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In this paper, the acoustical symptoms of a constructiofehent with an edge non-
propagating crack on the example of a cantilever beam aretsh In this work the influence
of a crack on flexural natural frequency was analysed. Thekdsasubstituted by a rotational

spring, which flexibility is calculated using the Castigitatheorem and the laws of the frac-
ture mechanics.

In this work the changes in the first and second natural frecyuef the flexural vibrations
are showed as a function of location and depth of the craagkatbustic sighal measured with
a microphone placed above the beam is used for diagnostensys

Changes in the natural frequency cannot be used for thefidatibn of a small crack (the
depth is less than 10% of beam height). For the detecting wfedier crack, the effect of cou-
pled different modes of vibration is presented. The papesgmts a modelling and analysis
algorithm for cracked Euler—Bernoulli beams by considgtime coupling between the bend-
ing and axial vibration modes. The analysis of the couplédations showed that additional
resonance frequencies appeared in the acoustic spectrum.

Key words: acoustical diagnostic, crack, crack detection, vibratcmupled vibration.

1. Introduction

Structural elements and systems are very frequently sutgdoads changing in
time. Changing mechanical or kinematic loads induce stsegarying in time, produc-
ing complex coincidence of effects and fatigue changeseémtlaterial depending on
the volume of stresses and the number of their cycles. Fatfanges are visualized
by a crack of the structural material and its continued uad te element damaging.
Therefore, the question about the crack depth becomestredseith reference to the
design safety. This quantity enables to evaluate the slitiyabf the construction for
further operations.

Technical devices generate (emit) acoustic and vibratgmass containing essential
information on the condition of the device as a source [2f Bibliography includes
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many references for crack identification methods basedlmation measurements. Di-
agnostic symptoms can be found in the changes of. naturglidrecy [9-11], forced
vibration amplitudes [10, 12, 17] and mechanical impeddhldout also in the wavelet
analysis [18] and vibration under white noise [3].

In many structural elements (e.g. turbogenerator shdits)sble information on
crack occurrence is essential (even if it is not possibledémiify the crack depth or
location), but simple measurement procedures are used.

This paper describes such “quick” crack diagnostics foracsiral element on the
example of a cantilever beam. In the diagnostic test, ansdicosignal of the impulse
response of the beam is recorded (without the need to metsferce) using a mi-
crophone placed above the beam. We will look for such diagigmegmptoms in the
spectrum (distribution of resonance frequencies) of thended signal.

The crack has been modelled as a flexible joint, the flexjtilitvhich is determined
basing on fracture mechanics relations between the strargg release rate and the
stress intensity factor (SIF) and the Castigliano’s theore

Recently authors consider the effect of coupling of varigimation modes on
the parameters of dynamic characteristics of cracked bdarb][ Such a coupling
has a slight effect on the change of the natural frequendyinbthe case of a struc-
tural element with crack transverse vibrations induced repsverse loads generate
also longitudinal vibrations, which in turn generate trarse vibrations. A diagnos-
tic procedure based on the analysis of the coupled vibratiodel allows detecting
cracks (with small depth) that cannot be detected basindhanges of the natural fre-
quency.

2. Description of the problem
The problem discussed in this paper has been described Bettmoulli-Euler's

beam model without taking into consideration the crackintpeffect during vibrations
as shown schematically in Fig. 1.
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Fig. 1. The model of a cantilever beam with a transverse opdman-propagating crack.
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The subject of this paper is the finding in the acoustic sigredlorded with the
microphonen, the symptoms of crack in the beam as shown in Fig. 1. In ththestihe
beam has a constant cross-sectibe- b x h and area moment of inertia The Young
modulusE and material density are also constant.

The diagnostic procedure described in the paper invohegatialysis of vibrations
induced by force-impulse and determining the acousticsomresat poinin. The analysis
was carried out in the frequency domain by setting a beanatidor velocity function
(for different crack depths) for each excitation frequeridye Green'’s function set for
open space was used for the description of the acoustic wapagation.

3. Transverse vibration

In order to estimate the effect of crack on beam vibratios,#tter has been sim-
ulated as a rotational spring. The spring flexibilifybinds the bending moment in the
cross-section with the coordinate= x,, and the angles of rotation (angular displace-
ment) from the right and left side of the cross-section inchitthe crack exists, i.e.:

y'(z)) =y (x,) = cg ETY" (z,). 1)

The equation binding the spring flexibility and crack depéséxd on fracture me-
chanics will be shown in the next section of the article.

4. Flexibility at the cracked place

The fracture mechanics studies allow finding relations betwthe global quantity
G — Energy Release Rate determining the increase in thecekstin energy for an
infinitesimal crack surface increase:
_ou
04,
and the local quantitys’ — Stress Intensity Factor (SIF), which is a function of thec&r
deptha:

G

1—12
E
whereG — energy release rate represents the elastic energy peracit surface area,
A, — area of the cracky — Poisson ratioE — Young modulusK; — Stress Intensity
Factor (SIF) of modd (opening the crack) for pure bending.
After simple transformation, the elastic strain energy ttuthe crack has the form
(b, h, a, o are explained in Fig. 2):

G:

K%, 2)

1—v? i 9
U= | GdA, = Tb K7 da. (3)
A, 0
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b

Fig. 2. Geometry of the cracked section.

SIF can be expressed as follows:

K| =oVraF, (%) :
wheredA, = bda — elementary crack areé, i — cross-section dimensions- depth
of the crackgy — normal stresst’; — correction function also called “shape functions”.
The relation between the functidry and the crack depth for different geometries of
the elements with crack and different ways of loading carobed in catalogs, e.g. [16].
It takes the following form for pure bending:

« « )\ 2 a3 a4
Fr <E> — 1.122 — 1.40 <E> +7.33 (ﬁ) ~13.08 (E) +14.0 (ﬁ) .
The error made when using the above mentioned formula ighess).2% for a crack
depth not larger than 60% of the beam height.
The normal stress in the section= z, (Fig. 1) of the beam with no crack (the
change in stress distribution caused by crack is given bystheoefficient) is:
_ My(zp) Mg(xp)h.

W, 27

After simple transformations the increase in the elast@istenergy in the beam,
connected with the appearance of a crack of depththe beam of rectangular section
b x h,is:

U = 3h7r1;3—1”2Mg2(g;p) (%)2 {0.6294 . 1.0472% +4.6021 (%)2
—9.9751 (%)3 +20.2948 (%)4 — 32.9933 (%)5 + 47.0408 (%)6
— 40.6933 (%)7 +19.6 (%)8} . @)

The section with the crack should be replaced with a flexibiet j(rotational spring)
having the same potential energy [13].
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In order to determine the value of flexibility,, of such a joint, the Castigliano’s
theorem is used, from which the additional generalizedldigment can be determined
(angle of rotatiory = y’(mj;) — y'(z,)) resulting from the increase of the potential
energy of deformation of the beam (4):

ou
0=—.
oM,
Taking into account:
0
= oM,

we obtain after simple transformations an equation, whidkldthe spring flexibility
with the increase in the potential energy of deformafian

. 0*U
g OMZ2(xp)’
hence the flexibility is:

2

¢y = Gl — (%)2 [0.6294 — 104727 +4.6021 (%)2
—9.9751 (%)3 +20.2948 (%)4 ~32.9933 (%)5
| 47.0408 (%)6 — 40.6933 (%)7 +19.6 (%)8] (5)

The flexibility of the elastic element modelling of the cradkcross-section will be
used to find diagnostic symptoms of the crack in the beam.

5. Flexural vibration equation of the cracked beam

The equation of the forced vibration amplitudes including ¢xciting force applied
in the point with the coordinate = x ;, amplitude” and frequency,, has the follow-
ing form:

XW —NX = ¢y X() 0" (2, 2p) — F 6(x,24). (6)

The solution of Eq. (6) can be found in the class of a genardlfmnction, which
gives the solution in the finite form in contrast to the staddaethod which leads to a
solution in the form of an infinite sum of eigenfunctions.

The following function is a solution of Eq. (6):

X(z) = Xo(z) + ;—iX"(xp) [Sh\(z — z},) +sin ANz — z,,)] H(x, xp)

F

~ gpna SMA(@ —ap) +sin Az —zp) H(z,z5),  (7)



22 L. MAJKUT

whereé(z, z,) — Dirac delta function at = x,,, H(z, z,,) — Heaviside step function at
T =Ty, A= wapA/EI, p —beam material density] — cross-sectional area,

Xo = Pch\z + @sh\z + R cos Az + S'sin Az,

P, @, R, S —integration constants.

The boundary conditions for the beam in Fig. 1 are describethe equations:
X(0)=0,X'(0) =0, X"(l) = 0and X" (1) = 0. These equations could be written in
a matrix form:

M-C=W, (8)
where
[ 1 0 1 0 0
0 1 0 1 0
ch\l  sh\l —cosAl  —sin\ ;—g)\ [SA(l — @) — sin A(I — ap)]
M pr—
s\l ch\l sinAl —cos Al ;—i [chA(I — 2,) — cos Al — )]
1
_Ch/\acp sh\z, —cosAz, —sinlz), 2

constants vectotC:

and excitation vectow:

CT=[P QRS X"(x)]"

[ 0
0
SETG [ShA(l — zf) — sin A(l — z)]
W= F
SETG [ch\(I — ) — cos A(I — z5)]
2EI;)\3 S\ (2p — 24) — sin M@ — @p)] H (wp, )

After calculating the integration constants, the functidnhe forced vibration am-
plitudes is described by Eq. (7), and the vibration veloaityplitudes by the following
function:

v(z) = w(Pch\x + Qsh\z + Rcos Az + S'sin Azx)

—i—wﬁX"(xp) [sh\(z — x) + sin Mz — zp) | H (2, z;)

wF

~2EIN3 ©

[sSh\(z — zf) + sin A(z — zf)] H (2, zy).
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The vibrating beam is a sound source with a pressure deddsipeelation (10) as a
function of vibration excitation frequency resulting ditly from the Green'’s function
[7, 15]:

l )
Jwpo v(z) ek (@)
= b
pw) 27 / r(x)

wherep, — density of air,b — width of beamu(z) — function of velocity amplitudes
described by (9)k — wave number] — length of the beam;(z) = /R>+ (I — 2)? —
distance between the measured point and the beam point @ficate:.

Figure 3 shows the acoustic pressure cupye) set for a beam with no crack
(Fig. 3a) and for that with a crack at poirf, = 0.9 m and the deptha = 0.1h

dz, (10)

a) b)
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Fig. 3. Acoustic pressure as function of frequency the saafavhich is an impulse forced beam with no
crack (a) and with different crack depths (b, c and d).
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(h — beam height) (Fig. 3by; = 0.3k (Fig. 3c) anda = 0.5h (Fig. 3d). The calcu-
lations were performed for a beam with the following matediata: Young modulus
E = 2.1-10" Pa; material density = 7860 kg/m?, and the geometric data: cross-
sectionb x h = 0.03 x 0.03 m; beam lengtti = 1.2 m. The calculations were performed
for the force with constant amplitude for each excitatia@yfrency, which was changed
from w = 27 - 20 rad/s (frequencyf = 20 Hz) tow = 2« - 2000 rad/s (frequency
f = 2 kHz) with al Hz increment.

The sought-after diagnostic symptom is the change of theraldrequency value.
The analysis of the characteristics shown in Fig. 3 leadegabnclusion that, despite
the analysis of the beam vibration with a large crack (50%seafrb height), the change
in frequency is imperceptible. The visible widening of theestrum, particularly for
higher frequencies, is a diagnostic symptom hard to idenfihe model considered
does not include the always existing (internal and extgwiatation damping, which
increases with the increase of the excitation frequendgrtial damping is proportional
to deformation velocity). Therefore, on one hand the vibravelocity increases due to
the crack side, on the other hand and it reduces due to theaserof damping. This
causes problems in the evaluation of the value of the spaatridening as a diagnostic
symptom.

Due to the fact that the change of the free vibration frequémna diagnostic symp-
tom, this change has been shown in Figs. 4a and 4b in relatitretfrequency of the
beam with no crack as a function of the crack depfor different crack locations,,.
The figures show;; = w; per/wi, wi per, — i-th Natural frequency of cracked beam,—
i-th natural frequency of beam with no cracks 1, 2.

a) b)
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Fig. 4. Variations of the first two natural frequencies ascfions of the crack depth: a) first natural
frequency and, b) second natural frequency.

The results are shown far, = 0.3 m as solid lines, for,, = 0.6 m as dotted lines
and forz, = 0.9 m as broken lines.
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According to the analysis of the results presented in Fithelcrack with a depth up
to approx. 10% of beam height does not cause practically atgcthble changes of the
free vibration frequency, which makes the diagnostics ohdatigue cracks impossible
by using the method of analysis of natural frequency chaBgsing on the detected
change of the natural frequency value, it is possible totifietihe depth and location of
the crack [10, 14].

6. Coupled vibrations

The previous considerations regarding vibrations of aciiral element such as a
cracked cantilever beam relate to the simulation of the etdras a bending element.
The sought-after and described crack symptoms are the ebarfighe eigenfrequency
value. In the latest literature on structural element \ibraanalysis with a crack, the
authors consider the effect of coupling of various vibnatrnodes on the parameters
of dynamic characteristics. The coupling results from taet that lateral vibrations
induced by lateral external forces generate longitudiftaiations, which in turn gener-
ate lateral vibrations. For lateral and longitudinal ceadplibrations of the beam with
crack, the energy release rate could be expressed as follows

1—12

G=—— (K1y+ Krw)?, (11)
where o
Ky = ogvmal, (E) — Stress Intensity Factor of modefor bending mo-
mentM,,
M
g = M — normal stress,
g
« (6% a2 A a4
F (—):1.122—1.4 (—) . —) —13. (—) 14. (—) —correction
o (5 0(3 733(h 3.08(5) +140 (3 i
function,
K = owvmalFT, (%) — Stress Intensity Factor of moddor axial forceP,,,
Py
O = 1(41:”) — normal stress,
« « a2 a3 a4
Fru (-) — 1.12 — 0.231 (-) 10.55 (-) _ 2172 (—) 30.39 (—) -
fw n) T h n) h

correction function.

The above designations demonstrate that the elastic €nairgy depend on: the
square of the bending momeht, (z,), the square of the longitudinal foré&,(z,) and
the product of both\/,(x,,) and P, ().

Hence, the crack has been modelled g8 & 2| flexibility matrix containingc,
andc,, coefficients on the main diagonal, and flexibility coeffi¢ges,,, andc,,, out-
side the diagonal. The relation between displacementgjiflatinal «.(z) and lateral
y(x)) from the right and left hand sides of the cross-section wisitk, the longitudinal
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force P, (x,) and the bending moment,(x,) in this cross-section is given by matrix
relation [14]:

cg  Cquw || Mg(xp) - vi@) =y () ] 12
[ng Cu Py () ] a [ u(ml‘f) — u(w;) : (12)

Individual flexibilities included in the flexibility matrixan be calculated using the
Castigliano theorem:

U
9T OM2(z,)’
0w
T 9PZ(r,)’
B 92U
O = M, (1p) 0Py ()
02U

Cwg = )
7 8Pw(xp) 8Mg(xp)

According to the Schwarz’s theorem, the sequence of diffexton has no effect
on the final result, which means thgt, = cy.

According to the analysis carried out by the author, theuidiclg of the coupling of
lateral and longitudinal vibrations in the discussed mdda an insignificant effect on
the change of natural frequency value. This leads to thelgsion that for the identifica-
tion of the parameters, i.e. the location and depth of thek¢izasing on measurements
of the free vibration frequency, there is no need to congtuecoupled vibrations.

Figure 5 shows the acoustic pressure as function of frequéresource of which is
the beam, described with the model including the vibratioapting, vibration-excited
by the force impulse in the lateral direction (in Fig. 5a fobeam with no crack, in
Fig. 5b for a beam with a crack).

As easily seen in the pressure spectrum, there is an adalitiesonance frequency
of a value of approx. 1050 Hz. This frequency correspond$i¢ofitst frequency of
the longitudinal free vibration. This means that for a sl element with crack, the
lateral vibration induced by lateral external forces gateernlso longitudinal vibration,
despite of that fact that excitation on these directionssdus exist, whereas the lat-
ter generate lateral vibration of a frequency equal to teguency of the longitudinal
natural vibration.

The characteristics shown in Fig. 5b was obtained for thekadaptha = 3% of the
beam height, from which results that the coupled vibratioalygsis allows to diagnose
such cracks (of little depth) in beams, which are undetéetahen measuring changes
of the eigenfrequency, or amplitudes of harmonic vibration
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a) b)
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Fig. 5. Acoustic pressure as function of frequency, the@of which is the beam: a) for a beam with no
crack, b) for a beam with a crack.

7. Conclusions

The paper describes acoustic diagnostics for crack deteictia structural element
on the example of a cantilever beam. Acoustic diagnostioaésof non-invasive meth-
ods, which are based on the passive measurement, in whiaftéhnierence of the mea-
suring sensors is negligible. The advantage of non-ineasigthods is the capability of
diagnosing and monitoring (continuous control) withodemupting the normal opera-
tion of the device. An additional advantage of the acoustgmbstics is the relatively
easy recording of the diagnostic signals, which includauatio emission signals.

The paper analyses the most commonly described in the neferaaterial models,
a beam model including only bending vibrations and a moagdliaing coupled bending
and longitudinal vibrations.

It has been shown that for bending eigenvalues their chammyeb® regarded as an
identification diagnostic symptom. At the same time, thdyaisiof the results obtained
shows that a crack with a depth up to approx. 10% of the beaghhpiactically does
not cause any detectable change of the natural frequenisy/léus to the conclusion
that the diagnostics of fatigue cracks with depths less ft@® of beam height, it is
impossible to use this diagnostic symptom.

For the detection of cracks of smaller depth, the effect aifpting of different vi-
bration modes was used. It has been proved that the crack $othrice of coupling, i.e.
in the case of a structural element with crack, the latetalations induced by lateral
external forces generate also longitudinal vibrationstr@ry to the fact that excitation
in these directions does not exist. It has been demonstitsaethe presence of the ad-
ditional resonance frequency, close to the longitudingéerirequencies of the element
in the spectrum of recorded acoustic signal, is a diagnhegtigotom of crack, however
it is not impossible to identify crack parameters, i.e. tiegptd location of crack, basing
on this experiment.
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