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An active control of the vibration cancellation of a cirauflaid-loaded plate is analytically
studied. The purpose of this paper is to examine the effethefactive vibration control
strategy on the sound radiation generated by a plate. It ess@ed that a planar vibrating
structure located in a finite baffle and interacting with flisidiriven by a periodic force with
constant amplitude. This structure radiates the acousti@winto a surrounding fluid and a
point control force is used to reduce its vibrations. Thew&tions of the active cancellation
of the plate vibrations were made with a Simulink/Matlab gomer program. The results
demonstrate, that while a control law provided a significadtiction in the plate vibration, it
is rather ineffective for noise attenuation.
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1. Introduction

In the engineering practice, many components of machinéstnctures are sub-
ject to dynamic effects produced by time-dependent extéonzes, so that the resulting
stresses, deformations and sound fields at its vicinityiare-tlependent as well. Each
sound or vibration field radiated from such sources has itsavaracteristics, which de-
pend on several properties of the relevant geometry, naaeend dynamic loads. Thus,
it is purposeful to examine the effect of vibrations andtlieduction on the existing
sound field.

The problem of suppressing plate vibrations is often solwedhe application of
active methodsTwo main strategies for active control are proposed [2 33, The first
approach is based on controlling the acoustic radiationdouble manner: by sound,
or by applying control forces to the structure (Active Stumal Acoustic Control —
ASAC). The second strategy is a vibration control (AVC) amdansidered in this paper.
The objective of AVC is to cancel the vibrations of the staretas much as possible,
while the accompanying sound field is not included in the draw.
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For the active vibration control in linear systems, the cttical response of the
controlled structure is a superposition of the responseeazhby external disturbances,
which is defined as the “primary” response, and the respoagsed by the active vi-
bration controller, which is defined as the “secondary” oese. It is well known that
the sound radiation from a structure is a function of the sigfadistribution over the
surface of the structure. If an efficient control system setwlattenuate the amplitude
of the out-of-plane vibration of the structure (AVC), theustural modes may destruc-
tively interfere with one another in the acoustic medium.

For the design of an effective kind of control for suppregstme plate vibration and
related acoustic radiation, an accurate modeling of thasimostructural and coupling
components is necessary. The derivation of the models éoraplstructures with point
or surface mounted actuators can be carried out in two ways.fifst way is com-
monly referred to asystem identificatiofil4]. In this case a model of the system can
be inferred from a set of data collected during a practicaeerent. Classical linear
methods provide good performance over a relatively smafieaf uncertainty and are
extensively used for linear control techniques [7, 8]. Teeasnid approach consists of
modeling the fluid-acoustic-structural dynamics in therfaf partial differential equa-
tions derived from physical principles such as forces antheris’ balance and this is
also considered here. The objective of control is to careelibrations of a structure.
There are many control strategies that could be developé¢lednasis of such a model
[1-3]. Modern control theory has been applied also by thb@au@—9] to reduce cir-
cular plate vibrations by using a linear-quadratic (LQRRDIPand fuzzy controllers.
Those systems have been successfully implemented on ariregptal plant [5, 7, 8].

Conventionally, the actuators are driven by a single cdietrowhich is supplied
with signals from the mounted sensors. It should be notddithpractice, the actuators
cannot cancel completely the vibrations of the structung, then, the radiated sound
cannot be zero too, or even — in some cases — they may inctjase |

The purpose of this paper is to examine the effect of the estibration control
strategy on the reduction of the sound generated by a platesffucture under study
is a vibrating circular plate of radius, having a constant thickness It was assumed
that the plate clamped at the edge is excited on one side byf@amrperiodic force
with constant amplitudéy and it radiates the acoustic waves into a surrounded fluid of
densitypy. To develop successfully an effective system model for ttive vibration
control, it is therefore assumed in this analysis that tlagepin question is located in
a finite baffle and it interacts with a surrounding ideal coesgible fluid. The control
problem lies in using a point control force to reduce theeplabrations and the aim is
to examine if by canceling the plate vibrations, the congyatem will achieve a good
reduction of the radiated acoustic pressure.

2. Flexural vibrations of a circular plate

The structure under study is a vibrating circular plate dfuaa, having a constant
thicknessh (Fig. 1), surrounded by a lossless medium with static dgnsit It is as-
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sumed that the plate, clamped in a flat, rigid and finite baffleadiusb, (b > r > a,
z = 0), is made of a homogeneous, isotropic material with densignd has a Kelvin—
\oigt internal damping.
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Fig. 1. a) Circular plate in a finite baffle of radibswith a shaker located at the origin; b) experimental
realization.

In the case being considered, the applied loading and etrdirgs of the circular
plate are independent of the angléaxially symmetrical vibrations), thus we can write
the governing differential equation of the forced motiontloé plate as follows [10,
12, 4]

0 0?
BV4w(r, t) + R& [V4w(r,t)] + phww(r,t) = f(rt), Q)
2
whereV* =v?v? v?= % + %%] is the Laplace operatoR = Eh3/12(1 — v?)

is the bending stiffness of the platg, p, v, and R are the Young’s modulus, density,
Poisson’s ratio and Kelvin—Voigt damping coefficient foe thlate, respectively. The
displacementu(r, t) and its derivative)w(r, t) /Or satisfy the boundary condition for a
clamped plate: they are both equal zero at the edge of the plat

Equation (1) is the governing equation of the forced lingarations of plates and,
as such, it must obey the rules of a linear superpositionttieanalytical development
being undertaken here, the right side of Eq. (1) will be esped as follows [4, 5]:

frit) = fulr,t) + fp(rt) + fs(r,1). )

Let us assume, that the structure under study will be cdettdly the use of an
electrodynamic shaker attached to the plate in questiais middle.
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Thus, the control forcefs(r,t), which will minimise the plate vibration and the
related radiated sound field, is a point force located at tigno

fs(rt) = u(t)d(r — TS)‘TSZ(V )

wherer; is the location of the point force input on the plate surface.
It is also assumed that the plate is excited on one side byfaromperiodic force
with a constant amplitud€, generated by a loudspeaker

fulr,t) = Fpe™™"  for 0<r<a (4)

and it radiates into free space filled with fluid of dengigy The system model is formu-
lated when the coupling effect between the structure anddbastic medium is taken
into account, so the second component of the right hand $idg.q2), f,(r, t), repre-
sents the acoustic fluid-loading acting on the plate as aitiawal force. The value of
this force exerted by the fluid on the plate surface can beilzdéd as follows

fp(rvt) = —p(?", z>t)‘Z:0> (5)

wherep(r,z = 0,t) is the acoustic pressure at the point on the surface of the.pla
The acoustic waves propagating through the fluid must gatisfwave equation [10]:

1 p(r, 2,)
& oz
whereV? is the two-dimensional Laplace operator, ani$ the sound velocity in the

fluid. At the fluid-structure interface, the pressure musisBathe boundary condi-
tion [11]:

V2p(r, z,t) = (6)

op(r,z,t)|  9? .
—an L —PO@w(ﬂ t) = —pot(r,t), (7)

with n denoting the normal to the structure.

The goal in the control problem is to determine the controtéowhich, when ap-
plied to the plate (realized via a voltag€t) for the shaker), leads to a reduced level
of vibrations. The third component in Eq. (2) representhsacontrol force fs(r, t),
which will cancel the plate vibrations. The location of theuator is assumed to be in
the middle of the plate.

3. Development of the state equation
To approximate the plate dynamics, a Fourier—Bessel eipams the plate dis-

placement is used to discretize the infinite dimensionaksyg1). The plate displace-
ment can be approximated by

WV (rt) = 3 s tywa(r), ()
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whereN is considered to be a finite number suitably large for acelyahodelling the
system dynamics and,, () is the(0, m) plate mode described as follows [10, 12]:

Wiy (1) = Uom {Jo (’Ym£> - JO(’Ym)Io (%2)] )

To(ym)

Jo(z), Ip(z) designate the cylinder functions,, = ka is them-th root of the fre-
quency equation ang, (t) is the corresponding modal amplitude in timén a similar
way let us expand the right side of the plate equation of mat®) into series:

N

fart) = rm(Bwm(r), (10)
N

Yt = un(twn(r), (11)
" N

folryr) = pN(r, 2=0,1) = Z 2, (E) Wi (1) (12)

Inserting the above expansions into Eq. (1), multiplyinthtsides by the orthogonal
eigenfunctionw, (r), and integrating over the surface of the structtir¢he governing
equation of motion can be re-expressed as [4]:

N
37 Bt + 2102 8 () + 02,80 (t) = () + (D) + 20 (D], (13)

m=1
where

t

T (t)
um(t) » = // fi(r t)wp, () dsS, j=w,s,p; m=12.N (14)
Zm (1) S

mean the modal generalised forces.

4. State-space system model
Equation (13) can be expressed in the state space format as [4
x(t) = Ax(t) + Bu(t) + Vr(t), (15)

where the dot denotes differentiation with respect to tiris, the (n x 1) state vector,
u is the (m x 1) control vector, andA is the (n x n) state matrix,B is the (n x m)
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control input matrix,V is the(1 x n) disturbance matrix described as follows:

0 1

A =
—(I+D)'Q? —2u(I+D)'Q?

)

(16)

0
— L = 9 (I+DO)—1Kw '
B { I+D)'K } [ ]

In the above expressidndenotes the identity matri¥s; andK,, are the coefficient
vectors,D represents the fluid-plate interaction mati€¥,= diag[w;,ws, .., wn] [4].
It is assumed, that the response of the considered plate &pihlied force distribution
is measured by a set of linearly independent point sensiniead at locations on the
plate. The output equation in the matrix form is

y(t) = Cx(t), (17)
where
[ wi(ry) - wn(r) 0 0 T
_ Co 0 _ wl(;”Nc) wn (TNe) 0 0
C= [ 0 CU] B 0 wi(r) - wn(r) | (18)
L 0 wl(;Nv) wN(;“Nv)_

N. and N,, denote the number of displacements and velocity sensapecvely,
w;(r;) is a value of the-th eigenfunction at thg-th measurement point.

The above state-space model of the considered system wildzkin the process of
designing optimal feedback control so as to suppress tle ylarations.

5. Computer simulation of the feedback control

The goal of the control problem is to determine a voltage which, when applied
to the actuators, leads to a significantly reduced level lofagion. For the system de-
scribed above, one possible approach is to obtain a sologi@pplying the well-known
linear-quadratic regulator (LQR). The LQR method consistssing a control law [1, 3]

u(t) = —Kx(t), (19)

which minimize the cost function given by

o0

/ (XTQX + uTRu) dt, (20)
0

1
J==
2
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whereQ, R denote weighting matrices chosen as follows:

el o

umax

Q2 o0
0 af?

(21)

anda andg are the weight coefficients. The problem is to determine #ie gatrix K
that facilitates our requirements. The optimal solutiofiLis3]:

K =R 'BTP, (22)

where the matrixP is the unique, positive definite solution of the algebraicdaiti
equation
ATP +PA - PBR 'B"P + Q =0. (23)

Figures 2—4 show the tests of computer simulations of thigeacbntrol of plate
vibration with the use of a point control force (shaker). e simulations, the model
including the first four modes of the aluminium plate with 4®m diameter and 1 mm
thickness was applied. In order to determine the dynamidbefluid-plate system,
the model obtained was first subject to a rectangular perisidnal with constant am-
plitude and frequency. The acoustic pressure and the daplent of the plate were
calculated at the axial line in the Fraunhofer’s zone anthafitst point sensor on the
plate, respectively.
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Fig. 2. Simulation results for LQR controller with samplitigne 0.0001 sec. The time response of the

open-loop system (0-0.5 sec) and the close-loop system1(@&c) to a rectangular periodic signal with

constant amplitude; a) the plate displacement (sum of fades); b) the acoustics pressure generated by
the plate at Fraunhofer’s zone.

The time response (Fig. 2a) shows that the plate displadetaerbe considerably
suppressed but the negative feature of the control systenmias-zero error signal for
0.6-0.8 sec. The reduction of the acoustic pressure olzsarveig. 2b is also signifi-
cant.
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Fig. 3. The time response of the open-loop system (0—0.5as®t}he close-loop system (0.5-1 sec) to
rectangular disturbance of 100 Hz; a) the plate displacésem of four modes); b) the acoustics pressure
generated by the plate at Fraunhofer’s zone.

However, if the disturbance frequency increases (Figh@)gefficiency of the vibra-
tion cancellation decreases, while the accompanying scagtidtion is not attenuated
(Fig. 3b).

The system response to sinusoidal excitation over the plaface is presented in
the next figure.

In the case of sinusoidal disturbance, it can be seen (Figh)4that the vibration
suppression for low frequency is also better, whereas,dhesdic pressure generated by
the plate was not minimized satisfactorily. In fact, for Ifn@quencies, the level of the

a) b)

Amplitude [m]

Amplitude [m]

A il

02 03 04 05 06 07 08 05 1 0 01 02 03 04 05 06 07 08 09 1
Time [s] Time [s]

, .M 44
0.1

6

0

Fig. 4. Simulation results for LQR controller with samplitigye 0.0001 sec. The time response of the
open-loop system (0-0.5 sec) and the close-loop system1(@&c) to sinusoidal disturbance: a) 65 Hz;
b) 100 Hz.
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acoustic pressure decreases when the controller is sthuedbr higher frequencies,
it exceeds the value generated in the open-loop systemladynas in the case of a
rectangular disturbance.
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Fig. 5. The acoustic pressure in the Fraunhofer’s zone indke of the open-loop system (0-0.5 sec) and
the close-loop one (0.5-1 sec). Simulation results for LQRmller to sinusoidal disturbance: a) 65 Hz;
b) 100 Hz.

The reason for the poor far field suppression, despite thte plaration suppres-
sion, is a new control force calculated in the close-loofgesys As a consequence of
this force, the vibration frequency is much higher becatsecontroller acts a lot of
times per period of the disturbance. This process results itmediate radiation of
corresponding values of the acoustic pressure, but thatradliefficiency of the new,
higher modes is greater, hence the value of the acoustisiypeeare also greater despite
of the significantly lower vibration amplitude.
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Fig. 6. Part of the far field response with and without con@plclose-loop system; b) open-loop system.
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Comparingheacoustigressurattenuatiorfor both kinds ofdisturbancesf 100 Hz
(sinusoidal and rectangular), it can be concluded, thateb&ngular periodic signal
introduces much higher modes into plate vibrations. Farrgson, the related radiation
is more complicated and its reduction is worse. For comparia part of the far field
response, caused by the rectangular disturbance, forstenswith and without control
force, is showed in the Fig. 6.

It can be seen from the plots in Fig. 6a that several systenemothigher frequen-
cies are excited in the close-loop system.

6. Conclusions

In this paper, the active control of vibration suppressiba circular, fluid-loaded
planar structure was analytically studied. The purposéisfwork was to examine the
effect of the active vibration control strategy on the sogederated by a structure in
question.

The structure under consideration was a thin circular ptatated in a finite baffle
and interacting with a fluid. The plate, excited by a harmdaice acting on its whole
surface, has been controlled by a point force located ateh&rec The application of
the optimal linear quadratic theory to the problem of plabgations inducing acoustic
noise shows, that this control technique led to a substaetiaction of plate vibration,
however, if the disturbance frequency increases, the efiitgi of the vibration cancella-
tion decreases. In the case of the accompanying soundioadidie attenuation of radi-
ated noise was satisfactorily for low frequencies, whiledis poor or even completely
bad for higher ones. This is so because a lot of high modes wdueed, as well as
the chosen cost function for the LQR controller did not miizienthe far-field radiated
pressure but it was derived from the plate displacement atatity only. Finally, the
numerical results demonstrate that while a control law igiexy a significant reduction
of the plate vibrations, it is rather ineffective for the s@attenuation. It means, that the
problem of constructing an acceptable control law for vélmaustic systems requires of
a compensator design which would minimize both the compisnéme plate vibrations
and its acoustic radiation.
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