kind of weighting function that causes the input to
start at zero, ramp up to amplitude A and ramp down to zero at the end. The
constant u0 is added to make the input have zero average value.

3. Experimental set-up

The main aim of the control system designed for the considered circular plate
(see Fig. 1.) is to cancel its vibrations. An effective application of adaptive feed-
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back control is possible if PC computer works under supervision of a real-time
operating system, like RTAI. This extension of Linux changes priority of the
running process and guarantees deterministic response time of RTAI modules. It
also significantly increases the rate of executing the tasks and gives opportunity
to use more advanced control algorithms which involve online identification and
updating of the controller coefficients.

Fig. 1. Research position: 1 – circular plate, 2 – PZT elements, 3 – strain sensors, 4 – loud-
speaker.

The data used in estimating system model parameters were obtained from
several pairs of strain sensors. For vibration suppressing, the 2-layer piezo-disk
elements, working in a pair, centrally mounted on the plate surface, have been
chosen. To investigate the performance of the system, a chirp signal (10–1000 Hz)
generated by computer software has been applied. With a sample rate of 10 kHz,
the input and output data were gathered for system identification. It is desired
to find the transfer function from the actuator to the error sensor.

4. Online identification

Assuming that the sampled signal values can be related through the linear
difference equation given by Eq. (3):

y(k) + a1y(k − 1) + ... + anAy(k − nA)
= b1u(k − d) + ... + bnBu(k − d− nB + 1) + e(k), (3)

where y(k), u(k) represent respectively the output and input at discrete time,
k = 1, 2, 3, . . ., nA – number of poles, nB – number of zeros plus 1, d is the
number of samples before the input affects the system output, and e(k) denotes
white noise. The relationship shown above, known as autoregressive model with
exogenous input (ARX ), can be rewritten using the delay operator z−1 as Eq. (4):

y(k) =
B(z−1)
A(z−1)

u(k − d) +
1

A(z−1)
e(k), (4)
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where

A(z−1) = 1 + a1z
−1 + ... + anAz−nA, (5)

B(z−1) = b1 + b2z
−1... + bnBz−nB+1. (6)

The model can be also expressed in terms of the parameters vector θ and the
registered vector ϕ

y(k) = θTϕ(k) + e(k), ∀k, (7)

where

ϕ(k) = [−y(k − 1), ...,−y(k − nA), u(k − d), ..., u(k − d− nB + 1)]T, (8)

θ = [a1, ..., anA, b1, ..., bnB]T. (9)

Vector θ can be obtained by minimizing the classical Least Squares criterion
expressed as:

VN (θ) =
1
N

N∑

k=1

[
y(k)− θTϕ(k)

]2
. (10)

After derivation of Eq. (10) one can get the formula for calculation of vector θ:

θ̂ =

[
N∑

k=1

ϕ(k)ϕT (k)

]−1 N∑

k=1

ϕ(k)y(k). (11)

The Eq. (11) can be rewritten in a recursive fashion, as it is shown below:

θ̂(k) = θ̂(k − 1) + L(k)ε(k), (12)

L(k) =
P(k − 1)ϕ(k)

1 + ϕT(k)P(k − 1)ϕ(k)
, (13)

ε(k) = y(k)− θ̂
T
(k − 1)ϕ(k), (14)

P(k) = P(k − 1)− P(k − 1)ϕ(k)ϕT(k)P(k − 1)
1 + ϕT(k)P(k − 1)ϕ(k)

, (15)

where ε(k) represents the prediction error at time k, and P – the covariance
matrix. These formulas are known as the Recursive Least Squares (RLS ) algo-
rithm.

The problem of solving the Eq. (11), which involves inversion of covariance
matrix, can be unstable numerically if this matrix is ill-conditioned. Classified as
an ill-posed problem, it implies that the obtained solution is potentially very sen-
sitive to perturbations of the data. The most commonly used technique to avoid
that issue was proposed by Tikhonov [8] and is referred to as regularization.
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To make provision for stability of the matrix P , it should satisfy the condition:

λminI ≤ P(k) ≤ λmaxI, (16)

where I is the identity matrix and λ denotes the parameter which controls the
properties of the regularized solution. The authors have considered modification
of classical RLS method proposed by Praly [7], which satisfies the above con-
dition and involves calculation of the P matrix in two steps:

Λ(k) = P(k − 1)− P(k − 1)ϕ(k)ϕT(k)P(k − 1)
1 + ϕT(k)P(k − 1)ϕ(k)

, (17)

P(k) = qΛ(k) + rI, (18)

q =
γmax − γmin

γmax
, (19)

r = γmin, (20)

where γmin, γmax denotes the lower and upper values of the regularization pa-
rameter, which is responsible for the sensitivity of the regularized solution to
perturbations. The influence of described modification of classical RLS algo-
rithm has been examined by comparing the results of online identification using
the RLS method with and without regularization algorithms. In both cases, the
chirp signal with frequency band 200–400 Hz and sample frequency set to 10 kHz
was used. Figures below show the results of conducted tests for chosen order of
ARX model, which was set to 2.

A first observation is that the regularized RLS algorithm (RRLS ) shows
a slightly, better convergence than the unregularized one for higher frequencies. It
can be caused by the fact that the standard RLS algorithm loses ability to update
model parameters if k is big enough (higher frequencies in the experiment), thus
the obtained model is almost constant and coincidence between the real system
output and model output might be worse. However, in the range of 10–200 Hz,
the average divergences of the curves are slightly bigger. Despite this, the figures
demonstrate that parametric model obtained using the considered RRLS algo-
rithm reaches high accuracy and convergence with the measured output of the
system, even if it is only the second-order model. The coincidence between the
compared signals is very good in the whole range of considered frequencies (see
Figs. b). Additionally, regularization, which is a standard technique for improving
the condition of the covariance matrix P in the RLS estimate (P(k) → 0 if k is
big enough), guarantees that such an ill-posed problem will turn into a well-posed
one, while the additional computational cost is low.

In the next figures one can see how the parameters of the model were changing
during the process. The values of the regularization parameters which were set
as follows: γmin = 0.01, γmax = 1000, cause small modification of the P matrix
(see Eqs. (17)–(20)) but this technique significantly increases stability of the RLS
algorithm.
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a)

b)

Fig. 2. Online identification using RLS without regularization algorithm: a) time responses;
b) frequency responses.

a)

b)

Fig. 3. Online identification using RLS with regularization algorithm (γmin = 0.01 and γmax =
1000): a) time responses; b) frequency responses.
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Figures b show that both identification algorithms, the regularized and un-
regularized RLS, are able to tune the model parameters during the process of up-
dating the plate model. It is easy to notice that in the case of unregularized RLS
algorithm, the identified model parameters tend to reach almost stable values. It
implies that parameter vector θ̂(i) → θ ∼= const, which might be not correct (an
ill-posed problem), especially for online identification using a low-order model.
Since the regularization of the matrix P, based on a scaled identity matrix, pro-
vided a significant increase in algorithm stability, the obtained regularized solu-
tion make provision for better agreement between the real and estimated outputs.

a)

b)

Fig. 4. ARX model parameters: a) RLS without regularization; b) RLS with regularization.

5. Self-tuning controller

Adaptive regulator uses identified model parameters to update its coefficients.
To reduce the complexity of algorithm, the second-order ARX model of process
has been chosen. It implies that control law can also be described as a second-
order transfer function:

GR =
Q(z−1)
P (z−1)

=
q0 + q1z

−1 + q2z
−2

1 + p1z−1
. (21)
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The regulator considered here is known as a PID-type controller and this is
the most common type of controller used in industry because it provides good
control results and it is also relatively easy to implement. The unknown para-
meters can be achieved using pole placement procedure. The controller based
on assignment of poles in a closed-loop system presented in Fig. 5 is designed
to stabilize the value of closed-loop poles (they should have previously deter-
mined values). Considering the stability requirement, good poles configuration
can make it relatively easy to obtain a desired closed-loop system response (e.g.,
the maximum overshoot, damping, etc.).
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Fig. 5. Closed-loop system.

The closed-loop transfer function of the considered system, where GP is the
identified ARX model of the plant, can be expressed as Eq. (22):

GW =
Y (z−1)
W (z−1)

=
B(z−1)Q(z−1)

A(z−1)P (z−1) + B(z−1)Q(z−1)
. (22)

The denominator of GW should have chosen poles. It means that the denom-
inator can be compared to the chosen polynomial D:

A(z−1)P (z−1) + B(z−1)Q(z−1) = D(z−1), (23)

D(z−1) =
nd∑

i=0

diz
−i = d0 +

nd∑

i=1

diz
−i. (24)

Reorganizing Eq. (23) one can get the linear system of equation with non-
singular Sylvester matrix:




1 b1 0 0

a1 b2 b1 0

a2 0 b2 b1

0 0 0 b2







p1

q0

q1

q2




=




d1 − a1

d2 − a2

d3

d4




=




x1

x2

x3

x4




, (25)

where numbers d0, . . . , d4 are coefficients of chosen characteristic polynomial, as
proposed in [2]:

D(z) = (z − α)2[z − (α + jω)][z − (α− jω)]. (26)
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The chosen characteristic polynomial has a pair of complex conjugated poles
z1 = α+jω and z1 = α−jω and double real pole z3,4 = α, where α and ω have to
satisfy the stability condition: α2+ω2 < 1. Equations below show the relationship
between the parameters of model and regulators obtained by solving Eq. (25):

p1 =
b2
1(b1x4 − b2x3) + b2

2(b1x2 − b2x1)
b2(a1b1b2 − a2b2

1 − b2
2)

, (27)

q0 =
b2
2(a1x1 − x2) + b1b2(x3 − a2x1)− b2

1x4

b2(a1b1b2 − a2b2
1 − b2

2)
, (28)

q1 =
b2
2(a2x1 − x3) + b1b2(a1x3 − a2x2 + x4)− a1b

2
1x4

b2(a1b1b2 − a2b2
1 − b2

2)
, (29)

q2 =
x4

b2
. (30)

In the simulations, the proposed algorithm is applied in a closed-loop scenario
for performing feedback vibration cancellation. The example results of performed
simulations using MATLAB software are presented in figures below. In the first
case, the excitation signal is sinusoidal with frequency of 210 Hz and the other is
the chirp signal with frequency band 200–400 Hz.

In the case of sinusoidal disturbance, it can be seen (Fig. 6), that the plate
displacement can be well suppressed when the controller is started.

Fig. 6. Responses of open-loop system (0–1.25·104 samples) and closed-loop system (1.25–5·104

samples) for sinusoidal excitation of 210 Hz.

Figures show responses of open- and closed-loop system for sinusoidal and
chirp signal excitations and for the following values of parameters: α = 0.992,
ω = 0.11. The main observation is that, using of adaptation methods leads to
substantial reduction of the plate vibrations for the periodic and non-periodic
disturbance signals in the concerned frequency band and the considered control
algorithm applied does not require high performance IT solutions.



Self-Tuning Control with Regularized RLS Algorithm. . . 623

a)

b)

Fig. 7. Responses of open-loop system and closed-loop system for chirp signal (200–400 Hz);
a) time responses; b) frequency responses.

6. Conclusions

The advances in microprocessor speed have made it possible to compute the
control signal and apply it to the actuator within one sampling period, even
if the control strategy is more time-consuming than typical various forms of
PID controllers. However, in the case of adaptive methods applied to vibration
cancellation of the structure, the techniques for the automatic, on-line adjustment
of regulators designed to maintain a given level of system performance can’t be
widely implemented as yet.

The main aim of the paper was to design a self-tuning controller for circular
plate vibration suppressing. Such regulator updates the control law during the
process using an identified model. The goal for this study is to demonstrate
an approach by which some of the benefits associated with the application of
adaptive methods can be quantified. The authors chose second order of the ARX
model and simple PID-type controller to reduce complexity of the design control
algorithm. The high accuracy of such a solution was obtained by using high
sampling rate (10 kHz) – more than 10 times higher than the considered frequency
band of output signal. It is possible only by using real-time operating system like
Linux and RTAI with the designed optimal code for control application. The
conducted examinations show that modification of classical RLS algorithm used
increases the accuracy of the model and reduces the influence of the measured
data perturbation.



624 L. Leniowska, P. Kos

The considered adaptive PID-type controller causes substantial reduction of
the plate vibrations for the input signals considered. Simulations show that there
is no need for using such complicated control law if working terms of the con-
sidered plate are constant. In such situation, a more suitable solution is to use
a static regulator whose parameters can be obtained basing on the model of the
process identified in the off-line mode. The main advantage of the solutions pro-
posed, is the fact that the adaptive controller has the ability to update the control
law during the process, which makes it more suitable in case of any changes in
terms of the working plate (e.g. temperature, boundary condition, surroundings
etc.). From the simulation results it is clear that it may considerably increase the
control performance. In addition, using a method for constructing a regularization
matrix, a significant increase in robustness can be achieved.
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