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In this paper, the authors propose an algorithm for numiesaation of the 3D Helmholtz
equation using the Parametric Integral Equation Syste&a§RIThe PIES, unlike the tradi-
tional Boundary Integral Equation (BIE), is characteribgdhe fact that the boundary geom-
etry has been considered in its mathematical formalismygeolal Coons surfaces have been
used to describe the 3D domain. This makes it possible tarobdatinuous solutions without
any discretization of the 3D domain.
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1. Introduction

The numerical solution of the Helmholtz equation is usualiyained by the Finite
Element Method (FEM) and the Boundary Element Method (BEAM)ommon feature
of these methods is the necessity of dividing the considdogdain into finite (in the
case of using the FEM method) or boundary elements (in the chasing the BEM
method) [4, 9, 6]. The BEM is a numerical technique for sajvihe Boundary Integral
Equation (BIE) based on Green’s equation or on single andlddayer potentials [4, 1,
6]. Over the last few years important progress has been matkyeloping the methods
for solving the BIE. The spectral [3, 8], dual MEB [5], Galark3] and many others
methods [11, 2, 12, 9] are developed and used for solving tBe Al of these meth-
ods are characterized by the fact that they are directly fesatimerical solving of the
BIE. As the BIE name suggests, from a mathematical point@f\these methods are
directly defined by the boundary geometry. This generalipimes the simultaneous ap-
proximation of the boundary geometry and boundary funsti®o if the BEM method
has been followed, the dependence of the approximationeo$tipe of the boundary
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geometry from the boundary functions on individual eleraémtwhich the boundary is
divided. Such dependence does not allow for independermceaising the accuracy of
the boundary functions without interference of the boupddrape approximation and
vice versa

In our works an analytical modification of the BIE [20, 13] wa®posed, in order
to achieve the separation of the approximation of the bayrstzape from the boundary
functions. For this reason a variety of curves [10] from a pater graphic were used
for the boundary shape definition. As a result of this modificea new equation, called
the Parametric Integral Equation System (PIES), was faatadl The obtained PIES is
characterized by the fact that the boundary geometry isidersd in its mathematical
formalism (in kernels) by implemented curves.

The main advantage of PIES in comparison to the classicaliBtie separation
of the simultaneous approximation of the boundary geomnfetiy the approximation
of the boundary functions in the process of numerical sglvifhis approach makes it
possible to seek more effective ways for modelling the bawpdeometry. The practi-
cal polygonal domains are defined by characteristic poirdsraer points. In the case
of domains with smooth curved boundaries we need to defingi@ual intermediate
points (between corners points). These points may not legtalidentify with the nodes
from the classical BEM method for the following two reasonke first reason is that
there are a significant fewer number of control points comgbdo the BEM, and the
second reason is that these points allow modeling of thedasryrgeometry in a con-
tinuous way. This approach leads to the elimination of aagitional discretization,
not only the domain itself (like in FEM) but also the domairubdary (like in BEM).
The proposed technique of the boundary definition has begedtéor two-dimensional
Laplace [13] and Helmholtz equations [17, 18].

Recent developments in PIES method are concentrated ortlegaiization of the
idea considered in PIES method for 3D boundary problemse®Bgf5, 16] present
PIES and its numerical method for solving Laplace equatid3l domains. In this case
it has eliminated the inevitable discretization of geomatrthe boundary, introducing
continuous description 3D boundary geometry using suifatehes: rectangular Coons
[15] and smooth Bezier [16], defined with the help of small lemof control points.

The main aim of the paper is to provide the application of thedr rectangular
Coons surfaces for defining the shapes of the boundary geome8D domains mod-
elled by the Helmholtz equation. The pseudospectral meliamdbeen used for nu-
merical solving the PIES. This has allowed to obtain cormtirsu(in polynomial form)
solutions on all boundary surface patches.

2. The definition of 3D boundary geometry by Coons surfaces
The proposed technique for the geometry description of 3Daio is based on

defining a small number of corner points, which describespeddent Coons surfaces
in terms of two parametric variablesandw for each patch.
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The Coons patch is defined as a rectangle with four cornetsBir0, 0), P»(0, 1),
P5(1,0), P4(1,1) and can be expressed in a matrix form that permits simplenaeitic
calculations [10]

P (v, w) =[1 —v,v]

z) z) 1—-w
PY(0,0) P, &n][ ]’ "

PP(1,0) P11

wherex = {x1, 9, 23}, 0<v < 1,0 < w < 1.

3

P4(1,1)

%1

P2(0,1)

Fig. 1. Notations of parametric coordinate systenw) for a Coons surface defined by 4 corner points.
The computed normals;, ns, ns are directly used in PIES for the overall orientation of indual
surfaces.

The Jacobian for every patch is computed by

Jj = [A2+ A3+ 43, )
where
A, = J Jj_ 77 J
Owov Ovow
Ay = : . - ! i ) (3)
Owov Ovow
Ay = J Jj_ 73 J
Owov Ovow
The normal vectors, ns, ng for each Coons surface are obtained by
o = 22 m=1,23. ()
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We can join several Coons patches together to form a closéatsuThis approach
creates the tool for effective modelling the given geomaitith continuous conditions
and reduces the total number of input data. The defined gepisedirectly used by
the presented PIES algorithm for Helmholtz equation wittemy discretization of the
domain (like in FEM) or the boundary (like in BEM).

3. The PIES method in the case of 3D Helmholtz equation

The Helmholtz equation for the complex valued potentiainay be written in the
3D space as [1, 10]

o*’U 09U 0%U

+kU =0, forzen 5
(9361—1_8:5%—1—8:53 ' res ®)

wherek is a wave number.

PIES for 3D Helmholtz equations has been obtained in a gifiofen as 3D Laplace
equations [13, 20]. The general formula for these two equatis identical and the
difference concerns only the integrand functicl_ﬁ}kg and?}kj (boundary and singular
solutions). PIES for 3D Helmholtz equation takes the follayvform:

0. 5ul vl,wl Z / / Ulj v, W1, v, w)p](’u 'LU)

’U] 1 Wj—1

— Plj(vl,wl,v,w)uj(v,w)} Jijdvdw, [1=1,23..n, (6)

WheI’EUj_l <U <V, Wji—1 < W < Wj.

The integrand function&’;; (v1, w1, v, w) and P, (v, wr, v, w) provide the system
detailed information about the defined 3D geometry of theexbboundary value prob-
lem .

e 1 oU,;
S L
41 on
by connecting with Coons parametric surfad®&,w) expressed by the following re-
lations

—ikn _

1 - —
ypeos {coskn —isinkn}, and P =

(v, w) =t +n3 + 3", =B ) - B 0w,
=P (v, w1) — Pj(m)(% w),  ng=PF" (v, wi) - Pj(xa)(% w).
The Jacobiaw/; from (6) for every patch is computed by formula (2).
KerneIsUfj, ?}} can be expressed in a matrix form as
Ti=us v |=limiv revr ) ©
21 U2 m{U*} Re{U"}
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where
U, = Us _RQ{U*}_LCOS]C
11 = Y22 = = 4y m,
1
U = —Im{U"*} = msinkn,
1
Uy = Im{U*}:—msinkn
and

Py P Re{P*} —Im{P*}
P P Im{P*} Re{P*} |’

cos kn + nsinkn

Pfy = Py =Re{P"} = o {mn1 + mana2 + n3ns},

N ncos kn — sin kn
Pry -

—Im{P*} =

o {mna + nanz + n3ns},

kn —sink
P = Im{P*}:nCOS n —sinkn

e {mna + mana + n3ns}.
The normal vectors for each Coons surface in (10) are cordptéormula (4).

The polygonal boundary geometry is considered in the kerfr@lof the PIES with
the help of rectangular Coons surfadggv, w), (I = j). Coons patches used for build-
ing the 3D boundary in the way presented in Fig. 2 (regardiéfizeir size) are defined
by four corner points”; (0,0), P»(0,1), P3(1,0), P4(1,1).

P(L,1)

Fig. 2. A cubic domain of any size modelled by 8 corner poiiitse Coons patch technique uses the
setting corner points to construct a numerical model of thiéase so that any point on the surface may be
obtained in terms of two parametdrs w) for every patch.
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Mathematical description of Coons surface in PIES are egga in normalized
form by formula (1). The presented way of defining 3D boundaryPlES does not
require using the traditional boundary elements. In pcatitase we need to declare
only corner points for the domain definition. The number ekthpoints for the domains
are identical in shape and independent from their capaityh boundary modelling has
a big advantage in comparison to element methods, whereaghaity of the domain
has a crucial affect on the number of its elements.

4. Numerical solution of the PIES

The solution of the PIES is reduced to finding the unknown ldaw functions
uj(v,w) or p;(v,w) defined on individualj Coons surface as the following approxi-
mating complex form:

N M

piw.w) = 33 {ul + it LT ) 11 (w), (11)
p=0 r=0
N M

wiw,w) = 3OS st TP ) 10 (w), (12)
p=0 r=0

whereu(p ) v](pr), r](pr) g’”) are the unknown coefficients,= N x M is the number

of coefficients on each Coons surfadé T(T)( ) are the global base functions —
Chebyshev polynomials.

One of these functions;(v, w) (or p;(v,w)) depending on the solved boundary
problem will be taken the from form of boundary conditionsyever the second will
be found in the results of the PIES solution.

The insertion (11) and (12) to (6) and using pseudospeattidaation method with
collocation points [2] for numerical solving PIES leads bdain the complete system of

linear algebraic equations to determine unknown valuebmbbeﬁicientg§pr), sy”"),

ug.”’”), U§pr) on each segment

[H]{u;} = [GHD;}, (13)
where
n N M i
0.5u; (v1, w1) ZZZ (ug»pr)—i—jvj(»pr)) / / U,j(v1, w1, v, w)
j=1p=0r=0

Vj—1 Wj—1

—<( +]3(pr // (1, w1, v, w) Tj(p)(v)Tj(T)(w)devdw. (14)

Vj—1 Wj-1
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Unknown coefficientm(.'“), ot or r(-k), s*) are solution of algebraic equation sys-
tem (14). Multiplication coefficients with base functioms(iL1) and (12) leads to con-
tinuous solution on each segment.

5. Solution in the domain
After solving with PIES a solution on the boundary is onlyahbed. The solution

at any pointx = {z1, x2, 3} in the domain can then be obtained by integral identity
presented below [13]

u() = Y / / (T %, v, w)p; (0, )

— P;(x,v,w)u; (v,w)} Jj dv dw, x = {1, x2, x3}. (15)

The information about boundary is included in the kernelcfioms ﬁ;(x,v,w) and

Fj (x,v,w) and presented in the following form the same way as (9) angd (10

— 1 . 1
Ujj(x,0,w) = 4—6_“”" = —{coskr —isinkr}, and
i ™ (16)
. oU,;
Plj(x,v,w) = 5
where
o9 oo 9]0
T('U,'LU): T1+T2+T3] (17)
and

=z — Pj(xl)(vaw)a Ty =1z — Pj(xQ)(vaw)a Ty =x3— Pj(xg)(%w)- (18)

The Pj(r) (v, w) are the same Coons patches used for 3D domain definition.

n N M

=S (W // (%, w)

7=1p=0r=0 v wj1

vj

J
- (Tj(-pr) +j3§pr)) / / F;}(X,fu,w) Tj(p)(v) Tj(r)(w) Jidvdw. (19)

Vj—1 Wj—-1

The solution in domain does not require solution on the baundnly the coef-
fICIentSu(pr) v§pr), r§pr) gpr) from approximating the sum qf; (v, w) andu; (v, w)

(12) andu j(v,w) (12) are used as follows.
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6. Results

The practical aspects of the proposed method have been deated by numerical
examples. The PIES solution of Helmholtz equations have bealyzed by different
3D polygonal domains and compared with the exact values.

6.1. Example 1

The PIES makes it possible to easily define the boundary giepmaepresentation
of 3D domain defined with the help of only corner points is et in Fig. 3.

Pl x3

P13
Fig. 3. The boundary geometry definition by Coons surfaces.

The given domain is approximated by 10 linear Coons patdtasate described by
only 14 corner point$; (i = 1...14). This geometric model is directly used by PIES in
the process of solving the boundary value problem. Altéraaglement methods (FEM
and BEM) require discretizing of the obtained boundary getoyrand this considerably
raises the cost of computation.

The Dirichlet boundary conditions are given as functiongach Coons surfaces by

Re{U(x1,x9,23)} = cos(k(zy cosa + zysina)) + x3,

20
Im{U(x1,x2,23)} = sin(k(z1cosa+ zosina)). (20)

The analytical solution is
U(.Z'l, T3, 1’3) _ eik(xl cos a+x2 sin ) + 23, (21)

wherea = (0 < 90°).
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The obtained results on cross-section on the boundaryk(ferl and two values of
a —45° and90°) are graphically presented in Fig. 4.

a) 1.5

0.8

\J/V\\

|Therea|parlufthe lution on the | lary I’

\The imaginary part of the solution on the boundary

0 A 05 B 1o C 15 D 20

b) 1.5
Exact solutions

1k

0.5

p
ofo—u— Lo o J - . - i
|The real par|1 of the on the |y |___;_.

051 [The imaginary part of the solution on the boundary]—"] L\_\\ i

A
oA 05 B 10 T ys D ogp E 30 F 40

L

Fig. 4. The study of cross-sectional representation ofli®sn the boundary for two values of
a)a = 45°, b)a =90°.
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With the help of formula (21) we can obtain analytical saus for all points on the
boundary (marked in Fig. 4)

Re{P(x1,x9,23)} = —cosa *sin(k(zy cosa + xasina)) *ny

+ sin a * sin(k(z cos a + xo sin ) * na + ng, 22)
Im{P(x1,z2,23)} = cosax*cos(k(xcosa+ zysina)) * ng

+ sin a * cos(k(x cos a + xo sin @) * na.

Based on the result presented in Fig. 4 the solutions on thadawy are close to
exact solutions using = 9 expressions from the approximating sum (11). In this case
we need to solve the system of 90 algebraic equations.

6.2. Example 2

In example 2 we analyze solutions of Helmholtz equation leyRIES for another
domain presented in Fig. 5. The domain is described by 17cquints that define 12
Coons surfaces. The Dirichlet boundary conditions are t@dbjn the form described
by (20).

Fig. 5. Graphic representation of the 3D geometry is definetifocorner points and 12 Coons surfaces.

By using the PIES i.e. (12), we obtain an approximate salutin the boundary.
After obtaining the solution on the boundary and making usthe integral identity
(16) we obtain an approximate solutiariz) (real and imaginary part) in domain. Ta-
ble 1 shows a comparison of both the approximiate) and exact.(x) solutions ob-
tained from formula (21) for different numbarof expressions from the approximating
sum (11).
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Based on the relative error presented in Fig. 6 we see thapheximation of the
functiona(x) in domain polynomials of third degre& & 9) is exact if compared with
analytical solutions. For testing the convergence of théhotkin the domain solution
are approximated by the polynomials of the fourth degree=(16). Obtained much
more accurate results and shows the stability of the predenethod.

a) 46— T T r r T T : r
4 -
35 4

® 8- b
]
i
250 4
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g
o 2F
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o 154
1,
(a“»
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0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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35k 4
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Fig. 6. Relative errors of solution in the domain obtaineddifferent number of approximating series
expressionsi{ = 9 andn = 16) from Table 1. a) real part, b) imaginary part.

To increase the accuracy of solutions in the PIES we only teettrease the num-
berm in the approximating series (11). From the programming tpafiview the oper-
ation simply involves changing the number in the programictvimakes it possible to
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Table 1. Comparison of solution in domaif? (k = 1 anda = 30°) for different number of approximating
series expressions. (The number of solved system of aligedaations is given in parenthesis).

Analitycal Numerical

Reu(z) | Imu(z) | Red(z) | Ima(z) | Rei(z) | Imu(z)
m =9 (eq. 108) n = 16 (eq. 192)
1 2 3 4 5 6 7 8 9
025 | 01 | 05 | 1.464 | 0263 | 1.473 | 0265 | 1.472 | 0.263
025| 02 | 05 | 1.450 | 0311 | 1.463 | 0313 | 1.462 | 0311
025| 03 | 05 | 1.433 | 0358 | 1.449 | 0.360 | 1.448 | 0.358
025 | 04 | 05 | 1.414 | 0404 | 1.431 | 0.406 | 1.431 | 0.405
025 | 05 | 05 | 1.393 | 0449 | 1.411 | 0452 | 1.410 | 0.450
025 | 06 | 05 | 1.369 | 0.536 | 1.388 | 0.496 | 1.387 | 0.494
025 | 07 | 05 | 1.343 | 0352 | 1.361 | 0539 | 1.361 | 0537
025 | 08 | 05 | 1.315 | 0578 | 1.330 | 0580 | 1.330 | 0578
025 | 09 | 05 | 1.285 | 0618 | 1.296 | 0621 | 1.296 | 0.619

* The number of solved system of algebraic equations is givgraienthesis.

quickly verify the convergence. This is a considerable athge over the element meth-
ods in which the increase accuracy involves the increadeeafiimber of elements.

7. Conclusions

The presented PIES method offers a new, more flexible way lefngothe 3D
Helmholtz equation. The separation of approximation oftibendary geometry from
boundary functions in the PIES creates a new way in domaimgég definition and
obtaining continuous solutions on boundary. Linear Coamtases used for boundary
approximation provides a natural method to apply the doraadreduce the input data
to a small set of corner points. A solution of PIES with pragbslgorithm does not
require the boundary discretization. Finally continuoakisons on each segment are
obtained. The proposed method reduces the size of the sgdgefmraic equations and
the cost of computing. The testing examples confirm the acguand stability of the
proposed algorithm.
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