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In the paper there are discussed certain issues concerning ill-posed problems that fre-
quently appear in inverse problems, modal analysis, acoustics and other methods making use
of matrix algebra. There is presented the mathematical definition, application of the singular
value decomposition method to ill-posed problems detecting as well as a new method of im-
proving such problems conditioning by the use of the Tikhonov regularization method. In the
paper are presented some results of solution estimation of the Fredholm integral equation of
the first kind that is the classical ill-posed problem. Analysis was carried out in the Matlab
environment by means of the least squares and Tikhonov regularization methods for both the
noiseless and noisy cases.
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1. Introduction

Structure dynamic properties stand for the main quality indicator in design and con-
dition monitoring processes [4, 5]. High accuracy of modal parameters is required if
model-based methods are applied. Due to complexity of tested structures it is necessary
to use advanced numerical methods for parameters identification as well as reduction
of the measurement and processing errors. Measured characteristicsare usually used as
the input data in the process of model parameters estimation. In most cases these pro-
cedures are based on matrix algebra. Significant numerical errors canresult from pro-
cessing of ill-conditioned matrices (i.e. ill-posed problems), which frequentlyappear in
inverse problems, modal analysis and other methods making use of matrix algebra. The
problem of matrix ill-conditioning can stem from:

1. Physical properties of the tested system.
2. Properties of characteristics measured on real objects.
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3. Mathematical operations required by the algorithm of the assumed method of
analysis.

Uncertainty related to matrix ill-conditioning results from the fact that commercial
software applications make use of the standard least squares method. Determinant of an
ill-conditioned matrix[A] is close to zero while the[A] matrix is almost rank-deficient.
In such a case, operation of matrix inverting required by the least squares method leads
to gross numerical errors. Estimation of a correct solution is impossible without earlier
improvement of the problem formulation (matrix conditioning [4]). Thereforeregular-
ization, as a method that makes it possible to solve ill-defined problems effectively,
holds great interest.

2. Mathematical definition of ill-posed problems

According to the Hadamard definition, the equation:

[A]{x} = {y}, [A] : X → Y (1)

is well-posed provided thet the following conditions are satisfied:
1. Solution existence for each{y} ∈ Y , {x} ∈ X such that[A]{x} = {y},
2. Uniqueness:[A]{x1} = [A]{x2} ⇒ {x1} = {x2},
3. Stability:[A]−1 is continuous.

Equation (1) is ill-posed if one of the above conditions is not satisfied.

3. Identification of ill-posed problems

Identification of ill-posed problems can be performed by analysis of features of
system matrix decomposition into singular values. Singular values resulting from the
SVD decomposition of the system matrix[A] ∈ Rm×n (m ≥ n) are described by the
equation:

[A] = [U ] [Σ] [V ]T =
n
∑

i=1

{ui}σi{vi}
T , (2)

where
[U ], [V ] – orthonormal matrices of singular vectors:[U ]T [U ] = [V ]T [V ] = [I]n,

[Σ] =







σ1 0 0

0
. . . 0

0 0 σn






– diagonal matrix,

σ1 ≥ . . . ≥ σn ≥ 0, σi – singular value of the[A] matrix,
{vi}, {ui} – right and left singular vectors of the[A] matrix.
In case of a discrete ill-posed problem, the system matrix[A] is always ill-conditio-

ned, which means that determinant of the[A] matrix is close to zero and the[A] matrix
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is almost rank-deficient. The SVD decomposition of such an ill-conditioned matrix has
the following properties [2]:

• singular valuesσi gradually decay to zero,
• with the increase in thei index, in the{vi}, {ui} vectors, more changes in signs

of elements of the{vi} and{ui} vectors are observed,
• [A] matrix condition number is high (the highest to smallest singular value ratio

> 1014).

4. Tikhonov regularization method

Measured response of a real system (1) can be described by the equation:

[A]{x} = {ysz} ⇔ [A]{x} = {yideal} + {η}, (3)

where{ysz} ∈ Rn×1 – measured noisy system response;{η} ∈ Rn×1 – noise;[A] ∈
Rn×m – system matrix;{x} ∈ Rm×1 – unknown solution;n, m – integers.

Numerical solution of the least squares method, which is commonly used for solving
algebraical equations, is unique and unbiased only when the[A] matrix rank equalsm.
Therefore an ill-posed problem solution obtained by the use of the least squares method:

{xls} = arg min
x

‖{ysz} − [A]{x}‖2
2 (4)

is unstable – the more noisy is the measurement data, the more obtained solution differs
from the correct one. Modification of the equation of interest by replacing the[A] ma-
trix with a well-conditioned matrix as well as introducing additional constraints, do not
guarantee obtaining correct solutions. Determining a correct solution by means of an
inverse method is usually impossible without earlier improvement of the problem for-
mulation (system matrix conditioning). In case of the Tikhonov regularization method,
the unknown solution has the following form [4]:

{xα} = arg min
x

{

‖{ysz} − [A]{x}‖2
2 + α2‖[L]{x}‖2

2

}

, (5)

whereα is the regularization parameter describing a compromise between an accurate
fitting and smoothness of the obtained curve;[L] is usually a unit matrix.

The L-curve is the most popular method for determining an optimal regularization
parameterα [1].

The L-curve method [1, 2] consists in determining a graphical dependence between
‖{ysz} − [A]{xα}‖

2
2 and‖[L]{xα}‖

2
2 for all the possibleα values in the logarithmic

scale (Fig. 1). The optimal value of the regularization parameterαopt corresponds to
the coordinates of the L-curve corner. Ifα < αopt then the solution is close to the
solution obtained by means of the least squares method. Assumption ofα > αopt leads
to a solution of an equation that differs significantly from the original one.
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log ‖[L]{x}‖2
2

log ‖{y} − [A]{x}‖2
2

Fig. 1. L-curve method.

4.1. Tikhonov regularization as a filtration method

On the basis of the Eq. (2), an inverse operator valueRα can be determined accord-
ing to the formula:

[Rα] =
(

[A]T [A] + α[I]
)−1

[A]T [U ]T (6)

so that

[Rα] =
(

[V ] [Σ]T [U ]T [U ] [Σ] [V ]T + α[V ] [I] [V ]T
)−1

[V ] [Σ]T (7)

therefore

[Rα] = [V ]
(

[Σ]T [Σ] + α[I]
)−1

[Σ]T [U ]T or
(8)

[Rα] = [V ] · diag

(

σ2
i

σ2
i + α

·
1

σi

)

[U ]T .

Expressionwα(s2
i ) =

σ2
i

σ2
i + α

for [L] = [I]n is called a Tikhonov filter function. If

α → 0 thenwa(σ
2
i ) → 1 so[Rα] → 0.

The Tikhonov filter function performance consists in filtering out small singular
values ofσi (σi < α).

5. Solution estimation of the Fredholm integral equation of the firstkind
by means of the least squares and Tikhonov regularization methods

Fredholm integral equation of the first kind is the classical example of an ill-posed
problem [4]:

d
∫

c

K(s, t) · f(t) dt = g(s), c ≤ s ≤ d, (9)
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whereK(s) – kernel, known square integrand;g(s) – equation right side, known func-
tion; f(t) – unknown solution;c, d – limits of integration.

Fredholm equation of the first kind belongs to the class of functional equations, in
which the integrand is unknown. In acoustics, theory of elasticity and fluid mechanics,
integral equations are used for describing physical phenomena with given boundary or
initial conditions. Numerical methods of solving integral equations are widely used in
analysis of continuous mechanical systems.

For Eq. (9) the following data were assumed [6]:

K(s, t) = (cos(s) + cos(t))2
(

sin(u)

u

)2

, (10)

g(s, t) = π (sin(s) + sin(t)) , (11)

f(t) = a1e
−c1(t−t1)2 + a2e

−c2(t−t2)2 , (12)

wherea1 = 2, a2 = 1 are constants responsible for the solution form;c1 = 6, c2 = 2;
t1 = 0.8, t2 = −0.5; a = −0.5π, b = 0.5π – limits of integration;n = 72 is the
assumed number of points belonging to the interval of integration.

Computations were carried out in the Matlab environment by means of the created
software, making use of functions introduced in the Regularization Tools. Equation (9)
was transformed to the following form:

[A]{x} = {b}. (13)

Two cases were considered: noiseless, described by Eq. (13) and noisy, described by the
following equation:

[A]{x} = {b̌}, {b̌} = {b} + e−3∗{q}, (14)

where{q} is the vector of random values (q ∈ 〈0, 1〉) of the same length as the{b}
vector.

Solution was estimated applying two methods: the least squares method used by
commercial applications and the Tikhonov regularization method implemented in the
created software.

In case of Tikhonov regularization, the next step of the algorithm consisted in de-
composition of the matrix[A] into singular values:

[A] = [U ] · [S] · [V ]T (15)

and checking whether the right-hand side of the Eq. (13) describing noiseless case meets
the discrete Picard condition. If the right-hand side{b} of the equation describing noise-
less case meets the Picard condition, then it is possible to determine solution{xreg} for
noisy case (14) by the use of the regularization method in such a way that{xreg} ap-
proximates the exact solution{x}.
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Fig. 2. Discrete Picard condition for noiseless (a) and noisy case (b).

In the Fig. 2 is presented a graphical interpretation of the discrete Picard condition
for the noiseless (a) as well as the noisy (b) case.

In the noiseless case, fori ≤ 20, Fourier coefficients meet the discrete Picard condi-
tion – they decrease more quickly than singular valuesσi. In the noisy case, fori ≤ 10,
Fourier coefficients decrease more quickly than the singular values, which means that
the right-hand side of the Eq. (13) describing noiseless case meets discrete Picard con-
dition. Therefore regularization aims at filtering out the singular valuesσ > σ10 and
leaving the rest of singular values unchanged.

In the next step, by the use of the L-curve method, the optimal value of the regular-
ization parameterαopt was determined. Solution estimation was carried out according
to the following formula:

{xα} =
n
∑

i=1

σ2
i

(σ2
i + αopt)

· σ−1
i ·

(

{ui}
T {b}

)

, (16)

whereσi are singular values;{ui} – left vector of singular values;αopt – optimal regu-
larization parameter.

5.1. Solution obtained by means of the least squares method

Solution estimation was carried out by the use of standard procedure introduced in
Matlab. Maximal and mean values of percentage relative errors for noiseless data were
calculated according to the equations (Figs. 3, 1):

els max = max

(∣

∣

∣

∣

{x} − {xls}

{x}

∣

∣

∣

∣

· 100%

)

,

(17)

els mean = mean

(
∣

∣

∣

∣

{x} − {xls}

{x}

∣

∣

∣

∣

· 100%

)

.
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Fig. 3. a, b) Solution obtained by means of the least squares, a) noisy data (2), noiseless data (1); b) loga-
rithm of the relative error:els (1), els noisy (2), els stab (3).

The following values were obtained:

els max = 1.28 × 105 [%], els mean = 2.2 × 104 [%]. (18)

Matrix [A] is ill-conditioned, its condition number:ncond = 1.011675 × 1019. There-
fore, in case of noiseless as well as noisy data, numerical algorithm of theleast squares
method doesn’t work correctly. Maximal and mean values of relative percentage errors
for noisy data were calculated on the basis of equations:

e
noisy
ls max = max

(∣

∣

∣

∣

∣

x − x
noisy
ls

x

∣

∣

∣

∣

∣

· 100%

)

,

(19)

e
noisy
ls mean = mean

(∣

∣

∣

∣

∣

x − x
noisy
ls

x

∣

∣

∣

∣

∣

· 100%

)

and equal

e
noisy
ls max = 6.12 × 1017 [%], e

noisy
ls mean = 4.5 × 1016[%]. (20)

Stability of the solution estimated by means of the least squares method can be
assessed on the basis of the equations:

els stab max = max

(
∣

∣

∣

∣

∣

xls − x
noisy
ls

xls

∣

∣

∣

∣

∣

· 100%

)

,

(21)

els stab mean = mean

(∣

∣

∣

∣

∣

xls − x
noisy
ls

xls

∣

∣

∣

∣

∣

)

.
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Error values equal:

els stab max = 4.28 × 1015 [%], els stab mean = 2.4 × 1014 [%]. (22)

Results obtained by means of the least squares method for noisy ill-posed problems
are unstable and burdened with unacceptably big errors. Therefore,the least squares
method cannot be used for solving ill-posed problems.

5.2. Solution obtained by means of the Tikhonov regularization method

Calculations were carried out in the Matlab environment. Optimal parameters of
regularization obtained by the use of the L-curve method for noiseless (Fig. 4a) and
noisy (Fig. 4b) case equal:αnoiseless = 1.137 × 10−14, αnoisy = 7.39 × 10−4.

Fig. 4. Parameters of the L-curve corner corresponding to optimal parameter of regularizationαopt for
noiseless (a) and noisy (b) case.

Solution obtained for noiseless data is presented in the Fig. 5a (***). Maximal and
mean values of solution relative errors are described by the equations:

eTikh max = max

(∣

∣

∣

∣

{x} − {xTikh}

{x}

∣

∣

∣

∣

· 100%

)

,

(23)

eTikh mean = mean

(
∣

∣

∣

∣

{x} − {xTikh}

{x}

∣

∣

∣

∣

· 100%

)

.

The following values were obtained:

eTikh max = 8.44 [%], eTikh mean = 0.76 [%]. (24)

Solution obtained by means of the Tikhonov regularization method for noisy case
(Fig. 5a, - - -) is burdened with maximal and mean relative errors described by the
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Fig. 5. a) Solution obtained by means of Tikhonov regularization method for noiseless case (***), noisy
case (- - -) exact solution (—); b) solution percentage relative error:eTikh (1),eTikh noisy (2),eTikh stab (3).

equations:

e
noisy
Tikh max = max

(∣

∣

∣

∣

∣

x − x
noisy
Tikh

x

∣

∣

∣

∣

∣

· 100%

)

,

(25)

e
noisy
Tikh mean = mean

(∣

∣

∣

∣

∣

x − x
noisy
Tikh

x

∣

∣

∣

∣

∣

· 100%

)

.

The following values were obtained:

e
noisy
Tikh max = 13 [%], e

noisy
Tikh mean = 11.82 [%]. (26)

Stability of the solution obtained by means of the Tikhonov regularization can beas-
sessed on the basis of equations:

eTikh stab max = max

(
∣

∣

∣

∣

∣

xTikh − x
noisy
Tikh

xTikh

∣

∣

∣

∣

∣

· 100%

)

,

(27)

eTikh stab mean = mean

(∣

∣

∣

∣

∣

xTikh − x
noisy
Tikh

xTikh

∣

∣

∣

∣

∣

· 100%

)

.

Error values obtained for estimated solution are as follows:

eTikh stab max = 14 [%], eTikh stab mean = 11.93 [%]. (28)

On the basis of the obtained results it can be stated that the Tikhonov regularization
method is an effective tool for solving noiseless as well as noisy ill-posed problems.
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6. Conclusions

In the paper the author proposed a new software for solving ill-posed problems with
the use of the Tikhonov regularization method implemented in the Matlab environment.
The proposed software was used for solving the classical ill-posed problem – Fredholm
integral equation of the first kind. Results obtained by means of the proposed soft-
ware were compared with the results estimated on the basis of numerical least squares
method. Maximal percentage relative errors of solutions estimated by means of the least
squares method(eLS) and the Tikhonov regularization method(eTikh) for the consid-
ered Fredholm integral equation of the first kind equal respectively:

• eLS = 6.12 × 1017%,
• eTikh = 13%.

The research carried out proved that the least squares method cannot be used for solving
ill-posed problems because of unacceptably big errors of the estimated solutions, while
the Tikhonov regularization method is a stable and effective tool for solvingthe ill-posed
problems.
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