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The paper is aimed at the presentation of examples of applying the saddle point approxi-
mation method to some fundamental problems of acoustics andthe discussion of some inter-
esting couplings between applied mathematical methods andthe physical interpretation of the
results.

The saddle point method is shortly reminded in its basic form, from which more advanced
versions, improving the results and widening the range of possible applications, are derived.
Two problems, solved at first for electromagnetic waves and then applied to acoustics by
means of “the analogous method”, have been chosen as examples. The first one is the phe-
nomenon of the reflection of a spherical wave at a plane interface between two media, the
lower of which is characterised by a higher velocity (water/sand, air/water). In this case there
is a critical angle above which a total reflection and a lateral wave occur. The second example
is the far field radiated from the outlet of a semi-infinite circular duct. The physical insight into
the understanding of the physical phenomena provided by thesaddle point method is stressed.

Key words: saddle point method, waves propagation in layered media, lateral wave, radiation
from cylindrical duct.

1. Introduction

In the process of the mathematical description of physical phenomena sophisticated
mathematical methods as the integral transforms, the integral representation etc., which
may darken the physical interpretation of the results, are often applied.
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The aim of the paper is to present the saddle point method as a method revealing
the physical meaning of the problems considered. We are usedto think that the methods
of approximate solutions are accepted and applied only because exact solutions are not
known. In fact, as will be shown below, in some cases an approximate solution gives
more physical insight into the phenomena considered.

Two problems, which have been subjects of our interest for some time, the reflection
of sound at a plane interface separating two media and the farfield radiated from the
semi-infinite cylindrical duct, have been chosen as illustrations of the method. No doubt
that they are of considerable theoretical and practical meaning and both were first solved
for electromagnetic waves with analogous boundary conditions. The large spectrum of
advantages from applying the saddle point method, not only simplifying mathematical
formulae but also allowing a clear and meaningful physical interpretation, has been
outlined.

Until the forties of the 20-th century, only the problem of reflection of a plane wave
at the boundary of two media has been solved analytically. The case often discussed
in underwater acoustics, when the sound waves propagate across the boundary with a
ratio of velocitiesn < 1 (water/sand, air/water), is analysed below. According to the
Snell’s law, if the angle of incidence is less than the so-called critical angle, a reflected
wave arises together with the transmitted one. For waves incident on the boundary at an
angle greater than the critical one, no energy is transmitted to the other medium and the
phenomenon of total internal reflection is observed.

It is interesting to consider the case of a plane wave fallingon a boundary separating
two media at an angle exactly equal to the critical one. Applying the Fermat’s principle
on extreme propagation time and Huygens principle, one comes to the conclusion that
for an angle of incidence equal to the critical one, the incoming wave can propagate
over some distance in the lower medium (along the interface)with a greater velocity
and come back to the upper medium. In fact, such a wave is observed and called the
lateral wave.

Considering propagation in layered media, the applicationof the ray model requires
to take into account all phenomena described above with a reflection coefficient de-
pending on the angle of incidence. The problem has been formulated and solved by
BREKHOVSKIKH [1–3] by means of the fundamental paper of WEIL [4] who presented
a method of expansion of a spherical wave in the form of an integral over plane waves.

The first attempt to solve the problem of wave propagation in layered media was
made by SOMMERFELD for the case of electromagnetic waves [5]. A similar situation
occurred in the history of the second problem discussed herein. The problem of radiation
from the outlet of a semi-infinite circular duct was originally solved by WAJNSHTEJN

for electromagnetic waves [6] and then adapted to sound waves. The results were then
generalised for the acoustic field and since then investigated by many authors [7–16].

Section 2 of this paper presents a short description of the saddle point method.
Section 3 deals with the representation of a spherical wave in the form of an integral
of functions representing plane waves. In Sec. 4, a certain modification of the saddle
point method is discussed on the example of the reflection of aspherical wave on the
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water/sand interface. It constitutes a fundamental problem in shallow water acoustics.
In Sec. 5, the solution for the far field radiated by the outletof a cylindrical duct serves
as an example of another modification of the saddle point method.

2. The saddle point method

The saddle point method [1, 17] is used to calculate approximately contour integrals
of the type

I(λ) =

∫

C

G(z)eλg(z) dz, (1)

whereC is the general contour in the complex planez and λ is a real parameter,
G(z) and g(z) are analytic functions of the complex variablez. The background of
this method constitutes some properties of the analytic function like: the independence
of the integral value of the contour of integration which allows us to deform it as long as
no singularities or branch lines are crossed, the Cauchy–Riemann conditions for partial
derivatives, the properties of harmonic functions.

Denotingg(z) = gR(z) + igI(z), the exponential function can be written as a prod-
uctexp[λg(z)] = exp[λgR(z)] exp[iλgI(z)], which indicates that the greatest contribu-
tion to the integral (1) comes from the vicinity of points in whichgR(z) has its extrema.
The real functiongR(z) has its extremum atξ if both partial derivatives are there equal to
zero,∂xgR(z) = 0, ∂ygR = 0. This means, according to Cauchy–Riemann conditions,
that the remaining partial derivatives are also equal to zero, ∂xgI(z) = 0, ∂ygI(z) = 0.
If all four partial derivatives are in a certain point,ξ, equal to zero, the derivative of
g(z) is equal to zero at this point:g′(z) = 0 for z = ξ, where prime indicates differ-
entiation with respect toz. The question arises whetherξ could be a maximum point
of gR(z). Bearing in mind thatgR(z) is a harmonic function and fulfils the equation
∂x∂xgR + ∂y∂ygR = 0, ξ is a saddle point (Fig. 1) through which at least two curves
can be drawn: one has atξ its maximum, while the other one has there its minimum. Be-
tween the family of curves which at the saddle point have their minima or maxima, that
one at which the values of the functiongR(z) decrease most rapidly is of our interest.
It is called the steepest descend path and likewise is often called the described method.
On this curve the phase of the functionexp[λg(z)] is constant.

From what was said above, the main features and basic steps inthe saddle point
method can be outlined. Moreover, the method is efficient when λ is large andG(z) is
a slowly varying function, especially in the neighbourhoodof the saddle points, which
mostly contribute to the integrand (1).

To recapitulate, the method consists of three main steps:

1. Finding one or more saddle points defined by the criteriong′(z) = 0 at z = ξ.

2. Respecting all the necessary rules, deform the contour of integration into the
steepest descent path, which is defined as the path in the complex plane that passes
through the saddle pointξ and along which the real part ofg(z) decreases most rapidly.



60 A. SNAKOWSKA, H. IDCZAK

Fig. 1. The steepest descend path and the steepest ascend path crossing the saddle point of an analytic
function.

The steepest descent path can be defined by means of a real parameters

g(z) = g(ξ) − s2 (2)

(at every pointz 6= ξ, gR(z) < gR(ξ), what ensures a reals). Equating the last formula
with the Taylor series expansion forg(z) about the saddle pointξ limited to the second
derivative,g(z) = g(ξ) + g′(ξ)(z − ξ) + (1/2)g′′(ξ)(z − ξ)2, and taking into account
g′(ξ) = 0, the parameters is:

s =

√

−1

2
g′′(ξ)(z − ξ). (3)

Denoting the beginning and the end of the contourC by s1 ands2 we have:

I(λ) =
√

−2g′′(ξ)eiλgI (ξ)

s1
∫

s2

eλ(gR(ξ)−s2)G(s) ds. (4)

3. Performing integration. The integrand, especially for large positiveλ values, is
small everywhere except the vicinity of the saddle pointξ (s = 0). For a slowly varying
function G(s), assumingG(s) ∼= G(s = 0) = G(ξ) and extending the interval into
(−∞,+∞), the Gauss integral of the typeexp(−λs2) appears, what leads to the result:

I(λ) =

√

−2π

λg′′(ξ)
eλg(ξ)G(ξ). (5)

Equation (5) is often called the first order saddle point approximation. If the in-
tegrand strictly fulfils the above listed conditions, it canbe easily evaluated. Unfortu-
nately, in practice such a situation is rather rare. On the contrary, usually difficulties
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arise, for example multi-valued functions, for which a construction of the Riemann sur-
face with singularities, branch points and branch cuts is necessary. In acoustic problems,
the double-valued function (containing square roots) often appears, theλ parameter is
not large orG(z) is not a slowly varying function near the saddle point.

For these reasons some improvements are introduced to the basic method, two of
which, applied in the paper to solve the problems considered, will be concisely re-
minded.

2.1. Inclusion of the argument of theG(z) function into the exponential function

This is the easiest way of improving the approximation and itis quite efficient in
some cases [1, 7]. ExpressingG(z) = |G(z)| exp[iΓ (z)], the function in the exponent
takes the form:

g1(z) = g(z) + (i/λ)Γ (z), (6)

the saddle point criterion is:

g′(ξ) + (i/λ)Γ ′(ξ) = 0, (7)

and the integral (1) is as follows:

I(λ) =

√

−2π

λg′′1(ξ)
eλg(ξ)G(ξ). (8)

In this approximation the phase of the functionG(z) affects the saddle point loca-
tion and the steepest descent path. This variant of the method is especially suitable for
functions of steady amplitude and a varying argument.

2.2. Second and further approximations

As mentioned before, the basic formula (5) is often called the first order approxi-
mation. To obtain the second approximation, the integrandG(z) is expanded into the
Taylor series in the neighbourhood of the saddle point,ξ. This is equivalent to expand-
ing G(s) in the neighbourhood ofs = 0: G(s) ∼= G(0) + G′(0)s + (1/2)G′′(0)s2 and
leads to the formula [1–2]:

I(λ) =

√

−2

g′′(ξ)
eλg(ξ)

(
√

π

λ
G(ξ) − πG′′(ξ)

2λg′′(ξ)

)

. (9)

The formulae derived in this section are valid under the assumption that in the saddle
point, ξ, the second derivativeg′′(ξ) 6= 0, otherwise the integrals obtained become
infinite. The caseg′(ξ) = 0, g′′(ξ) = 0 cannot be treated by means of this method.
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3. Plane-wave representation of a spherical wave

The field is generated by a point source located in the upper half plane; the lower
medium is of higher velocity (air/water, water/sand), whatresults in the phenomena of
total reflection above the critical angle. One of the consequences is the appearance of a
lateral wave well known in shallow water acoustics and seismology.

The first step is to present the plane wave integral representation of a spherical wave.
Lets assume a point sound source of a monochromatic wave withthe time dependence
exp(−iωt). Thus the acoustic potential at a distanceR from the source isΦ0(R) =
R−1 exp(ikR), wherek = ω/c is the wave number,ω the wave frequency andc the
speed of sound. In Cartesian co-ordinates(x, y, z), the potential of a spherical wave
takes the form of a surface integral [1, 11]

Φ0(R) =
eikR

R
=

+∞
∫

−∞

+∞
∫

−∞

1

2πkz
ei(kxx+kyy+kzz) dkx dky, z ≥ 0, (10)

whereR2 = x2 + y2 + z2 andk2 = k2
x + k2

y + k2
z . The integration is performed over

the entire plane(kx, ky) and allows for imaginary values ofkz.
The physical interpretation of the above expression is as follows: each point in the

(kx, ky) plane provides a contribution to the spherical waveR−1 exp(ikR) in the form
of a plane wave. Points located inside the circle of radiusk (real kz) correspond to
homogeneous waves, points outside the circle (imaginarykz) represent inhomogeneous
waves. Assuming, for physical reasons, the imaginary part of kz positive

kz = k cos θ = k cos(θ′ + iθ′′) = k(cos θ′ cosh θ′′ − i sin θ′ sinh θ′′), (11)

introducing spherical coordinateskx = k sin θ cos ϕ, ky = k sin θ sin ϕ, and polar co-
ordinatesx = r cos ϕ1, y = r sin ϕ1, and substituting [18]

2π
∫

0

ei(kxx+kyy)dϕ = 2πJ0(kr sin θ), (12)

the potential of the spherical wave is expressed as a contourintegral of a complex vari-
ableθ:

Φ0(R) = ik

π/2−i∞
∫

0

J0(kr sin θ)eikz cos(θ) sin θ dθ, (13)

wherer = R sin α, z = R cosα, J0(w) denotes the Bessel function of order zero.
As kz = k cos θ, realkz changing within the limits0 ≤ kz ≤ k corresponds to real val-
ues ofθ changing fromπ/2 to 0. For imaginarykz with an increasing positive imaginary
part, the range ofθ varies fromπ/2 to π/2 − i∞.
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Up to this point no approximations have been executed, so thelast representation of
a spherical wave (13) is an exact formula.

The acoustic potential of a spherical wave can be expressed also by means of the
Hankel functionH

(1)
0 (w) [18]. There are two main reasons to stick to that form: the

symmetry properties of the new contour of integration and the simplicity of asymptotic
form of the Hankel function. Applying the identityJ0(w) = (1/2)[H

(1)
0 (w)−H

(2)
0 (w)]

and substituting under the integral the Hankel’s function the asymptotic form valid for
|w| ≫ 1:

H
(1)
0 (w) =

√

2

πw
ei(w−π/4)

(

1 +
1

8iw
+ ...

)

∼=
√

2

πw
ei(w−π/4), (14)

the spherical wave is decomposed into an infinite number of plane waves incident at the
interface at an angleθ

Φ0(R) =
eikR

R
= c

π/2−i∞
∫

−π/2+i∞

eikR cos(θ−α)
√

sin θ dθ, (15)

wherec = [ik/(2πR sin α)]1/2.
Each of these contributing plane waves obeys the simple rules of reflection and

transmission (Snell’s law) and (15) has the form suitable for applying the saddle point
method.

4. The fluid-fluid interface

In what follows, the reflection of a spherical wave at the fluid-fluid boundary [1–3,
7, 11] is considered.

The point source (Fig. 2) is located at the heightzs in a medium characterised by the
densityρ1 and the speed soundc1 equal toρ2 andc2 in the lower medium, respectively.
We assumec2 > c1.

The plane wave reflection coefficient is [1]

V (θ) =
m cos θ −

√

n2 − sin2 θ

m cos θ +
√

n2 − sin2 θ
, (16)

wherem = ρ2/ρ1 andn = c1/c2. For n < 1 the critical angle is defined asθcr =
arcsin(n). As long as the media are homogeneous,n andθcr are real (the attenuation
constant is represented by the imaginary part of the sound speed, which results in a com-
plex n with a positive imaginary part). The potential of the reflected field is calculated
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Fig. 2. Geometry of the reflected field. The boundary between the two media(c2 > c1) is located atz = 0.
The actual sourceS is substituted by the image sourceS′ situated in the lower medium.

introducing the reflection coefficient under the integrand of Eq. (13):

Φref(R,α) = ik

π/2−i∞
∫

0

J0(kr sin θ)eikz cos θV (θ) sin θ dθ. (17)

Equation (17) is the exact formula representing the potential of the reflected wave
and can be useful for numerical calculations. However, because of the properties of the
integrand and the infinite interval of integration, calculations with the proper accuracy
assumed would involve time-consuming procedures and, which is even more important,
would not provide a physical insight into the considered phenomena.

Fig. 3. Contour of integration for the reflected field (Eq. (18)) in the complexθ plane. The branch points
(±θcr = arcsin(n)) and branch cuts(±θcr ± i∞) are also marked.
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To solve the problem by means of the saddle point method, an approximate formula
of the form corresponding to Eq. (15) will be applied:

Φref(R,α) = c

π/2−i∞
∫

−π/2+i∞

eikR cos(θ−α)V (θ)
√

sin θ dθ. (18)

Figure 3 presents the adequate contour of integration. Because of the asymptotic form
of the Hankel function, Eq. (18) is valid only for|kr sin θ| ≫ 1.

In Eq. (18), when compared with Eq. (1):

λ = kR, g(θ) = i cos(θ − α), G(θ) = V (θ)
√

sin θ, (19)

and the saddle point occurs atξ = α, so it equals to the angle of incidence of the wave
reaching the receiver.

Examining if theV (θ) function fulfils the required conditions, one notices that re-
garding angles of incidenceθ < θcr, V (θ) is real and for angles not very close toθcr it
is varying slowly (cf. Figs. 4–5).

Fig. 4. Modulus of the reflection coefficientV (θ) on the water/sand boundary(θcr = π/3) and realθ.
Apart from the vicinity ofθcr it is varying slowly.

Some difficulties arise when drawing the steepest descend path. Because of the
square root component,V (θ) is a two-valued function determined on the two-leaf Rie-
mann space, each leaf for one value of the square root. Deforming the contour of inte-
gration into the steepest descend path one has to be aware when crossing singularities,
branch points or branch cuts. The deformed contour of integration must begin and end
on the same leaf of Riemann surface. The branch cuts of the integrand presented in
Fig. 3 begin at branch points for whichn2− sin2 θ = 0, which means that branch points
are±θcr.

For α < θcr, the branch line(θcr, i∞) is crossed twice and the deformation rules
are fulfilled as indicated in Fig. 6.
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Fig. 5. Argument of the reflection coefficientV (θ) on the water/sand boundary(θcr = π/3) and realθ.
Forθ < θcr it is equal to 0.

Fig. 6. Contour of integration for the reflected field in the complex θ plane for the angles of incidence
θ < θcr. The branch line is cut two times, the beginning and the end ofthe integration contour are located

on the same leaf of the Riemann surface.

The result is, according to Eq. (18),

Φref(R,α) =

∫

c

F (θ) dθ = V (α)
eikR

R
, α < θcr, (20)

whereF (θ) denotes the integrand of Eq. (18).
The question arises if the last equation is fulfilled for larger angles of incidence

although not very close to the critical angle:α > θcr. Deformation of the integration
contourC [−π/2 + i∞ .. π/2 − i∞] into the steepest descend path, performed in the
same way as before, would lead to a situation where the beginning and the end of the
integration contour were situated on two different leafs ofthe Riemann surface. To avoid
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this, the integration path has to be chosen such that the branch cut is passed round as
shown in Fig. 7.

Fig. 7. Contour of integration for angles of incidenceα > θcr after the properly executed deformation
consists of curvesC′′ andL, the last one passing around the branch cut(θcr, i∞).

Now, the potential of the reflected wave can be expressed symbolically in the form

Φref(R,α) = V (α)
eikR

R
+

∫

L

F (θ) dθ, (21)

where the second component represents the lateral wave.
Due to symmetry properties, the integral overL, expressing the lateral wave, can be

written as

Φlat(R,α) =

∫

L

F (θ) dθ

= c

i∞
∫

θcr

eikR cos(θ−α) 4m cos θ
√

n2 − sin2 θ

(m cos θ)2 − (n2 − sin2 θ)

√
sin θ dθ. (22)

It seems that the saddle point method fails in this case, as itdoes not account for the
lateral wave arising according to Fermat’s principle. However, a detailed analysis of the
integrand in Eq. (18) leads to the conclusion that the argument of V (θ) is not varying
slowly for θ > θcr (cf. Figs. 4–5 and Figs. 8–9) and therefore it does not satisfy the
condition of applicability of the saddle point method in itsbasic version. The necessity
arise to make use of Eqs. (6)–(8) and introduce the argument of the functionV (θ) into
the exponential function.

DenotingV (θ) = |V (θ)| exp[iΓ (θ)], for angles greater than that of total internal
reflection

|V (θ)| = 1, Γ (θ) = −2 tan−1

√

sin2 θ − n2

m cos θ
, θ > θcr, (23)
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Fig. 8. Modulus of the reflection coefficientV (θ) for complexθ. For Im(θ) = 0 one should notice the
curve presented in Fig. 4.

what leads to the following equation determining the saddlepoint:

g1(θ) = i cos(θ − α) − 2i

kR
tan−1

√

sin2 θ − n2

m cos θ
= 0. (24)

Equation (24), solved by means of numerical methods, has tworoots corresponding
to two saddle points. One of them is close to the incident angle (ξ1 < α), but a little
less, the other one is very close to the critical angle point,but little above it(ξ2

∼= θcr).

Fig. 9. Argument of the reflection coefficient for complexθ. One should notice that for real anglesθ < θcr

it equals0 as shown in Fig. 5.
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The presence of two saddle points can be seen in Fig. 10 by comparing the exponent
of the basic and improved methods. Introduction of the argument ofV (θ) into the expo-
nential results in the occurrence of the second saddle point. This leads to the following
expression for the potential of the lateral wave similar to Eq. (8):

Φlat =

√

−2πi

kRg′′1 (ξ2)
, (25)

where the functiong1(θ) is defined by Eq. (24). The potential of the lateral wave is
not presented explicitly because of the complicated form ofthe second derivative ofg1.
In addition, the method requiresg′′1(ξ) 6= 0.

Fig. 10. Theg andg1 functions for the water/sand boundary, the angle of incidenceα exceeding the critical
angleθcr by 5◦ when the vertical distance between the image source and receiver,z is 10λ. One may notice

two extremes (saddle points) of theg1 connected with the lateral and Snell’s waves.

For α < θcr, the argument ofV (θ) equals0 (Γ = 0). Therefore there exists only
one saddle point atξ = α. For z = 10λ, the real solution occurred starting from the
angle of64◦, for z = 20λ – from63◦, and forz = 100λ – from61◦. For small distances
z and angles close to the critical one, one should expect complex values of the saddle
points. For real values of the angle, the functiong1 has one extreme (Fig. 11) and a point
of inflection. In this region, the considered modification ofthe method fails.

The following table represents values of saddle points calculated for the water/sand
boundary (θcr = 60◦, n = 0.866, m = 1.67) for different vertical distances between
the image source and the receiver expressed in wavelengths (z = 10λ, 20λ, and100λ).
The calculations have been performed starting fromα = 61◦.

All in all, for angles of incidenceα > θcr, the potential of the reflected wave can be
represented as a sum of two waves: the wave reflected according to the Snell’s law and
the lateral wave:

Φref = ΦSnell + Φlat, α > θcr, (26)

whereΦSnell = V (ξ1)[sin(ξ1)/ sin(α)]1/2R−1 exp(ikR) instead ofV (α)R−1 exp(ikR)
as before. A geometrical representation of these waves is given in Fig. 12.
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Fig. 11. The same as above (Fig. 10), but for the angle of incidenceα exceeding the critical angleθcr

by2.5◦. Theg1 function has one extreme and one point of deflection. In the vicinity of the critical angleθcr

the method fails since the saddle points become complex (cf.Table 1a).

Table 1. Values of saddle pointsξ1, ξ2, versus angle of incidenceα calculated for the water/sand boundary
(θcr = 60◦, n = 0.866, m = 1.67) for different vertical distances image source – receiver:a) z = 10λ,

b) z = 20λ, and c)z = 100λ.

a)

α 61 62 63 64 65 66 67 68 69 70 75 80 85

ξ1 # # # # 62.71 64.06 65.25 66.37 67.47 68.55 73.83 79.11 84.49

ξ2 # # # # 60.57 60.31 60.20 60.14 60.10 60.07 60.02 60∗ 60∗

b)

α 61 62 63 64 65 66 67 68 69 70 75 80 85

ξ1 # # 61.41 62.83 63.99 65.08 66.15 67.20 68.24 69.27 74.41 79.55 84.75

ξ2 # # 60.53 60.20 60.11 60.07 60.05 60.03 60.02 60.01 60∗ 60∗ 60∗

c)

α 61 62 63 64 65 66 67 68 69 70 75 80 85

ξ1 60.39 61.70 62.76 63.79 64.81 65.82 66.83 67.84 68.84 69.85 74.88 79.91 84.95

ξ2 60.39 60.03 60.01 60∗ 60∗ 60∗ 60∗ 60∗ 60∗ 60∗ 60∗ 60∗ 60∗

# – no real solutions,
∗ – values differ from60◦ by less than0.01◦.

For α → θcr, both the rays merge, the saddle pointsξ1 andξ2 are equal to each
other and in this case the modification of the saddle point method presented here fails
because in the vicinity ofθcr, called the caustic region, the functionV (θ) must not be
treated as a slowly varying function (Figs. 4, 5). This case requires further modification
of the saddle point method.
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Fig. 12. Schematic representation of the Snell’s (1) and lateral (2) reflected waves on a plane boundary
between two homogenous media for the reflection coefficientn < 1.

5. The far field of a circular duct

The problem of the acoustic field inside and outside a semi-infinite circular wave-
guide was discussed in detail in the papers [14–16] published by the authors. Herein
only benefits resulting from the application of the saddle point method are presented
and similarities in the approach to both the problems are underlined.

Considering harmonic vibrations, thel-th mode acoustical potential of a semi-in-
finite cylindrical duct of radiusa, with the outlet atz = 0, takes in cylindrical co-
ordinates the form [6, 14]:

Φl(ρ, z) =
J0(µlρ/a)

J0(µl)
e−iγlz

+
1

4
ia

∞
∫

−∞

eiwzvFl(w)

{

H
(1)
0 (vρ)J1(va), ρ > a

H
(1)
0 (vρ)J1(va), ρ < a

}

dw, (27)

wherew andv are the axial and radial wavenumbers, respectively,w2 +v2 = k2, Fl(w)
is the Fourier transform of the discontinuity (jump) of the potential on the duct’s wall.
The first term in Eq. (27) represents the incident wave, the so-calledl-th Bessel mode,
the integral represents the field excited due to reflection and diffraction phenomena
[6, 14]. Inside the duct it takes the form of superposition ofBessel modes [6, 14], outside
the duct, in the far field, it can be evaluated by means of the saddle point method [14].

Expressing the axial wavenumberw by means of he complex variableθ, w =
k sin θ, and applying the asymptotic form of the Hankel function (Eq. (14)), the fol-
lowing formulae result:

Φl(R,α) = ceiπ/4

∫

C1

Wl(θ)e
ikR sin(α−θ)

√
cos θ dθ, (28)

Wl(θ) = J1(ka cos θ)Fl(k sin θ) cos θ

(

1 +
1

8ikR sin α cos θ

)

, (29)

c = (ia/4)
√

2k/(πR sin α) . The contourC1 starts atπ/2 − i∞, passes nearπ/2,
along the real axis to the−π/2 and asymptotically to−π/2 + i∞. One may notice
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Fig. 13. Geometry of the cylindrical wave-guide of radiusa radiating outside due to reflection and diffrac-
tion phenomena at the outlet atz = 0. The location of receiverP is described by(R, α).

the correspondence between this contour and that presentedin Fig. 3, however now the
branch points are located at±π/2. From a comparison of Eqs. (28), (1) and (19), it
comes out thatλ andg(θ) are the same, butG(θ) = Wl(θ)

√
cos θ.

Following the rules of the method, the result obtained is:

Φl(R,α) = dl(α)
eikR

R
, (30)

where the directivity coefficientdl(α) takes the form [14]:

dl(α) =
1

2
ka sin αJ1(ka sin α)Fl(−k cosα), (31)

In the first approximation, the potential has the form of a spherical wave multiplied
by the directivity function.

Many acoustic problems require the application of more precise formulae for the
potential, thus the need to develop the second and further approximations arises. To
obtain the second approximation, the integrand has to be expanded into a series in the
neighbourhood of the saddle point [16]. Limiting the expansion to the terms containing
the second power ofs at the most, the results are:

Φl(R,α) = Dl(R,α)
eikR

R
, (32)

Dl(R,α) = dl(α) +
ia

2R

[

− dl(α)

8 sin2 α

+ cosα
d

d cos α
(dl(α)) − sin2 α

2

d2

d cos2 α
(dl(α))

]

. (33)

Some numerical results of the directivity coefficient calculated according to Eqs. (30)
and (32) are presented in Fig. 14.
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Fig. 14. Directivity coefficient for the far field radiated from a semi-infinite wave-guide; diffraction param-
eterka = 7.04, allowing for propagation of the plane wave, and two Bessel modes along the duct. The first
order approximationkR → ∞ (continuous line), the second order approximationkR = 7 (dashed line)

andkR = 21 (dotted line).

The second term in Eq. (33) describes the second order correction proportional to
1/R, thus its contribution to the field potential decreases as the distance from the source
increases. That is why Eq. (28) is often called the infinite distance approximations,
kR → ∞.

The possible improvement of the results obtained are computations of the field ac-
cording to exact formula or further modification of the saddle point method resulting in
complex saddle points.

6. Conclusions

The paper presents advantages resulting from the application of the approximate
saddle point method to solve some general problems in acoustics. Two phenomena
served as examples: the reflection of the spherical wave at a plane boundary between
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two media (allowing for the lateral wave excitation) and theradiation from the outlet of
a circular duct. The first problem is one of the main topics in hydroacoustics, the second
one is vital in controlling the noise radiated from ducts, as, for example, the heating
or ventilation systems. In both problems the acoustical potential has been chosen as a
quantity describing the field. Although the derived exact integral formulae for the poten-
tial allow for numerical computations, the saddle point method provides new attractive
features of the solution. First of all, it gives more physical insight into the considered
phenomena.

In the wave reflection problem, it allows for a simple explanation of the occur-
rence of the lateral wave. If the angle of incidence is greater than the critical one,
a second saddle point appears, which is “the mathematical manifestation” of the ap-
pearance of the lateral wave. Each term in the potential formula (Snell’s wave and
lateral wave) is associated with an adequate saddle point. This is even more spec-
taculare if the considered problem is more complicated, like in case of more than
two-layers environments [20], when due to diffraction, apart from the straight com-
ing wave also once, twiceetc. reflected waves and the lateral wave appear. In the sad-
dle point method approach, each of these waves is associatedwith a respective sad-
dle point and the integral formula takes form of a sum of integrals attributed to dif-
ferent kinds of waves, which evidently simplifies not only the physical interpretation,
but also the evaluation of each wave contribution to the sound field at the observation
point.

In the circular duct problem, the application of the method results in the presenta-
tion of the far field outside inthe form of a spherical wave modified by the directivity
coefficient. The coefficient, as presented in the paper, can be calculated with an assumed
accuracy depending on which variant of the method is applied. The choice of the suit-
able variant is always based on a thorough examination of themathematical properties
of the functions and equations involved.

It may be interesting to consider what constitutes the background of these attractive
features of the method. The answer may be in the relation between mathematics and
physics.

Among the mathematical theories PENROSE[19] selected the “ideal/perfect” theo-
ries and expressed the opinion that an ideal theory is not only a useful tool to describe
physical phenomena, but the deep inside of its structure contains the description of na-
ture. This is why it is so efficient in describing physical world. The theory of analytic
functions is, according to Penrose, an “ideal” theory. In the process of solving problems
by means of the saddle point method a complex variable is introduced, the functions
become analytic and the analytic function theory can be widely applied. This may be
the source of the visible physical insight which, at least inthe approximate method,
carries on.

Even if the lateral wave were not discovered previously, theappearance of the sec-
ond saddle point above the critical angle would indicate, that “there must be something”
apart from the Snell’s wave. In that way the mathematical theory reveals, by means of
its equations, new physical phenomena.
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To recapitulate, the main feature of the saddle point methodis that it allows for a
simple physical interpretation of the results obtained andgives more physical insight
into the phenomena presented.
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