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The paper is aimed at the presentation of examples of apptiim saddle point approxi-
mation method to some fundamental problems of acousticstendiscussion of some inter-
esting couplings between applied mathematical methodshenghysical interpretation of the
results.

The saddle point method is shortly reminded in its basic féram which more advanced
versions, improving the results and widening the range sbilbe applications, are derived.
Two problems, solved at rst for electromagnetic waves anent applied to acoustics by
means of “the analogous method”, have been chosen as exarfipke rst one is the phe-
nomenon of the re ection of a spherical wave at a plane iatmfbetween two media, the
lower of which is characterised by a higher velocity (watend, air/water). In this case there
is a critical angle above which a total re ection and a laterave occur. The second example
is the far eld radiated from the outlet of a semi-in nite cuular duct. The physical insight into
the understanding of the physical phenomena provided byatidle point method is stressed.

Key words: saddle point method, waves propagation in layered mede&alavave, radiation
from cylindrical duct.

1. Introduction

In the process of the mathematical description of physibahpmena sophisticated
mathematical methods as the integral transforms, thermitegpresentation etc., which
may darken the physical interpretation of the results, #snapplied.
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The aim of the paper is to present the saddle point method astlzooh revealing
the physical meaning of the problems considered. We aretaghihk that the methods
of approximate solutions are accepted and applied onlyusecexact solutions are not
known. In fact, as will be shown below, in some cases an apmate solution gives
more physical insight into the phenomena considered.

Two problems, which have been subjects of our interest fioresiime, the re ection
of sound at a plane interface separating two media and thelthradiated from the
semi-in nite cylindrical duct, have been chosen as illatisns of the method. No doubt
that they are of considerable theoretical and practicahingaand both were rst solved
for electromagnetic waves with analogous boundary cati The large spectrum of
advantages from applying the saddle point method, not aniplgying mathematical
formulae but also allowing a clear and meaningful physio&trpretation, has been
outlined.

Until the forties of the 20-th century, only the problem ofe&ion of a plane wave
at the boundary of two media has been solved analyticallg ddse often discussed
in underwater acoustics, when the sound waves propagaissaitre boundary with a
ratio of velocitiesn < 1 (water/sand, air/water), is analysed below. Accordinghi® t
Snell's law, if the angle of incidence is less than the sdecatritical angle, a re ected
wave arises together with the transmitted one. For waveddnton the boundary at an
angle greater than the critical one, no energy is transthitt¢he other medium and the
phenomenon of total internal re ection is observed.

Itis interesting to consider the case of a plane wave fathim@ boundary separating
two media at an angle exactly equal to the critical one. Aipplyhe Fermat's principle
on extreme propagation time and Huygens principle, one sdméhe conclusion that
for an angle of incidence equal to the critical one, the inicgnwave can propagate
over some distance in the lower medium (along the interfagt) a greater velocity
and come back to the upper medium. In fact, such a wave iswasand called the
lateral wave.

Considering propagation in layered media, the applicatidhe ray model requires
to take into account all phenomena described above with ectmn coef cient de-
pending on the angle of incidence. The problem has been fatetland solved by
BREKHOVSKIKH [1-3] by means of the fundamental paper oEW[4] who presented
a method of expansion of a spherical wave in the form of amymateover plane waves.

The rst attempt to solve the problem of wave propagationapered media was
made by ®MMERFELD for the case of electromagnetic waves [5]. A similar sitomti
occurred in the history of the second problem discussedrhédree problem of radiation
from the outlet of a semi-in nite circular duct was origihakolved by WAINSHTEJN
for electromagnetic waves [6] and then adapted to soundsvavee results were then
generalised for the acoustic eld and since then investigidty many authors [7-16].

Section 2 of this paper presents a short description of thdlegoint method.
Section 3 deals with the representation of a spherical watbda form of an integral
of functions representing plane waves. In Sec. 4, a certaidi oation of the saddle
point method is discussed on the example of the re ection gplzerical wave on the
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water/sand interface. It constitutes a fundamental pmbfeshallow water acoustics.
In Sec. 5, the solution for the far eld radiated by the outiét cylindrical duct serves
as an example of another modi cation of the saddle point imeth

2. The saddle point method

The saddle point method [1, 17] is used to calculate apprataty contour integrals
of the type 7

()= G(2)e9@dz; (1)
C

where C is the general contour in the complex planeand is a real parameter,
G(z) andg(z) are analytic functions of the complex varialde The background of

this method constitutes some properties of the analytictfan like: the independence
of the integral value of the contour of integration whictowals us to deform it as long as
no singularities or branch lines are crossed, the Cauckyr&in conditions for partial
derivatives, the properties of harmonic functions.

Denotingg(z) = gr(2) + ig, (2), the exponential function can be written as a prod-
uctexp[g (z)] = exp[ g r(2)]expli g | (2)], which indicates that the greatest contribu-
tion to the integral (1) comes from the vicinity of points itieh g (z) has its extrema.
The real functiorgr (z) has its extremum atif both partial derivatives are there equal to
zero,@Qor(z) = 0, Qgr = 0. This means, according to Cauchy—Riemann conditions,
that the remaining partial derivatives are also equal to,Z@u, (z) =0, @9 (z) = 0.

If all four partial derivatives are in a certain point, equal to zero, the derivative of
g(z) is equal to zero at this poin{z) = 0 for z = , where prime indicates differ-
entiation with respect ta. The question arises whethercould be a maximum point
of gr(z). Bearing in mind thatgr (z) is a harmonic function and ful Is the equation
@QQ9r + @Q@Qgr =0, is asaddle point (Fig. 1) through which at least two curves
can be drawn: one has aits maximum, while the other one has there its minimum. Be-
tween the family of curves which at the saddle point have tiéiima or maxima, that
one at which the values of the functiga(z) decrease most rapidly is of our interest.
It is called the steepest descend path and likewise is oét#edcthe described method.
On this curve the phase of the functierp[ g (z)] is constant.

From what was said above, the main features and basic stehs saddle point
method can be outlined. Moreover, the method is ef cient whes large ands(z) is
a slowly varying function, especially in the neighbourhaddhe saddle points, which
mostly contribute to the integrand (1).

To recapitulate, the method consists of three main steps:

1. Finding one or more saddle points de ned by the critegfjz) =0 atz =

2. Respecting all the necessary rules, deform the contourtegriation into the
steepest descent path, which is de ned as the path in the leenptane that passes
through the saddle pointand along which the real part gfz) decreases most rapidly.
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Fig. 1. The steepest descend path and the steepest aschrutgsaing the saddle point of an analytic
function.

The steepest descent path can be de ned by means of a reaiqtara

92)=9() ¢ (2)

(atevery poinz 6 ,gr(z) <gr( ), what ensures a reg). Equating the last formula
with the Taylor series expansion fgfz) about the saddle pointlimited to the second
derivative,g(z) = g( )+ dgX )(z )+ (1=2)¢° )(z )2, and taking into account
gY ) = 0, the parametes is:

1
s= )z ) 3)
Denoting the beginning and the end of the contOury s; ands, we have:
P&
()= 299 )91 () g (@®R() s)G(s)ds: (4)

S2

3. Performing integration. The integrand, especially fogéapositive values, is
small everywhere except the vicinity of the saddle poifg = 0). For a slowly varying
function G(s), assuminga(s) = G(s = 0) = G( ) and extending the interval into
(1 ;+1),the Gaussintegral of the typaxp( s 2) appears, what leads to the result:

S

()=

2
g%)

Equation (5) is often called the rst order saddle point apgmation. If the in-
tegrand strictly ful Is the above listed conditions, it che easily evaluated. Unfortu-
nately, in practice such a situation is rather rare. On theraoy, usually dif culties

ed)G(): (5)
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arise, for example multi-valued functions, for which a domstion of the Riemann sur-
face with singularities, branch points and branch cutsigsgary. In acoustic problems,
the double-valued function (containing square roots)roétppears, the parameter is
not large orG(z) is not a slowly varying function near the saddle point.

For these reasons some improvements are introduced to sierbathod, two of
which, applied in the paper to solve the problems considergitl be concisely re-
minded.

2.1. Inclusion of the argument of ti&(z) function into the exponential function

This is the easiest way of improving the approximation and guite ef cient in
some cases [1, 7]. Expressiifz) = jG(z2)jexp[i (z)], the function in the exponent
takes the form:

au(z) = 9(2) + (i= ) (2); (6)
the saddle point criterion is:
g)+(i=) Y)=0; (7
and the integral (1) is as follows:
S
()= —e90G(): ®)
git)

In this approximation the phase of the functi@itz) affects the saddle point loca-
tion and the steepest descent path. This variant of the méthespecially suitable for
functions of steady amplitude and a varying argument.

2.2. Second and further approximations

As mentioned before, the basic formula (5) is often callezl tht order approxi-
mation. To obtain the second approximation, the integi@fiz) is expanded into the
Taylor series in the neighbourhood of the saddle poinfThis is equivalent to expand-
ing G(s) in the neighbourhood of = 0: G(s) = G(0) + GY0)s + (1 =2)G°¢0)s? and
leads to the formula [1-2]:

S

r
- _ 2. .90 _
() gOQ)e G()

G%Y)
299%)

9)

The formulae derived in this section are valid under theragdion that in the saddle
point, , the second derivativg®? ) 6 0, otherwise the integrals obtained become
in nite. The casegd ) =0, g°? ) = 0 cannot be treated by means of this method.
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3. Plane-wave representation of a spherical wave

The eld is generated by a point source located in the upp#rgtane; the lower
medium is of higher velocity (air/water, water/sand), wiegults in the phenomena of
total re ection above the critical angle. One of the constes is the appearance of a
lateral wave well known in shallow water acoustics and selsqy.

The rststep is to present the plane wave integral repregiemt of a spherical wave.
Lets assume a point sound source of a monochromatic wavelvattime dependence
exp( it ). Thus the acoustic potential at a distafRdrom the source is o(R) =
R lexp(ikR), wherek = !=c is the wave numbetl, the wave frequency andthe
speed of sound. In Cartesian co-ordinatesy; z), the potential of a spherical wave
takes the form of a surface integral [1, 11]

kR 71 71

1 .
o(R)= =5~ = We'("x“"vy*kzz)clkxclky; z 0 (10
z
1 1

whereR? = x? + y2 + z% andk? = ki + ki + kZ. The integration is performed over
the entire plangky; ky) and allows for imaginary values &f.

The physical interpretation of the above expression is Bewe: each point in the
(kx; ky) plane provides a contribution to the spherical wRve' exp(ikR ) in the form
of a plane wave. Points located inside the circle of radiuseal k;) correspond to
homogeneous waves, points outside the circle (imagikgryepresent inhomogeneous
waves. Assuming, for physical reasons, the imaginary gt positive

k; = kcos = kcos(°+ i %= k(cos %cosh ® isin %inh %; (11)

introducing spherical coordinatég = ksin cos' , ky = ksin sin' , and polar co-
ordinatesx = r cos' 1,y = r sin' 1, and substituting [18]

yA
gdkxx+kyy)qr =2 3 o(kr sin ); (12)
0

the potential of the spherical wave is expressed as a cointagral of a complex vari-
able :
=2 i1
o(R) = ik Jo(kr sin )eikz cos() gin d 13)
0

wherer = Rsin ,z = Rcos , Jo(w) denotes the Bessel function of order zero.
Ask; = kcos , realk, changing within the limit® k, k corresponds to real val-
ues of changing from=2to 0. For imaginark; with an increasing positive imaginary
part, the range of varies from=2to =2 il .
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Up to this point no approximations have been executed, sagheepresentation of
a spherical wave (13) is an exact formula.

The acoustic potential of a spherical wave can be expredsedy means of the
Hankel functionH él) (w) [18]. There are two main reasons to stick to that form: the
symmetry properties of the new contour of integration amdsiimplicity of asymptotic
form of the Hankel function. Applying the identitlp(w) = (1 =2)[H él) (w) Héz) (w)]
and substituting under the integral the Hankel's functioe asymptotic form valid for
jwj L

r— r—

1 2 1 = 1 2 1 =
Hé)(W): Wel(w 4 1+ 8i—W+ L= Wel(w 4), (14)

the spherical wave is decomposed into an in nite number afiplwaves incident at the
interface at an angle

eikR "2 1 ) p
o(R) = ? =C elkR cos( ) sin d; (15)
=2+i1l

wherec =[ik=(2 R sin )]*.

Each of these contributing plane waves obeys the simple mflege ection and
transmission (Snell's law) and (15) has the form suitabteafaplying the saddle point
method.

4. The uid- uid interface

In what follows, the re ection of a spherical wave at the widid boundary [1-3,
7, 11] is considered.

The point source (Fig. 2) is located at the heighin a medium characterised by the
density 1 and the speed soumg equal to » andc; in the lower medium, respectively.
We assume, > C;.

The plane wave re ection coef cient is [1]

P

02
m cos n2 sin

V()= o (16)
mcos + n2 sin

wherem = ,= 1 andn = c¢;=¢. Forn < 1 the critical angle is de ned as =

arcsin(n). As long as the media are homogeneausnd ., are real (the attenuation
constant is represented by the imaginary part of the sousebspvhich results in a com-
plex n with a positive imaginary part). The potential of the re edt eld is calculated
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Fig. 2. Geometry of the re ected eld. The boundary betwelea two medigc, > c1) islocatedaz = 0.
The actual sourc8 is substituted by the image soursituated in the lower medium.

introducing the re ection coef cient under the integrantiiey. (13):

=2 il
ef(R: )= ik Jo(krsin )ék? s v( )sin d: (17)
0

Equation (17) is the exact formula representing the paiknfithe re ected wave
and can be useful for numerical calculations. However, beeaf the properties of the
integrand and the in nite interval of integration, calctitens with the proper accuracy
assumed would involve time-consuming procedures and,wkieven more important,
would not provide a physical insight into the consideredramena.

Im6

contour of
integration

branch points

Fig. 3. Contour of integration for the re ected eld (Eq. (D8n the complex plane. The branch points
(o =arcsin(n)) and branch cuté ¢ i1 ) are also marked.
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To solve the problem by means of the saddle point method, @mozgimate formula
of the form corresponding to Eq. (15) will be applied:
=2 i1
w® )=c @Rt V() sin (18)
=2+i1
Figure 3 presents the adequate contour of integration. Becaf the asymptotic form

of the Hankel function, Eq. (18) is valid only fgkr sin j 1.
In Eq. (18), when compared with Eq. (1):

Skr;  g()=icos( )  G()=V() sin; (19)

and the saddle point occurs aE , so it equals to the angle of incidence of the wave
reaching the receiver.

Examining if theV ( ) function ful Is the required conditions, one notices that r
garding angles of incidence< , V( ) is real and for angles not very close tg it
is varying slowly (cf. Figs. 4-5).

VI
1_

0.94
0.8 1
0.74
0.6 7
0.54

0.44

0 02 04 06 08 1 12 14 0
Fig. 4. Modulus of the re ection coef cien¥ ( ) on the water/sand boundafy,, = = 3) and real .
Apart from the vicinity of ¢ itis varying slowly.

Some dif culties arise when drawing the steepest descertl. fzecause of the
square root componen¥,( ) is a two-valued function determined on the two-leaf Rie-
mann space, each leaf for one value of the square root. Difgitime contour of inte-
gration into the steepest descend path one has to be awanecwdssing singularities,
branch points or branch cuts. The deformed contour of iategr must begin and end
on the same leaf of Riemann surface. The branch cuts of tegramd presented in
Fig. 3 begin at branch points for whiett sin?> = 0, which means that branch points
are .

For < , the branch lind ;i1 ) is crossed twice and the deformation rules
are ful lled as indicated in Fig. 6.
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-2.5 4

-3.0 1
Arg 6

Fig. 5. Argument of the re ection coef cienV ( ) on the water/sand boundafy,: = = 3) and real .
For < ¢ itisequaltoO.

N

branch line_

Im6

A

o ecr Re6

"<ﬂ°%
branch point

Fig. 6. Contour of integration for the re ected eld in the mplex plane for the angles of incidence
< . The branch line is cut two times, the beginning and the enleintegration contour are located
on the same leaf of the Riemann surface.

The result is, according to Eq. (18),
z
ref(R; )= F()d =V()

c

okR
?; crs (20)
whereF ( ) denotes the integrand of Eq. (18).

The question arises if the last equation is ful lled for largangles of incidence
although not very close to the critical angle> ;. Deformation of the integration

contourC[ =2+ il .. =2 il ]into the steepest descend path, performed in the

same way as before, would lead to a situation where the begiramd the end of the
integration contour were situated on two different leafthefRiemann surface. To avoid
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this, the integration path has to be chosen such that thelv@ut is passed round as
shown in Fig. 7.

Im6

A

branch line

o Re©

branch point

Fig. 7. Contour of integration for angles of incidence . after the properly executed deformation
consists of curve€®andL, the last one passing around the branch(cut, i1 ).

Now, the potential of the re ected wave can be expressed s¥iodily in the form
okR Z

ef(Ri )= V( )5+ F()d; (21)
L

where the second component represents the lateral wave.
Due to symmetry properties, the integral olkerexpressing the lateral wave, can be
written as 7

lat (R; )

F()d
L

n Po——
kR cos( ) 4mcos n? sin?

p__
= i d: 22
©° (mcos )2 (n? sin? ) sin (22)

cr

It seems that the saddle point method fails in this case dae# not account for the
lateral wave arising according to Fermat's principle. Heerea detailed analysis of the
integrand in Eq. (18) leads to the conclusion that the arguiroEV ( ) is not varying
slowly for >  (cf. Figs. 4-5 and Figs. 8-9) and therefore it does not yatisd
condition of applicability of the saddle point method inlisic version. The necessity
arise to make use of Egs. (6)—(8) and introduce the arguni¢hedunctionV ( ) into
the exponential function.

DenotingV( ) = jV( )jexpli ( )], for angles greater than that of total internal

re ection

P —
1 sin

m COs

n2.

vV(O)j=1; ()= 2tan > o (23)
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0.4
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0 0.1

Fig. 8. Modulus of the re ection coef cienV ( ) for complex . For Im( ) = 0 one should notice the
curve presented in Fig. 4.

what leads to the following equation determining the sagdiat:

()= icos( ) 2—itan 1'7=0: (24)

Equation (24), solved by means of numerical methods, hasdets corresponding
to two saddle points. One of them is close to the incidenteaqgl < ), but a little
less, the other one is very close to the critical angle pointlittle above it( > = ).

Fig. 9. Argument of the re ection coef cient for complex One should notice that for real angles ¢
it equalsO as shown in Fig. 5.
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The presence of two saddle points can be seen in Fig. 10 byaramghe exponent
of the basic and improved methods. Introduction of the aentrofV ( ) into the expo-
nential results in the occurrence of the second saddle.piig leads to the following
expression for the potential of the lateral wave similar ¢p (B):

s
2i
= —; 25
lat kRgg? 2) ( )
where the functiorg;( ) is de ned by Eq. (24). The potential of the lateral wave is
not presented explicitly because of the complicated forthefsecond derivative @ .
In addition, the method requirg$? ) 6 0.

1 JEUSEE
0.998 - 7
//
//
0.996 1 - 8
— &
0.994 -
0.992 A
)

1104 108 112 116 12
Fig. 10. Theg andg; functions for the water/sand boundary, the angle of inaidenexceeding the critical

angle ¢ by 5 when the vertical distance between the image source anideezeis 10 . One may notice
two extremes (saddle points) of tge connected with the lateral and Snell's waves.

For < ¢, the argument o¥/( ) equalsO ( = 0). Therefore there exists only
one saddle pointat = . Forz = 10 , the real solution occurred starting from the
angle of64 ,forz =20 —from63,andforz =100 -from61 .Forsmall distances
z and angles close to the critical one, one should expect @mmallues of the saddle
points. For real values of the angle, the functigrhas one extreme (Fig. 11) and a point
of in ection. In this region, the considered modi cation tife method fails.

The following table represents values of saddle pointsutated for the water/sand
boundary (¢ = 60 , n = 0:866, m = 1:67) for different vertical distances between
the image source and the receiver expressed in wavelermyths@ , 20 , and100 ).
The calculations have been performed starting from61 .

All'in all, for angles of incidence>  , the potential of the re ected wave can be
represented as a sum of two waves: the wave re ected acgptdithe Snell's law and
the lateral wave:

ref = Snell ¥ lat; > en (26)
where gnein = V( 1)[sin( 1)=sin( )]*?R exp(kR) instead of/( )R lexp(ikR)
as before. A geometrical representation of these waveseés g Fig. 12.
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17104 108 112 116 120

Fig. 11. The same as above (Fig. 10), but for the angle of @mtid exceeding the critical angle;
by 2:5 . Theg: function has one extreme and one point of de ection. In tleéviy of the critical angle ¢
the method fails since the saddle points become compleXdbfe 1a).

Table 1. Values of saddle pointg, 2, versus angle of incidencecalculated for the water/sand boundary
(o =60 ,n =0:866 m = 1:67) for different vertical distances image source — receiggz = 10
b)z=20 ,andc)z=100 .

a)

61 62 63 64 65 66 67 68 69 70 75 80 85
1| # # # # 6271|6406 |6525|66:37|67:47|68:55| 73:83 | 79:11 | 84:49
2| # # # # | 6057|60:31|60:20|60:14 | 60:10 | 60:07 | 60:02| 60 60

61 62 63 64 65 66 67 68 69 70 75 80 85
1| # # | 61:41|62:83|63:99|6508|66:15|67:20| 68:24 | 69:27 | 74:41| 79:55 | 84:75
2| # # | 60:53|60:20 | 60:11| 60:07 | 60:05 | 60:03 | 60:02 | 60:01| 60 60 60

61 62 63 64 65 66 67 68 69 70 75 80 85
1160:39|61:70| 62:76 | 63:79| 64:81 | 65:82 | 66:83 | 67:84 | 68:84 | 69:85 | 74:88 | 79:91 | 84:95
2 | 60:39 | 60:03 | 60:01| 60 60 60 60 60 60 60 60 60 60

# —no real solutions,
— values differ from60 by less tharD:01 .

For ! ¢, both the rays merge, the saddle poinisand , are equal to each
other and in this case the modi cation of the saddle pointhodtpresented here fails
because in the vicinity of¢, called the caustic region, the functid{ ) must not be
treated as a slowly varying function (Figs. 4, 5). This ca&sguires further modi cation
of the saddle point method.
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S source

P receiver

pP1:C1

P2:Ca

Fig. 12. Schematic representation of the Snell's (1) aneféat(2) re ected waves on a plane boundary
between two homogenous media for the re ection coef ciert 1.

5. The far eld of a circular duct

The problem of the acoustic eld inside and outside a senmia circular wave-
guide was discussed in detail in the papers [14-16] puldigyethe authors. Herein
only bene ts resulting from the application of the saddlénpanethod are presented
and similarities in the approach to both the problems aretimgd.

Considering harmonic vibrations, thhéh mode acoustical potential of a semi-in-
nite cylindrical duct of radiusa, with the outlet az = 0, takes in cylindrical co-
ordinates the form [6, 14]:

(iz) = JOJ(O(' T;l)e 1z
1 2 . H(l) J S
+ Zia gwz VF, (W) 0 (V ) 1(va), a

Hél)(v )Ji(va); <a aw; @7)

1

wherew andv are the axial and radial wavenumbers, respectivedy: v2 = k2, Fj(w)
is the Fourier transform of the discontinuity (jump) of thatgntial on the duct's wall.
The rstterm in Eq. (27) represents the incident wave, theaited|-th Bessel mode,
the integral represents the eld excited due to re ectiord aiffraction phenomena
[6, 14]. Inside the duct it takes the form of superpositioBessel modes [6, 14], outside
the duct, in the far eld, it can be evaluated by means of tlgglEapoint method [14].
Expressing the axial wavenumber by means of he complex variable w =
ksin , and applying the asymptotic form of the Hankel function .(Ef)), the fol-
lowing formulae result:

Z

(R; ) = cd™4  wy( )ekRsin( )pﬁd; (28)
C1

W( ) = Ji(kacos )Fi(ksin )cos 1+ 1 ; (29)

8ikR sin cos

c = (ia=4)p 2k=( R sin ). The contourC; starts at=2 il , passes near 2,
along the real axis to the =2 and asymptotically to =2 + i1 . One may notice
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p

o a
P receiver modes of reflected

wave
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Fig. 13. Geometry of the cylindrical wave-guide of radausdiating outside due to re ection and diffrac-
tion phenomena at the outletat 0. The location of receivel is described byR; ).

the correspondence between this contour and that preserfagl 3, however now the
branch points are located at=2. From a comparisonrp@s. (28), (1) and (19), it
comes out that andg( ) are the same, b@( )= W,( ) cos .

Following the rules of the method, the result obtained is:

okR
1(R; ) = di( )?, (30)
where the directivity coef cient,( ) takes the form [14]:
1 .
a( )= Ekast 1(kasin )F/( kcos ); (32)

In the rst approximation, the potential has the form of a eptal wave multiplied
by the directivity function.

Many acoustic problems require the application of more ipeetormulae for the
potential, thus the need to develop the second and furth@oximations arises. To
obtain the second approximation, the integrand has to bengbgal into a series in the
neighbourhood of the saddle point [16]. Limiting the expango the terms containing
the second power &f at the most, the results are:

kR
(R ) = DR )&~ (32)
[ d
DIR: ) = d()+ e )
d in2 d2
teos o —(G( ) Togoo—(@( ) (39)

Some numerical results of the directivity coef cient cdbed according to Egs. (30)
and (32) are presented in Fig. 14.
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Fig. 14. Directivity coef cient for the far eld radiated &m a semi-in nite wave-guide; diffraction param-

eterka = 7 :04, allowing for propagation of the plane wave, and two Bessal@s along the duct. The rst

order approximatiokR ! 1 (continuous line), the second order approximatiéh = 7 (dashed line)
andkR = 21 (dotted line).

The second term in Eq. (33) describes the second order torrgaroportional to
1=R, thus its contribution to the eld potential decreases asdistance from the source
increases. That is why Eq. (28) is often called the in nitstdnce approximations,
kKR !1

The possible improvement of the results obtained are ccetipus of the eld ac-
cording to exact formula or further modi cation of the saelgloint method resulting in
complex saddle points.

6. Conclusions

The paper presents advantages resulting from the applicafi the approximate
saddle point method to solve some general problems in dceudiwvo phenomena
served as examples: the re ection of the spherical wave damepboundary between
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two media (allowing for the lateral wave excitation) and tadiation from the outlet of

a circular duct. The rst problem is one of the main topics ytoacoustics, the second
one is vital in controlling the noise radiated from ducts, fas example, the heating
or ventilation systems. In both problems the acousticatmiidl has been chosen as a
quantity describing the eld. Although the derived exadeigral formulae for the poten-
tial allow for numerical computations, the saddle point moek provides new attractive
features of the solution. First of all, it gives more physiosight into the considered
phenomena.

In the wave re ection problem, it allows for a simple expléoa of the occur-
rence of the lateral wave. If the angle of incidence is gretitan the critical one,
a second saddle point appears, which is “the mathematicaifestation” of the ap-
pearance of the lateral wave. Each term in the potential dtan(Snell's wave and
lateral wave) is associated with an adequate saddle polms. i even more spec-
taculare if the considered problem is more complicatect lik case of more than
two-layers environments [20], when due to diffraction, geom the straight com-
ing wave also once, twicetc re ected waves and the lateral wave appear. In the sad-
dle point method approach, each of these waves is assodidiec respective sad-
dle point and the integral formula takes form of a sum of irdégattributed to dif-
ferent kinds of waves, which evidently simpli es not onlyetiphysical interpretation,
but also the evaluation of each wave contribution to the doald at the observation
point.

In the circular duct problem, the application of the methesltts in the presenta-
tion of the far eld outside inthe form of a spherical wave med by the directivity
coef cient. The coef cient, as presented in the paper, camalculated with an assumed
accuracy depending on which variant of the method is applieé choice of the suit-
able variant is always based on a thorough examination aidtbematical properties
of the functions and equations involved.

It may be interesting to consider what constitutes the backyl of these attractive
features of the method. The answer may be in the relationdsstvwnathematics and
physics.

Among the mathematical theorie€ PROSE[19] selected the “ideal/perfect” theo-
ries and expressed the opinion that an ideal theory is ngtankeful tool to describe
physical phenomena, but the deep inside of its structurtagtmnthe description of na-
ture. This is why it is so ef cient in describing physical vidr The theory of analytic
functions is, according to Penrose, an “ideal” theory. lphocess of solving problems
by means of the saddle point method a complex variable isedotred, the functions
become analytic and the analytic function theory can be lidpplied. This may be
the source of the visible physical insight which, at leasthie approximate method,
carries on.

Even if the lateral wave were not discovered previously,ahgearance of the sec-
ond saddle point above the critical angle would indicatat tthere must be something”
apart from the Snell's wave. In that way the mathematicabtheeveals, by means of
its equations, new physical phenomena.
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To recapitulate, the main feature of the saddle point metbdhat it allows for a
simple physical interpretation of the results obtained givéds more physical insight
into the phenomena presented.
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