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The paper is aimed at the presentation of examples of apptiim saddle point approxi-
mation method to some fundamental problems of acousticstendiscussion of some inter-
esting couplings between applied mathematical methodshenghysical interpretation of the
results.

The saddle point method is shortly reminded in its basic féram which more advanced
versions, improving the results and widening the range sbjibe applications, are derived.
Two problems, solved at first for electromagnetic waves dah tapplied to acoustics by
means of “the analogous method”, have been chosen as exarfpk first one is the phe-
nomenon of the reflection of a spherical wave at a plane aterbetween two media, the
lower of which is characterised by a higher velocity (watand, air/water). In this case there
is a critical angle above which a total reflection and a lat®eae occur. The second example
is the far field radiated from the outlet of a semi-infinitecaliar duct. The physical insight into
the understanding of the physical phenomena provided byatidle point method is stressed.
Key words: saddle point method, waves propagation in layered medealavave, radiation
from cylindrical duct.

1. Introduction

In the process of the mathematical description of physibahpmena sophisticated
mathematical methods as the integral transforms, thermtegpresentation etc., which
may darken the physical interpretation of the results, &sna@pplied.
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The aim of the paper is to present the saddle point method astlzoch revealing
the physical meaning of the problems considered. We aretaghihk that the methods
of approximate solutions are accepted and applied onlyusecexact solutions are not
known. In fact, as will be shown below, in some cases an apmate solution gives
more physical insight into the phenomena considered.

Two problems, which have been subjects of our interest fiorestime, the reflection
of sound at a plane interface separating two media and thgefdrradiated from the
semi-infinite cylindrical duct, have been chosen as ilaigins of the method. No doubt
that they are of considerable theoretical and practicahingaand both were first solved
for electromagnetic waves with analogous boundary canti The large spectrum of
advantages from applying the saddle point method, not amiplgying mathematical
formulae but also allowing a clear and meaningful physio&trpretation, has been
outlined.

Until the forties of the 20-th century, only the problem diieetion of a plane wave
at the boundary of two media has been solved analyticallg ddse often discussed
in underwater acoustics, when the sound waves propagaissaitie boundary with a
ratio of velocitiesn < 1 (water/sand, air/water), is analysed below. Accordinght® t
Snell’'s law, if the angle of incidence is less than the sdedatritical angle, a reflected
wave arises together with the transmitted one. For wavegdnton the boundary at an
angle greater than the critical one, no energy is transthitt¢he other medium and the
phenomenon of total internal reflection is observed.

Itis interesting to consider the case of a plane wave fathim@ boundary separating
two media at an angle exactly equal to the critical one. Appplyhe Fermat’s principle
on extreme propagation time and Huygens principle, one sdméhe conclusion that
for an angle of incidence equal to the critical one, the inicgnwave can propagate
over some distance in the lower medium (along the interfagt) a greater velocity
and come back to the upper medium. In fact, such a wave iswasand called the
lateral wave.

Considering propagation in layered media, the applicatidhe ray model requires
to take into account all phenomena described above with ectifh coefficient de-
pending on the angle of incidence. The problem has been fatethand solved by
BREKHOVSKIKH [1-3] by means of the fundamental paper oEW[4] who presented
a method of expansion of a spherical wave in the form of amymatever plane waves.

The first attempt to solve the problem of wave propagatiorayeied media was
made by ®MMERFELD for the case of electromagnetic waves [5]. A similar sitomti
occurred in the history of the second problem discussedrméree problem of radiation
from the outlet of a semi-infinite circular duct was origigadolved by WAINSHTEJN
for electromagnetic waves [6] and then adapted to soundsvavee results were then
generalised for the acoustic field and since then investiblay many authors [7-16].

Section 2 of this paper presents a short description of thdlegoint method.
Section 3 deals with the representation of a spherical watka form of an integral
of functions representing plane waves. In Sec. 4, a certaidiffoation of the saddle
point method is discussed on the example of the reflectionspharical wave on the
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water/sand interface. It constitutes a fundamental pmbfeshallow water acoustics.
In Sec. 5, the solution for the far field radiated by the oudfed cylindrical duct serves
as an example of another modification of the saddle point mdeth

2. The saddle point method

The saddle point method [1, 17] is used to calculate appratdty contour integrals
of the type

IN) = [ G(2)eM?) dz, (1)
/

where C is the general contour in the complex planend X is a real parameter,
G(z) andg(z) are analytic functions of the complex variable The background of
this method constitutes some properties of the analytictfan like: the independence
of the integral value of the contour of integration whictowals us to deform it as long as
no singularities or branch lines are crossed, the Caucleyr&in conditions for partial
derivatives, the properties of harmonic functions.

Denotingg(z) = gr(z) + ig:(2), the exponential function can be written as a prod-
uctexp[Ag(z)] = exp[Agr(2)] exp[iAgr(2z)], which indicates that the greatest contribu-
tion to the integral (1) comes from the vicinity of points itieh gz (z) has its extrema.
The real functioryz(z) has its extremum &tif both partial derivatives are there equal to
zero,0,9r(2) = 0, dygr = 0. This means, according to Cauchy—Riemann conditions,
that the remaining partial derivatives are also equal to,2&1g,(z) = 0, dyg,(2) = 0.

If all four partial derivatives are in a certain poirt, equal to zero, the derivative of
g(z) is equal to zero at this poing/(z) = 0 for z = £, where prime indicates differ-
entiation with respect ta. The question arises whethércould be a maximum point
of gr(z). Bearing in mind thayx(z) is a harmonic function and fulfils the equation
0.0:9r + 0y0ygr = 0, £ is a saddle point (Fig. 1) through which at least two curves
can be drawn: one hasgits maximum, while the other one has there its minimum. Be-
tween the family of curves which at the saddle point have tinéima or maxima, that
one at which the values of the functign(z) decrease most rapidly is of our interest.
It is called the steepest descend path and likewise is oét#edcthe described method.
On this curve the phase of the functiexp|[\g(z)] is constant.

From what was said above, the main features and basic steps saddle point
method can be outlined. Moreover, the method is efficientrwhis large and~(z) is
a slowly varying function, especially in the neighbourhaddhe saddle points, which
mostly contribute to the integrand (1).

To recapitulate, the method consists of three main steps:

1. Finding one or more saddle points defined by the critegion) = 0 atz = £.

2. Respecting all the necessary rules, deform the contourtegriation into the
steepest descent path, which is defined as the path in thel@oplane that passes
through the saddle poigtand along which the real part gfz) decreases most rapidly.
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Fig. 1. The steepest descend path and the steepest aschrutgsaing the saddle point of an analytic
function.

The steepest descent path can be defined by means of a reakpeara

g(z) =g(¢) — 5° )

(at every point: # &, gr(z) < gr(§), what ensures a rea). Equating the last formula
with the Taylor series expansion fg(z) about the saddle poigtlimited to the second
derivative,g(z) = g(&) + ¢'(€)(z — &) + (1/2)g" (¢)(z — £)?, and taking into account
g' (&) = 0, the parametes is:

s= /=59~ ). ©

Denoting the beginning and the end of the contoury s; ands, we have:
1) = /37 (@) r(® / AMORO-) G (5) ds. @)
52

3. Performing integration. The integrand, especially fogépositive\ values, is
small everywhere except the vicinity of the saddle pgi(t = 0). For a slowly varying
function G(s), assuming=(s) = G(s = 0) = G(£) and extending the interval into
(—o0, +00), the Gauss integral of the typep(—\s?) appears, what leads to the resuilt:

10) = [5G (5)

Equation (5) is often called the first order saddle point apipnation. If the in-
tegrand strictly fulfils the above listed conditions, it da@ easily evaluated. Unfortu-
nately, in practice such a situation is rather rare. On theraogy, usually difficulties
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arise, for example multi-valued functions, for which a donstion of the Riemann sur-
face with singularities, branch points and branch cutsigsgary. In acoustic problems,
the double-valued function (containing square roots)roétppears, the parameter is
not large orGG(z) is not a slowly varying function near the saddle point.

For these reasons some improvements are introduced to sierbathod, two of
which, applied in the paper to solve the problems considergitl be concisely re-
minded.

2.1. Inclusion of the argument of tid& z) function into the exponential function

This is the easiest way of improving the approximation and guite efficient in
some cases [1, 7]. Expressiff{z) = |G(z)| exp[iI'(z)], the function in the exponent
takes the form:

91(2) = 9(2) + (/N (2), (6)

the saddle point criterion is:

(&) + (i/NI'(€) =0, ()

eMOG(©). (8)

In this approximation the phase of the functi6iiz) affects the saddle point loca-
tion and the steepest descent path. This variant of the mhéthespecially suitable for
functions of steady amplitude and a varying argument.

2.2. Second and further approximations

As mentioned before, the basic formula (5) is often callezlfitst order approxi-
mation. To obtain the second approximation, the integr@ig) is expanded into the
Taylor series in the neighbourhood of the saddle paniThis is equivalent to expand-
ing G(s) in the neighbourhood of = 0: G(s) = G(0) + G’(0)s + (1/2)G"(0)s? and
leads to the formula [1-2]:

] =2 s TG (&)
1=\ g ( Pl 2Ag"<£>> | ©)

The formulae derived in this section are valid under theraggion that in the saddle
point, &, the second derivative”(¢) # 0, otherwise the integrals obtained become
infinite. The case’(¢) = 0, ¢’ (£) = 0 cannot be treated by means of this method.
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3. Plane-wave representation of a spherical wave

The field is generated by a point source located in the upgéplaae; the lower
medium is of higher velocity (air/water, water/sand), wiegults in the phenomena of
total reflection above the critical angle. One of the consegqas is the appearance of a
lateral wave well known in shallow water acoustics and selsqy.

The first step is to present the plane wave integral reprasentof a spherical wave.
Lets assume a point sound source of a monochromatic wavelattime dependence
exp(—iwt). Thus the acoustic potential at a distarf@drom the source ¥, (R) =
R~'exp(ikR), wherek = w/c is the wave number, the wave frequency andthe
speed of sound. In Cartesian co-ordinatesy, z), the potential of a spherical wave
takes the form of a surface integral [1, 11]

“+00 +o00

eikR 1 i(kzx+kyy+k-z)
Po(R) = = = S —eflbeethy dkydk,,  2>0, (10

—00 —O0

whereR? = 22 + y? + 2* andk? = k2 + k + k2. The integration is performed over
the entire plang¢k,, k,) and allows for imaginary values &f.

The physical interpretation of the above expression is B@we: each point in the
(ks, ky) plane provides a contribution to the spherical wave exp(ikR) in the form
of a plane wave. Poaints located inside the circle of radiuseal k,) correspond to
homogeneous waves, points outside the circle (imagihgdryepresent inhomogeneous
waves. Assuming, for physical reasons, the imaginary gakt positive

k, = kcosf = kcos(0 + ") = k(cos# cosh@” —isin@ sinh0”),  (11)

introducing spherical coordinatés = ksin 6 cos ¢, k, = ksinfsin ¢, and polar co-
ordinatesr = r cos @1, y = rsin ¢, and substituting [18]

27
/@i(’fzx+kyy)dcp = 2w Jo(krsind), (12)
0

the potential of the spherical wave is expressed as a comiggral of a complex vari-
abled:
w/2—i00
®o(R) = ik / Jo(kr sin )€™ 39 sin 9 46, (13)
0

wherer = Rsina, z = Rcosa, Jo(w) denotes the Bessel function of order zero.
As k, = kcos 6, realk, changing within the limit$) < k£, < k corresponds to real val-
ues off changing fromr /2 to 0. For imaginaryt, with an increasing positive imaginary
part, the range of varies fromr /2 to 7/2 — ico.
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Up to this point no approximations have been executed, sagheepresentation of
a spherical wave (13) is an exact formula.

The acoustic potential of a spherical wave can be expredsedy means of the
Hankel functionHo(l)(w) [18]. There are two main reasons to stick to that form: the
symmetry properties of the new contour of integration amdsiimplicity of asymptotic
form of the Hankel function. Applying the identitjy(w) = (1/2)[H[()1)(w) —H[()Q)(w)]
and substituting under the integral the Hankel’s functiom asymptotic form valid for
lw| > 1:

[

2 twen 1 2 iwen
Hél)(w) = %el(w 4 (1 + Siw + > P ( /4), (14)

the spherical wave is decomposed into an infinite numberasfgolvaves incident at the
interface at an anglé

™/2—i00

ikR ‘
@O(R):eR =c / ethReos(0-0) /516 49, (15)

—7 /24100

wherec = [ik/(2r Rsin a)]'/2.

Each of these contributing plane waves obeys the simple mfgeflection and
transmission (Snell's law) and (15) has the form suitabteafuplying the saddle point
method.

4. The fluid-fluid interface

In what follows, the reflection of a spherical wave at the flilidd boundary [1-3,
7, 11] is considered.

The point source (Fig. 2) is located at the heighin a medium characterised by the
densityp; and the speed soumg equal top, andcs in the lower medium, respectively.
We assumes > cy.

The plane wave reflection coefficient is [1]

mecosf —/n2 —sin?6

B mcos @ + \/n? —sin20

wherem = ps/py andn = c¢1/ce. Forn < 1 the critical angle is defined &, =

arcsin(n). As long as the media are homogeneousndd,, are real (the attenuation
constant is represented by the imaginary part of the sousetspvhich results in a com-
plex n with a positive imaginary part). The potential of the reféetfield is calculated

V(0)

(16)



64 A. SNAKOWSKA, H. IDCZAK
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Fig. 2. Geometry of the reflected field. The boundary betwkertvto medigc, > ¢1) is located at = 0.
The actual sourc§ is substituted by the image sourgésituated in the lower medium.

introducing the reflection coefficient under the integrah&a. (13):

™/2—i00

D(R, ) = ik / Jo(kr sin 0)e™** <V (9) sin 6 6. (17)
0

Equation (17) is the exact formula representing the paknfithe reflected wave
and can be useful for numerical calculations. However, beeaf the properties of the
integrand and the infinite interval of integration, cald¢idas with the proper accuracy
assumed would involve time-consuming procedures and,wkieven more important,
would not provide a physical insight into the consideredrmeena.

Im6

contour of
integration

branch points

Fig. 3. Contour of integration for the reflected field (Eq.))1i8 the complexd plane. The branch points
(£0cr = arcsin(n)) and branch cutét6., + ico) are also marked.
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To solve the problem by means of the saddle point method, arogimate formula
of the form corresponding to Eq. (15) will be applied:

T/2—i00
Gret(R, ) = ¢ / ek Reos(0=c)y7(9)\/sin 6 6. (18)
—7 /241400

Figure 3 presents the adequate contour of integration. Becaf the asymptotic form
of the Hankel function, Eq. (18) is valid only fokr sin 6] > 1.
In Eq. (18), when compared with Eq. (1):

A =kR, g(0) =icos(0 — «), G(0) =V (0)Vsind, (19)

and the saddle point occurs@t «, so it equals to the angle of incidence of the wave
reaching the receiver.

Examining if theV/(#) function fulfils the required conditions, one notices trext r
garding angles of incidence< 6., V() is real and for angles not very closefg it
is varying slowly (cf. Figs. 4-5).

VI
1_

0.94
0.8 1
0.74
0.6 7
0.54

0.44

0 02 04 06 08 1 12 14 6
Fig. 4. Modulus of the reflection coefficieMt(f) on the water/sand bounda(§.. = =/3) and reald.
Apart from the vicinity off., it is varying slowly.

Some difficulties arise when drawing the steepest descetid Bacause of the
square root componerit;(#) is a two-valued function determined on the two-leaf Rie-
mann space, each leaf for one value of the square root. Defgrime contour of inte-
gration into the steepest descend path one has to be awanecwdssing singularities,
branch points or branch cuts. The deformed contour of iategr must begin and end
on the same leaf of Riemann surface. The branch cuts of tegramd presented in
Fig. 3 begin at branch points for whielf —sin? # = 0, which means that branch points
are+6.,.

Fora < 0., the branch lind6.,, ico) is crossed twice and the deformation rules
are fulfilled as indicated in Fig. 6.
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Fig. 5. Argument of the reflection coefficieht(¢) on the water/sand boundag.. = 7/3) and realf.
Forf < 6. itis equal to O.

N

branch line_

Im6

A

o ecr Re6

"<ﬂ°%
branch point

Fig. 6. Contour of integration for the reflected field in thergaex 6 plane for the angles of incidence
0 < O... The branch line is cut two times, the beginning and the erteintegration contour are located
on the same leaf of the Riemann surface.

The result is, according to Eq. (18),

Bt (R, ) = / F(6)do = V(o)

c

a < 0(}1‘7 (20)

whereF'(0) denotes the integrand of Eq. (18).

The question arises if the last equation is fulfilled for &rgngles of incidence
although not very close to the critical angte:> 6.,. Deformation of the integration
contourC' [—m/2 + ico .. m/2 — ioco] into the steepest descend path, performed in the
same way as before, would lead to a situation where the biegiramd the end of the
integration contour were situated on two different leafthefRiemann surface. To avoid
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this, the integration path has to be chosen such that thelv@ut is passed round as
shown in Fig. 7.

Im6

A

branch line

o Re©

branch point

Fig. 7. Contour of integration for angles of incidenee> 6., after the properly executed deformation
consists of curve€”’ and L, the last one passing around the branch(8ut, ioco).

Now, the potential of the reflected wave can be expresseddjcally in the form
ik R
R

Dot (R, ) = V(a) + / F(0)d6, (21)
L

where the second component represents the lateral wave.
Due to symmetry properties, the integral overexpressing the lateral wave, can be
written as

De(Roa) = | F(0)do
/

100 ' 2
_ c/eszcos(O—a) 4mCOS9\/TL Sin 0 mdg (22)

(mcos )2 — (n2 — sin? )

Ocr

It seems that the saddle point method fails in this case dae# not account for the
lateral wave arising according to Fermat's principle. Hegrea detailed analysis of the
integrand in Eqg. (18) leads to the conclusion that the arguiroil/ (9) is not varying
slowly for 6 > 6., (cf. Figs. 4-5 and Figs. 8-9) and therefore it does not yatiss
condition of applicability of the saddle point method inlisic version. The necessity
arise to make use of Eqgs. (6)—(8) and introduce the argunfehédunctionV’(9) into
the exponential function.

DenotingV'(0) = |V (8)|exp[iI'(#)], for angles greater than that of total internal

reflection
| Vsin? 0 — n?
77

=1 I'0) = —2tan™
VOI=1, T =—2tan !t X2

0 > O, (23)
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Fig. 8. Modulus of the reflection coefficiemt(6) for complexd. For Im(#) = 0 one should notice the
curve presented in Fig. 4.

what leads to the following equation determining the sagdiat:

VsinZ 6 — n2

g1(0) =icos(f — o) — 20 tan ! =0. (24)

kR m cos
Equation (24), solved by means of numerical methods, hasdets corresponding
to two saddle points. One of them is close to the incidentafgl < «), but a little
less, the other one is very close to the critical angle pointlittle above it({ = 0., ).

Fig. 9. Argument of the reflection coefficient for compOne should notice that for real angtes< 0.,
it equals0 as shown in Fig. 5.
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The presence of two saddle points can be seen in Fig. 10 byaramgphe exponent
of the basic and improved methods. Introduction of the arurofV/ (#) into the expo-
nential results in the occurrence of the second saddle.piig leads to the following
expression for the potential of the lateral wave similar ¢p (B):

—2mi
Prap = \/ m ) (25)

where the functiony; (0) is defined by Eq. (24). The potential of the lateral wave is
not presented explicitly because of the complicated forthefsecond derivative af; .
In addition, the method require$ (§) # 0.

1 JEUSEE
0.998 - 7
//
//
0.996 1 - 8
— &
0.994 -
0.992 A
)

1104 108 112 116 12
Fig. 10. They andg, functions for the water/sand boundary, the angle of inaidenexceeding the critical

anglef., by 5° when the vertical distance between the image source andeeceis 10A. One may notice
two extremes (saddle points) of the connected with the lateral and Snell’'s waves.

Fora < 6., the argument o¥/(#) equalsO (I" = 0). Therefore there exists only
one saddle point & = «. Forz = 10, the real solution occurred starting from the
angle of64°, for z = 20\ —from63°, and forz = 100\ — from61°. For small distances
z and angles close to the critical one, one should expect amyallues of the saddle
points. For real values of the angle, the functigrhas one extreme (Fig. 11) and a point
of inflection. In this region, the considered modificatiortted method fails.

The following table represents values of saddle pointsutatied for the water/sand
boundary ¢.. = 60°, n = 0.866, m = 1.67) for different vertical distances between
the image source and the receiver expressed in wavelengthd (A, 20\, and100)).
The calculations have been performed starting from 61°.

All'in all, for angles of incidencex > 6.,, the potential of the reflected wave can be
represented as a sum of two waves: the wave reflected acgdadihe Snell’s law and
the lateral wave:

Pref = Psnell + Plat, o> Hcry (26)

wheredg,, o = V(&) [sin(¢1)/ sin(a)]/2R~" exp(ikR) instead of/ (o) R~ exp(ikR)
as before. A geometrical representation of these waveseés g Fig. 12.
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17104 108 112 116 120

Fig. 11. The same as above (Fig. 10), but for the angle of @mtida exceeding the critical angié..
by 2.5°. Theg; function has one extreme and one point of deflection. In thi@ity of the critical anglé...
the method fails since the saddle points become compleXdbfe 1a).

Table 1. Values of saddle pointg, &, versus angle of incideneecalculated for the water/sand boundary
(6 = 60°, n = 0.866, m = 1.67) for different vertical distances image source — receiggr. = 10,
b) z = 20, and c)z = 100\.

a)

a| 61 62 63 64 65 66 67 68 69 70 75 80 85

S| # # fia # 162.71|64.06 | 65.25 | 66.37 | 67.47 | 68.55 | 73.83 | 79.11 | 84.49
S| # # # # 160.57]60.31|60.20 | 60.14 | 60.10 | 60.07 | 60.02 | 60% | 60x
b)

a| 61 62 63 64 65 66 67 68 69 70 75 80 85

1| # # |61.41]62.83|63.99|65.08|66.15 | 67.20 | 68.24 | 69.27 | 74.41 | 79.55 | 84.75
& # # 160.53]60.20 | 60.11 | 60.07 | 60.05 | 60.03 | 60.02 | 60.01 | 60% | 60% | 60
c)

a| 61 62 63 64 65 66 67 68 69 70 75 80 85
£1160.39|61.70 | 62.76 | 63.79 | 64.81 | 65.82 | 66.83 | 67.84 | 68.84 | 69.85 | 74.88 | 79.91 | 84.95
£2160.39]60.03 |60.01 | 60« | 60 | 60+ | 60+ | 60% | 60% | 60% | 60% | 60% | 60«

# —no real solutions,
+ — values differ from60° by less thard).01°.

Fora — 6., both the rays merge, the saddle poigitsand £, are equal to each
other and in this case the modification of the saddle poinhotepresented here fails
because in the vicinity of.,, called the caustic region, the functi®f#) must not be
treated as a slowly varying function (Figs. 4, 5). This ca&sguires further modification
of the saddle point method.
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S source

P receiver

pP1:C1

P2:Ca

Fig. 12. Schematic representation of the Snell's (1) aretddt(2) reflected waves on a plane boundary
between two homogenous media for the reflection coeffigient1.

5. The far field of a circular duct

The problem of the acoustic field inside and outside a sefimi@a circular wave-
guide was discussed in detail in the papers [14-16] puldisyethe authors. Herein
only benefits resulting from the application of the saddlenpmethod are presented
and similarities in the approach to both the problems aretimgéd.

Considering harmonic vibrations, tligh mode acoustical potential of a semi-in-
finite cylindrical duct of radius:, with the outlet atz = 0, takes in cylindrical co-
ordinates the form [6, 14]:

JO (:U'lp/a) e—iwz
Jo(u)

o

, (1)
—i—lia / 6zwval(w) H(gl)(UP)J1<Ua)a p>a dw, (27)
[ HY (vp) Ji(va), p < a

dsl(pv Z) =

— 00

wherew andv are the axial and radial wavenumbers, respectivety v? = k2, Fj(w)
is the Fourier transform of the discontinuity (jump) of thetgntial on the duct’s wall.
The first term in Eq. (27) represents the incident wave, theadledi-th Bessel mode,
the integral represents the field excited due to reflectianh difiraction phenomena
[6, 14]. Inside the duct it takes the form of superpositioBessel modes [6, 14], outside
the duct, in the far field, it can be evaluated by means of thdlegoint method [14].
Expressing the axial wavenumber by means of he complex variable w =
ksin @, and applying the asymptotic form of the Hankel function .(Ekft)), the fol-
lowing formulae result:

&(R, ) = cei”/A‘/Wl(ﬁ)eikRsm(a—e)vCOSHdO, (28)
Cy

1

_ Fy(ksi DAy ——
W) = Ji(kacost) l(ksm‘g)cosg< t SikRsinacosd

) @

¢ = (ia/4)\/2k/(mRsin«). The contourC; starts atr/2 — ioco, passes near/2,
along the real axis to ther/2 and asymptotically to-7/2 + ico. One may notice
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Fig. 13. Geometry of the cylindrical wave-guide of radiusdiating outside due to reflection and diffrac-
tion phenomena at the outletat= 0. The location of receiveP is described by R, «).

the correspondence between this contour and that preserfagl 3, however now the
branch points are located atr/2. From a comparison of Egs. (28), (1) and (19), it
comes out thak andg(6) are the same, b (0) = W;(6)/ cos 0.

Following the rules of the method, the result obtained is:

ik R
B1(R,a) = di(0) -, (30)
where the directivity coefficient;(«) takes the form [14]:
1
di(a) = §kasino¢J1(ka sin ) Fj(—k cos av), (31)

In the first approximation, the potential has the form of aespal wave multiplied
by the directivity function.

Many acoustic problems require the application of more ipeetormulae for the
potential, thus the need to develop the second and furth@oximations arises. To
obtain the second approximation, the integrand has to bangbgal into a series in the
neighbourhood of the saddle point [16]. Limiting the expango the terms containing
the second power of at the most, the results are:

eik:R
qjl(Rv Oé) = Dl(Ra O‘)?? (32)
ia di ()
D;(R =d — -
(R @) l(a)+2R 8sin? «
sinfa d?
+ cos adcosa(dl(a)) - dcosQa(dl(a)) ) (33)

Some numerical results of the directivity coefficient cébed according to Egs. (30)
and (32) are presented in Fig. 14.
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plane wave
=0

second mode
1=2

Fig. 14. Directivity coefficient for the far field radiatedin a semi-infinite wave-guide; diffraction param-

eterka = 7.04, allowing for propagation of the plane wave, and two Bessales along the duct. The first

order approximatiok R — oo (continuous line), the second order approximatidd = 7 (dashed line)
andkR = 21 (dotted line).

The second term in Eq. (33) describes the second order torrgaroportional to
1/R, thus its contribution to the field potential decreases aslistance from the source
increases. That is why Eq. (28) is often called the infinitetadice approximations,
kR — oc.

The possible improvement of the results obtained are ccatipos of the field ac-
cording to exact formula or further modification of the sadpbint method resulting in
complex saddle points.

6. Conclusions

The paper presents advantages resulting from the applicafi the approximate
saddle point method to solve some general problems in daceudivo phenomena
served as examples: the reflection of the spherical wave &ne poundary between
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two media (allowing for the lateral wave excitation) and tadiation from the outlet of

a circular duct. The first problem is one of the main topicsyidrbacoustics, the second
one is vital in controlling the noise radiated from ducts, fas example, the heating
or ventilation systems. In both problems the acousticatmtidl has been chosen as a
quantity describing the field. Although the derived exatggmal formulae for the poten-
tial allow for numerical computations, the saddle pointimeelt provides new attractive
features of the solution. First of all, it gives more physioasight into the considered
phenomena.

In the wave reflection problem, it allows for a simple expléora of the occur-
rence of the lateral wave. If the angle of incidence is gretitan the critical one,
a second saddle point appears, which is “the mathematicaifestation” of the ap-
pearance of the lateral wave. Each term in the potential dtanjSnell's wave and
lateral wave) is associated with an adequate saddle polms. i$ even more spec-
taculare if the considered problem is more complicatect lik case of more than
two-layers environments [20], when due to diffraction, geom the straight com-
ing wave also once, twicetc reflected waves and the lateral wave appear. In the sad-
dle point method approach, each of these waves is assodidiec respective sad-
dle point and the integral formula takes form of a sum of irdégattributed to dif-
ferent kinds of waves, which evidently simplifies not onlg thhysical interpretation,
but also the evaluation of each wave contribution to the ddigid at the observation
point.

In the circular duct problem, the application of the methesutts in the presenta-
tion of the far field outside inthe form of a spherical wave iified by the directivity
coefficient. The coefficient, as presented in the paper, eaalgulated with an assumed
accuracy depending on which variant of the method is applieé choice of the suit-
able variant is always based on a thorough examination afhttbematical properties
of the functions and equations involved.

It may be interesting to consider what constitutes the baxkyl of these attractive
features of the method. The answer may be in the relationdsstwnathematics and
physics.

Among the mathematical theorie€ PROSE[19] selected the “ideal/perfect” theo-
ries and expressed the opinion that an ideal theory is ngtankeful tool to describe
physical phenomena, but the deep inside of its structurtagtwnthe description of na-
ture. This is why it is so efficient in describing physical WebrThe theory of analytic
functions is, according to Penrose, an “ideal” theory. lphocess of solving problems
by means of the saddle point method a complex variable iedotred, the functions
become analytic and the analytic function theory can be lidpplied. This may be
the source of the visible physical insight which, at leasthie approximate method,
carries on.

Even if the lateral wave were not discovered previously,ahgearance of the sec-
ond saddle point above the critical angle would indicatat, tthere must be something”
apart from the Snell's wave. In that way the mathematicabtheeveals, by means of
its equations, new physical phenomena.
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To recapitulate, the main feature of the saddle point metbdiat it allows for a
simple physical interpretation of the results obtained givéds more physical insight
into the phenomena presented.
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