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In the paper there are discussed certain issues concerning ill-posielérps that fre-
quently appear in inverse problems, modal analysis, acoustics anchwgtieods making use
of matrix algebra. There is presented the mathematical definition, appticztibe singular
value decomposition method to ill-posed problems detecting as well as a edgwarof im-
proving such problems conditioning by the use of the Tikhonov regutisizanethod. In the
paper are presented some results of solution estimation of the Fredhoyrairegquation of
the first kind that is the classical ill-posed problem. Analysis was carnigdnothe Matlab
environment by means of the least squares and Tikhonov regulanizagthods for both the
noiseless and noisy cases.
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1. Introduction

Structure dynamic properties stand for the main quality indicator in designamd c
dition monitoring processes [4, 5]. High accuracy of modal parameteeqisred if
model-based methods are applied. Due to complexity of tested structurescdeéssagy
to use advanced numerical methods for parameters identification as wetlagion
of the measurement and processing errors. Measured characteristicsually used as
the input data in the process of model parameters estimation. In most casepithe
cedures are based on matrix algebra. Significant numerical erroresalhfrom pro-
cessing of ill-conditioned matrices (i.e. ill-posed problems), which frequapthear in
inverse problems, modal analysis and other methods making use of matrixaalgkb
problem of matrix ill-conditioning can stem from:

1. Physical properties of the tested system.
2. Properties of characteristics measured on real objects.
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3. Mathematical operations required by the algorithm of the assumed method of

analysis.

Uncertainty related to matrix ill-conditioning results from the fact that commercial
software applications make use of the standard least squares methadthiDaie of an
ill-conditioned matrix[A] is close to zero while theA] matrix is almost rank-deficient.

In such a case, operation of matrix inverting required by the least sjoeethod leads
to gross numerical errors. Estimation of a correct solution is impossible widaolier
improvement of the problem formulation (matrix conditioning [4]). Theref@gular-
ization, as a method that makes it possible to solve ill-defined problems efigctiv
holds great interest.

2. Mathematical definition of ill-posed problems

According to the Hadamard definition, the equation:
[A{a} ={y}, [A: XY 1)

is well-posed provided thet the following conditions are satisfied:
1. Solution existence foreadly} € Y, {z} € X such tha{A]{z} = {y},
2. UniquenesgAl{z} = [A{z2} = {z1} = {22},
3. Stability:[A]~! is continuous.

Equation (1) is ill-posed if one of the above conditions is not satisfied.

3. ldentification of ill-posed problems

Identification of ill-posed problems can be performed by analysis of festaf
system matrix decomposition into singular values. Singular values resultingtfre
SVD decomposition of the system matfit] € R™*" (m > n) are described by the
equation:

[A] = U] [Z] V] =) {uidoi{vi}, )
=1
where
[U], [V] — orthonormal matrices of singular vectof§]” [U] = [V]T[V] = [I],
op O 0
[X]=10 . 0 | -diagonal matrix,
0 0 op

o1 > ...> 0, >0, 0; —singular value of théA] matrix,

{v;}, {u;} —right and left singular vectors of thel] matrix.

In case of a discrete ill-posed problem, the system mattjxs always ill-conditio-
ned, which means that determinant of {hg matrix is close to zero and thel] matrix
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is almost rank-deficient. The SVD decomposition of such an ill-conditionedxtets
the following properties [2]:
e singular valuesr; gradually decay to zero,
e with the increase in théindex, in the{v;}, {u;} vectors, more changes in signs
of elements of thdv; } and{u;} vectors are observed,
e [A] matrix condition number is high (the highest to smallest singular value ratio
> 10').

4. Tikhonov regularization method

Measured response of a real system (1) can be described by ##oaqu

[A]{l‘} = {ysz} And [A]{x} = {yideal} + {77}7 €)

where{y,.} € R"*! — measured noisy system respongg; € R"*! — noise;[A] €
R™™ — system matrix{x} € R™*! —unknown solutionp, m — integers.

Numerical solution of the least squares method, which is commonly usedvargo
algebraical equations, is unique and unbiased only whepAhmatrix rank equalsn.
Therefore an ill-posed problem solution obtained by the use of the |lazetesymethod:

{r1s} = arg min Hys=} — [A{z}3 (4)

is unstable — the more noisy is the measurement data, the more obtained soltgisn dif
from the correct one. Modification of the equation of interest by reptatie [A] ma-

trix with a well-conditioned matrix as well as introducing additional constrairgs)at
guarantee obtaining correct solutions. Determining a correct solution bypsraf an
inverse method is usually impossible without earlier improvement of the protdem f
mulation (system matrix conditioning). In case of the Tikhonov regularizaticth ook
the unknown solution has the following form [4]:

{#a} = arg min {[[{ys:} — [AN}3 + o2 [I[LI{} 13} ()

whereq is the regularization parameter describing a compromise between an accurate
fitting and smoothness of the obtained cuifyg;is usually a unit matrix.

The L-curve is the most popular method for determining an optimal regulanizatio
parametery [1].

The L-curve method [1, 2] consists in determining a graphical depeedssteeen
{ys=} — [A]{za}||3 and||[L]{z}]|3 for all the possiblex values in the logarithmic
scale (Fig. 1). The optimal value of the regularization paramegr corresponds to
the coordinates of the L-curve corner.df < o« then the solution is close to the
solution obtained by means of the least squares method. Assumption ef,,; leads
to a solution of an equation that differs significantly from the original one.
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Fig. 1. L-curve method.

4.1. Tikhonov regularization as a filtration method

On the basis of the Eq. (2), an inverse operator valyean be determined accord-
ing to the formula:

[Ra) = ([AI"[4] + 1) " 1A [U)" ®)
so that
[Ra] = (V112 0101 (21 V] + (V] (1) [V)7) (V] (=) Y
therefore
[Ra] = VI((Z]"(£]+al)) (2" U] or @®
o2
(Ra] = V] g (7 LYo,
Expressionw,(s?) = o for [L] = [I],, is called a Tikhonov filter function. If

al-z +
a — 0 thenw,(c?) — 1 S0[R,] — 0.
The Tikhonov filter function performance consists in filtering out small dargu
values ofo; (0; < ).

5. Solution estimation of the Fredholm integral equation of the firstkind
by means of the least squares and Tikhonov regularization methods

Fredholm integral equation of the first kind is the classical example of aoskg
problem [4]:

/K(S,t)of(t)dt:g(s), c<s<d, 9)
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whereK (s) — kernel, known square integrang(;s) — equation right side, known func-
tion; f(¢) — unknown solutiong, d — limits of integration.

Fredholm equation of the first kind belongs to the class of functionalt&msa in
which the integrand is unknown. In acoustics, theory of elasticity and fluchargcs,
integral equations are used for describing physical phenomena wéh giwundary or
initial conditions. Numerical methods of solving integral equations are widsdyl un
analysis of continuous mechanical systems.

For Eq. (9) the following data were assumed [6]:

: 2
K(s,t) = (cos(s)+ cos(t))? (quﬁu)> , (10)
g(s,t) = m(sin(s) + sin(t)), (11)
F(t) = age 707 4 gyemealt=ta)®, (12)

wherea; = 2, as = 1 are constants responsible for the solution form= 6, co = 2;
t1 = 0.8, ts = —0.5; a = —0.57, b = 0.57 — limits of integration;n = 72 is the
assumed number of points belonging to the interval of integration.

Computations were carried out in the Matlab environment by means of thiedrea
software, making use of functions introduced in the Regularization Toglsation (9)
was transformed to the following form:

[Al{z} = {b}. (13)

Two cases were considered: noiseless, described by Eq. (13payddescribed by the
following equation:

[Al{z} = (B}, {b} = {b} + e, (14)

where{q} is the vector of random valueg € (0, 1)) of the same length as theé}
vector.

Solution was estimated applying two methods: the least squares method used by
commercial applications and the Tikhonov regularization method implemented in the
created software.

In case of Tikhonov regularization, the next step of the algorithm cousistde-
composition of the matrix4] into singular values:

[A]=1[U]- 18] - V)" (15)

and checking whether the right-hand side of the Eq. (13) describinglasscase meets
the discrete Picard condition. If the right-hand s{di¢ of the equation describing noise-
less case meets the Picard condition, then it is possible to determine sélttiphfor
noisy case (14) by the use of the regularization method in such a way:that ap-
proximates the exact solutidm }.
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Fig. 2. Discrete Picard condition for noiseless (a) and noisy case (b).

In the Fig. 2 is presented a graphical interpretation of the discrete Pioadition
for the noiseless (a) as well as the noisy (b) case.

In the noiseless case, foK 20, Fourier coefficients meet the discrete Picard condi-
tion — they decrease more quickly than singular vatuesn the noisy case, far < 10,
Fourier coefficients decrease more quickly than the singular valueshwigans that
the right-hand side of the Eq. (13) describing noiseless case meetdeBmard con-
dition. Therefore regularization aims at filtering out the singular vatues oy and
leaving the rest of singular values unchanged.

In the next step, by the use of the L-curve method, the optimal value of gluéare
ization parametety,,; was determined. Solution estimation was carried out according
to the following formula:

n

) =3 T o ()T (b)) (16)

P (07 + aopt)

whereo; are singular valuegu; } — left vector of singular valuesy,; — optimal regu-
larization parameter.

5.1. Solution obtained by means of the least squares method

Solution estimation was carried out by the use of standard procedureliogwih
Matlab. Maximal and mean values of percentage relative errors forlesisdata were
calculated according to the equations (Figs. 3, 1):

€ls max = Max < W - 100%) , a
€ls mean = mean( {ZE}{_;U}{,%} : 100%> .
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Fig. 3. a, b) Solution obtained by means of the least squares, a) ndésg2)anoiseless data (1); b) loga-
rithm of the relative errore;s (1), €5 noisy (2), €is stab (3)-

The following values were obtained:
els max = 1.28 X 10° [%], €15 mean = 2.2 x 10% [%]. (18)

Matrix [A] is ill-conditioned, its condition numbefic,,q = 1.011675 x 10'°. There-
fore, in case of noiseless as well as noisy data, numerical algorithm Easesquares
method doesn’t work correctly. Maximal and mean values of relativespgage errors
for noisy data were calculated on the basis of equations:

) x_xnoisy
noisy  _ ypax [ | |.100% | ,

€ls max T
(19)
) T — xnoisy
e = mean( Tls : 100%)
and equal
o =612 x 1017 (%], PO =45 % 10'0(%]. (20)

Stability of the solution estimated by means of the least squares method can be
assessed on the basis of the equations:

T — noisy
S ls
€ls stab max = max | |[——=—|-100% | ,

(21)

€ls stab mean — [M€an
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Error values equal:
€ls stab max — 4.28 X 1015 [%]7 €ls stab mean = 2.4 X 1014 [%] (22)

Results obtained by means of the least squares method for noisy ill-pas#dms
are unstable and burdened with unacceptably big errors. Therdfierégast squares
method cannot be used for solving ill-posed problems.

5.2. Solution obtained by means of the Tikhonov regularization method

Calculations were carried out in the Matlab environment. Optimal parameters of
regularization obtained by the use of the L-curve method for noiseless4&jgand
noisy (Fig. 4b) case equakioiscless = 1.137 x 1071, a5y = 7.39 x 1074,

L-curve, Tikh, corner at 0.00073848
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Fig. 4. Parameters of the L-curve corner corresponding to optimahpeter of regularization for
noiseless (a) and noisy (b) case.

Solution obtained for noiseless data is presented in the Fig. 5a (***). Mdxdnth
mean values of solution relative errors are described by the equations:

€Tikh max = max( o)~ {rmat | 100%) ,
{z} 23)
eTikh mean = mean< o} — {emmn} | 100%> .
{z}
The following values were obtained:
€Tikh max = 8.44 [%], €Tikh mean = 0.76 [%]. (24)

Solution obtained by means of the Tikhonov regularization method for nosy ca
(Fig. 5a, - - -) is burdened with maximal and mean relative errors deschipethe
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Fig. 5. a) Solution obtained by means of Tikhonov regularization methoddiseless case (***), noisy
case (- - -) exact solution (—); b) solution percentage relative ettt (1), eTikh noisy (2), €Tikh stab (3)-

: 100%) )

equations:

__,.noisy
‘ L~ Tpikh

noisy o
€Pikh max — Max T

(25)

) T — anisy
e (B
The following values were obtained:
e%?llfﬁl max 13 [%]7 er'%‘(i)l?gmean =11.82 [%] (26)

Stability of the solution obtained by means of the Tikhonov regularization caasbe
sessed on the basis of equations:

TTikn — :Cnoisy
i Tikh
€Tikh stab max = Max | [————+ - 100% ,
TTikh
. (27)
TTikh — Tpopp
€Tikh stab mean — IMe€an — . 100% .
TTikh
Error values obtained for estimated solution are as follows:
€Tikh stab max — 14 [%]7 €Tikh stab mean — 11.93 [%] (28)

On the basis of the obtained results it can be stated that the Tikhonov iegtider
method is an effective tool for solving noiseless as well as noisy ill-possulgms.
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6. Conclusions

In the paper the author proposed a new software for solving ill-possalgms with
the use of the Tikhonov regularization method implemented in the Matlab enviranmen
The proposed software was used for solving the classical ill-posédigme- Fredholm
integral equation of the first kind. Results obtained by means of the prdpscft-
ware were compared with the results estimated on the basis of numericaljeasts
method. Maximal percentage relative errors of solutions estimated by michied@ast
squares metho¢:™%) and the Tikhonov regularization meth¢d ") for the consid-
ered Fredholm integral equation of the first kind equal respectively:

e % =6.12 x 10'%,

° eTikh _ 13%

The research carried out proved that the least squares method banrsed for solving
ill-posed problems because of unacceptably big errors of the estimateidss]uvhile

the Tikhonov regularization method is a stable and effective tool for sothimdl-posed

problems.
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