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The aim of the paper is to determine how quality of a singing voice can be recognized
automatically. For this purpose, a database of singing voice sounds with samples of voices of
trained and untrained singers was created and is presented. The methods of a singing voice pa-
rameterization are shortly reviewed and a set of descriptors is outlined. Each of the presented
samples is parameterized and judged by experts, and the resulting feature vectors and quality
scores are then used to train an artificial neural network. A comparison between experts’ judg-
ments and automatic recognition results is performed. Finally, statistical methods are applied
to prove that an artificial neural network is able to automatically determine the quality of a
singing voice with the accuracy very similar to expert assessments. The paper includes the
discussion of results and presents derived conclusions.
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1. Introduction

Automatic sound recognition requires the process of feature extraction. Parameteri-
zation algorithms of musical signals are well developed and discussed in the domain of
music information retrieval (MIR) and automatic speech recognition [3, 7]. Some MIR
systems allow to index media content automatically. They are based on the definitions
of parameters describing timbre differences between musical instruments. On the other
hand, automatic speech recognition systems perform automatic text recognition with
very good results. Singing voice is the domain where those two fields meet, because
it is produced by the same vocal organs as speech and is considered a musical instru-
ment by musicologists. In this aspect, some speech parameters can be used. However,
due to the artistic and instrumental character of singing, they need to be modified and
complemented by the designed new ones.

This is particularly important when the quality factor is concerned. The quality fac-
tor is defined as a subjective measure of whether the voice belongs to an amateur or to
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a professional singer. In some cases, the classification into such two quality groups is
very difficult, and this is mostly due to the subjectiveness of expert judgments. Since
no quality class definition is presented in literature, a novel approach to quality descrip-
tion must be introduced and then statistically tested. In the paper, a comparison between
the results of automatic classification and the plots of experts’ judgments distribution
is done, and it is shown that intelligent decision systems trained on the basis of profes-
sional judgments perform very similarly to experts and are able to determine the quality
of singing voice with a very similar precision.

2. Singing voice database

A database of singing voices was set up, that stored 1440 sound samples recorded
by 42 different vocalists. Each of the vocalists recorded 5 vowels: “a”, “e”, “i”, “o”,
“u” at several sound pitches belonging to their natural voice scales. Sound files were
recorded in a studio with a sampling frequency of 44.1 kHz and a 16-bit resolution
using the Neumann TLM 103 microphone. There were three groups of vocalists: am-
ateurs (Gdańsk University of Technology Choir vocalists), semi-professionals (Gdańsk
Academy of Music, Vocal faculty students) and professionals (qualified vocalists, grad-
uates of the Vocal Faculty, of the Gdańsk Academy of Music). The quality of each of
the recorded vowels was judged by experts, who were singing teachers and professional
vocalists, by assigning scores (1, 2, 3, 4, 5) to sound samples. Since it was not possible
to avoid half-point scores (1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5), finally each of the singing
voice sound samples was qualified to one of 9 quality classes (QC1 – QC9). All experts
were also checked as to the stability of their evaluation scores, therefore the average
judgment of all 6 experts was assumed to be the final sound quality score.

In order to verify how precise the experts were in assessing voice samples, a dis-
tribution of their judgments was calculated as a function of a quality class (the quality
class was assumed as an average judgment of all 6 experts). The function values were
the differences (...,−3,−2,−1, 0, 1, 2, 3, ...) between the scores of a single expert and an
average score of all experts; its value was 0 if the judgment was equal. The calculations
were done for each of the 1440 analyzed voice samples and for each expert separately.
This resulted in 6 expert plots, showing how precise the experts were in judging voices
in the function of a judged class. In Fig. 1, expert precision curves averaged for 6 ana-
lyzed experts are presented individually for each quality class.

The precision of the experts’ judgment was not equal for all category classes. The
evaluations turned out to be less precise for middle quality classes (approx. 30% samples
were judged as equal to the average judgment).

For quality classes QC1 and QC9, the ability to judge precisely was much better.
Over 70% evaluation scores of a single expert were equal to the average judgment. More
detailed information on the data from Fig. 1 are presented in Table 1, where columns
denote quality classes, and rows indicate experts’ judgments.
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Table 1. Experts’ judgments versus recognized quality classes.

[%] QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9

C1 72.5 27.5 0 0 0 0 0 0 0

C2 35.5 38.3 18.8 7.5 0.2 0 0 0 0

C3 15.3 20.8 29.6 21.3 10 2.5 0 0 0

C4 3.8 6.7 27.5 29.6 19.5 12.5 0.4 0 0

C5 0 2.5 5.8 27.5 39.2 20.8 4.2 0 0

C6 0 0 0.3 12.6 19.7 32.4 29.9 5.1 0

C7 0 0 0 1.4 6 20 47.2 22.1 3.2

C8 0 0 0 0 0 5 22.1 43.8 29.2

C9 0 0 0 0 0 0.5 10.6 15 74

Fig. 1. Experts’ “precision plots” in function of quality class.

3. Singing voice parameterization

Singing voice parameters were defined and described in detail in other publications
of the author of this paper [11–13]. Since the paper focuses on the results of automatic
recognition, only the parameters contained in feature vectors will be outlined.

Singing is produced by the vibration of vocal cords and resonances within the throat
and head cavities that shape the timbre and power of an outgoing sound. The reso-
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nances generate formants in the spectrum of produced sounds. Lower formants (mid-
dle frequency lower then 2 kHz) are related to articulation producing different vowels,
higher formants (middle frequency higher than 2 kHz) characterize mainly timbre and
voice type qualities[6, 8]. The formant of the middle frequency around 3.5 kHz is called
“singer’s formant” and its relation to voice quality is proved in a reach literature con-
cerning singing [1, 9, 10]. However, the resulting timbre and power of an outgoing
vocal sound is formed by the interaction between two factors, namely the glottal source
and the vocal tract resonance characteristics. The relation between those factors is not
simple but becomes less complicated when we assume the linearity of the vocal tract
filter. Since there exists an analogy between the FIR filtering and a singing sound in the
proposed model – which can be represented as a convolution of the glottal source and
impulse response of the vocal tract – singing voice parameters can be divided into two
main groups related to these two factors. In literature, some inverse filtration methods
for deriving glottis parameters are presented, however, they are inefficient due to the
phase shift problems of the vocal tract filter [10]. In this aspect only the parameters of
the vocal tract formants can be calculated directly from the inverse filtering analysis
since they are defined in the frequency domain. To calculate formant parameters the
Warped Liner Prediction (WLPC analysis) was chosen [5].

Glottal source parameters, which are defined in the time domain, are not easy to
compute from the inverse filtration but within the context of a singing voice quality,
their stability in time rather that their objective values seems to be important. Time
resolution of the analysis is crucial, single periods of a sound in a sonogram must be
observed, thus the analysis with small frames and substantial overlapping seems to be
the most proper approach. For each of the frequency bands, a sonogram consists of a set
of n sequences Sn(k), where n is the number of a frequency band and k is the number a
sample. Since the aim of parameterization is to describe the stability of energy changes
in sub-bands, the autocorrelation function in time of sequences Sn(k) is employed. The
more frequent and stable the energy changes in a sub-band are, the higher are the values
of the maximum of the autocorrelation function (for index not equal to 0).

Another group of parameters are vibrato and intonation parameters [2, 10]. It is clear
that a person who neither holds the pitch nor gets a stable vibrato cannot be judged as
a good singer. In order to calculate vibrato parameters, the pitch contour needs to be
extracted. There are several methods for an automatic sound pitch extraction, of which
autocorrelation seems to be the most appropriate [11].

Parameterization of vibrato depth and frequency (fV IB) may be insufficient to asses
singing quality, thus other pitch contour parameters are introduced, such as “periodic-
ity” of vibrato pitch contour, defined as the maximum value of the autocorrelation of the
pitch contour function (for index not equal to 0), “harmonicity” of vibrato calculated
as Spectrum Flatness Measure for the spectrum of the pitch contour; “sinusoidality”
of vibrato VIBS defined as the similarity of the parameterized pitch contour to the sine
waveform [11, 12].

In order to complement dedicated parameters, some more general signal features
such as descriptors of audio content contained in the MPEG-7 standard were used. Al-
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though those parameters are not related to the singing voice biomechanics, they are
useful in the process of a singing voice recognition [12].

4. Experiments

All 1440 singing voice sounds were parameterized using all 331 parameters. For
the purpose of automatic singing voice recognition, a feed-forward neural network was
employed. Singing voice sounds were divided into two sets for training and testing
purposes. Since the aim of the network was to mimic experts’ judgments, the network
should have returned a value proportional to an expert’s judgment (1–5). Thus, the out-
put layer consisted of 1 neuron with a linear activation function. The output neuron
value was quantized as presented in Table 2.

Table 2. Quantization of output neuron values into quality classes.

Output neuron values Quality Class
〈−1,−0.78) QC1
〈−0.78,−0.56) QC2
〈−0.56,−0.34) QC3
〈−0.34,−0.12) QC4
〈−0.12, 0.11) QC5
〈0.11, 0.34) QC6
〈0.34, 0.56) QC7
〈0.56, 0.78) QC8
〈0.78, 1) QC9

Table 3 presents the results of automatic recognition. The network was tested using
sound samples of singers whose vices were not used in the training phase. Presented
values correspond to the average result of 42 trained networks, with the tested vocalist
being changed for each network, a so-called k-fold cross validation method was em-
ployed [4].

The efficiency defined as the number of sounds recognized as an adequate quality
score versus the total number of sounds seems to be low, although in order to analyze
it precisely it should be compared to “expert precision plots” presented in Fig. 1. The
number of quality classes was set arbitrary and the experts were not able to classify
singing voices with such precision as (1–5) scores. While comparing Tables 1 and 3, it
can be noticed that the automatic recognition performance and expert precision curves
are very similar in distribution versus a quality class number (e.g. in Fig. 2 adequate
curves for quality classes 6 and 8 are presented, their distribution is very similar).

The distribution of the automatic recognition error and experts’ precision plots were
compared statistically by using the Pearson’s autocorrelation measure and the results
were greater than a critical value of 0.834 (for α = 0.005). This proves that differences
between the results are non relevant statistically.
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Table 3. Experts’ judgments versus recognized quality classes.

[%] QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9

QC1 60.0 30.0 10.0 0 0 0 0 0 0

QC2 16.1 33.0 29.5 13.8 6.3 1.3 0 0 0

QC3 6.2 19.9 39.8 18.1 9.7 4.9 0.9 0.4 0

QC4 0 11.1 11.1 35.6 22.2 13.3 6.7 0 0

QC5 0 0 4.8 17.3 38.5 32.7 5.8 1.0 0

QC6 0 0.8 1.6 7.8 15.5 37.2 24.8 9.3 3.1

QC7 0 0 0.4 1.8 5.3 15.9 34.4 29.1 13.2

QC8 0 0 0 0 3.7 9.2 29.5 42.8 14.8

QC9 0 0 0 0.6 0.6 4.4 11.9 37.7 44.7

Fig. 2. Automatic recognition error distribution and expert precision curves for quality classes: QC6
and QC8.
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5. Conclusions

The implemented system recognized singing quality with a precision very similar
to experts judgments. The subjective factor was limited by selecting several judges and
defining the voice quality score as their average judgment. By using intelligent decision
methods, it was possible to train a feed-forward neural network based on experts’ judg-
ments. In order to check general qualities of the system, the network was tested by the
samples of those singers whose voices were not used in the training phase.

An arbitrary number of quality classes is the reason why the efficiency of the au-
tomatic recognition system, defined as the number of sounds assigned to an adequate
quality class, seems to be low. However, an analysis of the distribution of experts’ judg-
ments shows that the experts are not precise in classifying a singing voice quality and
they have problems with assigning samples to quality classes. A comparison between
the results of automatic recognition and the plots representing experts’ judgments shows
a strong correlation proven statistically. Therefore the automatic recognition system per-
formance is similar to experts’ judgments.
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[12] ŻWAN P., SZCZUKO P., KOSTEK B., CZYŻEWSKI A., Automatic singing voice recognition em-
ploying neural networks and rough sets, RSEISP, LNAI, Warszawa 2007.
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