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FEM and BEM computing costs are compared for acoustical problems. The cost analysis
was carried out for bounded areas of simple shapes for objects with acoustical losses (e.g. with
sound absorbing materials). BEM’s variational-collocative scheme (DBEM) and its variational
scheme (IBEM) were considered. Computing costs were calculated, taking into account main
matrix composition costs and main system of equations solution costs. The costs were calcu-
lated for the type of adopted discrete elements and the order of quadrature used. Analytical
relations for calculating main matrix composition costs for BEM have been derived.

The analysis shows that FEM computing costs can be lower than BEM computing costs.
Moreover, BEM computing costs are strongly dependent on the order of the quadrature used.

The presented results provide a basis for the choice of the most cost-effective method
depending on the size of an acoustical problem.
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1. Introduction

The finite element method (FEM) and the boundary element method (BEM) are used
for the analysis of a wide range of acoustical problems. In acoustics, BEM’s variational-
collocative scheme (DBEM – Direct BEM) and its variational scheme (IBEM – Indi-
rect BEM) are most commonly applied [1]. FEM and BEM enable the modelling of
an acoustic field in areas with practically any geometry and any boundary conditions.
Each of the methods has its own modelling effectiveness which may vary considerably,
depending on the acoustical problem. One of the factors having a major bearing on the
effectiveness is the cost of computing. Computing costs, besides the computing power,
determine computing speed. Therefore in this paper the terms “computing costs” and
“computing speed” are used interchangeably. In order to be optimised, acoustical sys-
tems usually must be repeatedly modelled. Hence it is essential to compare the different
methods and formulate rules for selecting the method with the lowest computing costs.
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A comparison of computing costs for FEM and BEM can be found in [2, 3] but
the analysis is limited to lossless models, without taking into account the differences
between DBEM and IBEM and the computing costs involved in composing a system
of algebraic equations. It is shown here that the latter costs significantly contribute to
BEM’s total computing costs.

When an acoustic field is modelled by FEM and BEM, the considered continuous
area is represented in a discrete form by finite or boundary elements. In FEM, the entire
modelled area is discretized, whereas in BEM only the area’s boundary is discretized
(Fig. 1). Hence a discrete model in FEM consists of a larger number of elements than
in BEM.

Fig. 1. Discretization of two-dimensional area modelled by respectively FEM and BEM.

For this reason it is generally believed that BEM computing costs are lower than
those of FEM. But it is demonstrated here that for internal problems, the FEM comput-
ing costs may be much lower than those of BEM.

In FEM and BEM each vibroacoustic problem reduces itself to the following system
of algebraic equations:

Ax = b. (1)
Matrix A is the main matrix, x is a vector (a single-column matrix) of unknowns,

vector b represents external excitations acting on the investigated system. Since sys-
tems with losses will be considered, matrix A will always be regarded as a matrix with
complex terms.

The computing costs involved in the solution of system of Eq. (1) mainly depend on
the properties of the main matrix. Thus the analysed numerical methods can be charac-
terized through the properties of this matrix.

Computing costs are defined by the number of mathematical operations needed to
solve a given problem and the number of additional operations involved in, for example,
data transfer within the computer’s memory. In FEM and BEM the number of additional
operations is generally much lower than the number of mathematical operations and
so it can be neglected in the total computing costs [3]. The number of mathematical
operations can be measured in units called flop (floating point operations). It is assumed
here that a unit computing operation consists of one multiplication operation and one
addition operation: flop = z1+z2z3. Hence for complex number arithmetic, the number
of mathematical operations performed in the course of solving system of Eq. (1) is four
times larger than in the case of real number arithmetic.
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System of Eq. (1) can be solved by direct methods, e.g. the Gaussian elimination
method, or iterative methods. In practice, however, usually direct methods are used since
they are easily implemented and numerically stable. Iterative methods are mainly used
for the analysis of very large systems in the case of which their computing costs may be
lower than those of direct methods. The computing costs of direct methods can be quite
easily calculated. The computing costs of direct methods rise quickly with the modelled
problem’s number of degrees of freedom. The considerations in this paper are limited
to direct methods.

System of Eq. (1) with non-singular matrix A ∈ CN,N is solved in two steps by a
direct method. First, the matrix A is factorised, i.e. represented in the form of a product
of triangular matrices: lower triangular matrix L and upper triangular matrix U. In the
second step, forward/backward elimination operations are performed [4]. The method’s
costs are determined taking into account the costs of its steps:

A = LU 4N3/3 flop,

Ly = b 2N2 flop,

Ux = y 2N2 flop.

(2)

In order to factorise matrix A with complex terms, 4N3/3 mathematical operations,
where N is the discrete model’s number of degrees of freedom, must be performed.
Forward/backward elimination requires a total of 4N2 mathematical operations.

Main matrix A has often certain properties, such as symmetry, banding and positive
definiteness, which make it possible to employ faster factorisation and forward/backward
elimination algorithms than the classic Gaussian algorithm.

Cholesky’s algorithm, which reduces by half, in comparison with factorisation LU
[4], the computing costs, is used for the factorisation of a positive defined symmetric
matrix. Unfortunately, since matrix A is usually a complex matrix, it is not a positive
definite matrix. For this reason instead of the classic Cholesky algorithm, its modified
version [5] or factorisation UTDU [4] is used:

A = UTDU 2N3/3 flop, (3)1

where matrix D is a diagonal matrix with elements different from zero,

UTz = b 2N2flop,

Dy = z 4N flop,

Ux = y 2N2flop.

(3)2−4

The number of mathematical operations performed during factorisation is directly
proportional to the third power of the number of equations (nodes in the discrete mesh),
whereas the number of operations performed in the course of forward/backward elim-
ination is proportional to the second power of the number of equations. In the case of
models with a number of nodes larger than a few dozen, the cost of factorisation of
matrix A determines the total computing costs.
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The number of mathematical operations performed while solving the system of
Eq. (1) may be 1.5–2 times larger than the one specified, since there are additional
operations involved in the manipulation of the main matrix’s elements during the selec-
tion of elements along the main diagonal aimed at obtaining the required accuracy of
the mathematical operations [4].

2. FEM and BEM computing costs

Computing time in FEM and BEM is made up of the times needed for: system of
equations composition, main matrix factorisation and forward/backward elimination.
Since the stiffness, mass and damping matrices in FEM do not depend on frequency,
they are composed only once at the beginning of the computations. In BEM, the main
matrix depends on frequency and so the main matrix is composed separately for each
frequency. An analysis of the actual system is generally made for a relatively wide
frequency range and so the time allocated for the composition of a system of equations
in FEM can be neglected when comparing the computing costs of FEM and BEM.

The main matrix in FEM is symmetric and banded. Factorisation UTDU or a mod-
ified Cholesky algorithm is usually applied to the matrix. The number of mathematical
operations performed in the course of factorisation and forward/backward elimination
for matrix A with complex terms is [4]:

A = UTDU 2b2
wNflop,

UTz = b 4bwNflop,

Dy = z 4N flop,

Ux = y 4bwNflop,

(4)

where bw is the mean value of the half-band width of the main matrix.
The above formulas (4) are true for N À 1 and N À bw, which usually is the case

when real systems are modelled by FEM.
According to formulas (4), the banding of matrix A greatly affects the computing

speed. The matrix band width depends on the method of numbering the finite elements
and it is determined by the maximum difference between the numbers of nodes con-
nected with the same element. Main matrix half-band width bw for an optimally defined
mesh of finite elements is by one order smaller than the number of nodes Nw [3]. Using
the above relation, Eq. (4) can be simplified by eliminating parameter bw. In the case
of systems with a very complicated geometry, the relation between bw and Nw does not
always hold; nevertheless, it holds for many real models.

In BEM, computing speed depends on the costs of solving system of Eq. (1), the
main matrix composition costs and the costs of computing the acoustic parameters in
observation points. The acoustic parameters in observations points are determined on
the basis of the calculated pressure and the acoustic velocity distributions on the bound-
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ary element mesh. The associated costs depend on the number of observation points
and they are generally much lower than the costs of solving the main system of equa-
tions and the costs of composing the main matrix. In this paper, the costs of computing
acoustic parameters in observation points are neglected.

In BEM, it is necessary to perform integration on all the elements of the discrete
mesh. Hence one must calculate integrals in the form [1]:

I
(DBEM)
i,j (ri) =

∫

Sj

(ℵ (rj) J (ri, rj)) dS(rj)

I
(IBEM)
i,j (ri, rj) =

∫

Si

∫

Sj

(ℵ (ri)ℵ (rj) J (ri, rj)) dS(ri)dS(rj),
(5)

where ri is a point belonging to element ei, rj is a point belonging to element ej , ℵ(r)
is a shape function.

J(ri, rj) is a Green function or its first derivative in DBEM or a Green function or
its first or second derivative in IBEM:

J (ri, rj) = G (ri, rj) or J (ri, rj) =
∂G (ri, rj)

∂nj
or J (ri, rj) =

∂2G (ri, rj)
∂ni∂nj

. (6)

The method of calculating numerical integrals, the so-called quadrature, greatly af-
fects the speed of main matrix composition. In BEM, Gaussian quadrature is usually
used.

Once the integrals (5) in nodes j belonging to the element ej on which integration is
performed are determined, the integrated function is singular because of the properties
of Green function. The singularity can be eliminated by replacing the coordinate sys-
tem in which integration takes place with polar coordinates or by other techniques [6].
Each of the above mathematical operations increases the method’s computing costs. The
number of points at which singularity occurs mainly depends on the number of nodes
belonging to the element.

The total cost may differ significantly between DBEM and IBEM. In IBEM, inte-
gration is performed on the area of a pair of elements twice in the course of determining
the terms of the main matrix, whereas in DBEM it is performed only once on an area of
a single element. The composition of the main matrix in DBEM entails the determina-
tion of N2

w of individual integrals (5)1, whereas in IBEM about N2
e /2 double integrals

(5)2 must be determined since a pair of elements occurs under the shape function, where
Nw is the number of nodes and Ne – the number of the discrete elements. Because of
the algorithms used, composition costs in DBEM and IBEM should be estimated de-
pending on, respectively, the number of nodes and the number of discrete elements. The
composition of the main matrix in IBEM is on the whole more time-consuming than in
DBEM.
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From an analysis of the structure of integrals (5) and system of Eq. (1) (in the dis-
crete form for BEM [6]), one can derive some simplified relations for the number of
mathematical operations performed during the composition of the main matrix:

K
(DBEM)
K = C

(DBEM)
0 C1N

2
w,

K
(IBEM)
K = C

(IBEM)
0 C2

1C2
2N2

e ,
(7)

where C0 – a coefficient dependent on the actual computer implementation, C1 – the
number of nodes in the quadrature applied, C2 – a coefficient dependent on the boundary
conditions.

Coefficient C0 depends on the computer implementation of the method, among oth-
ers on the algorithm for eliminating the Green function’s indefiniteness. For a given im-
plementation, a value of the coefficient can be assigned to particular types of boundary
elements: one-dimensional linear, one-dimensional parabolic, two-dimensional tetrago-
nal linear, etc.

In the case of IBEM, the cost of main matrix composition also depends on the
kind of boundary conditions. Computations are the most time-consuming for Neumann
boundary conditions and the least time-consuming for Dirichlet boundary conditions
[7]. The equation for the terms of the main matrix in a model with Neumann bound-
ary conditions includes four times more terms than in a model with Dirichlet boundary
conditions [6]. Thus the cost of determining the particular terms for Neumann bound-
ary conditions is about four times higher than that for Dirichlet boundary conditions.
Coefficient C2, whose value ranges from 0.5 to 1, takes the above into account. Coef-
ficient C2 for a model with exclusively Neumann boundary conditions or exclusively
with Dirichlet boundary conditions is equal respectively to unity (C2 = 1) and one
half (C2 = 0.5). Neuman boundary conditions occur in most practical vibroacoustic
problems. Therefore the most time-consuming case – a model with Neumann boundary
conditions (C2 = 1) – is considered in the analysis of IBEM computing costs.

Prior to a comparison of computing costs for FEM and BEM, formulas (7) were ver-
ified for a two-dimensional model of a rectangular chamber. The results of the numerical
experiment are shown in Figs. 2 and 3.

The results of modelling confirm that the derived relations (7) are correct.
In DBEM, matrix A is an asymmetric, fully populated matrix with complex terms.

Factorisation LU is applied to the matrix. The number of mathematical operations per-
formed on complex numbers is 4N3

w/3 and 4N2
w for factorisation and elimination re-

spectively.
In IBEM, matrix A is a fully populated and symmetric matrix with complex terms.

Factorisation UTDU is applied to the matrix. The number of mathematical operations
performed on complex numbers is 2N3

w/3 and 4N2
w for factorisation and elimination

respectively.
Factorisation is twice faster in IBEM than in DBEM. The costs of forward/backward

elimination are the same for DBEM and IBEM.
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Fig. 2. Main matrix composition costs for DBEM depending on the number of nodes Nw and number
of Gaussian quadrature nodes nG in comparison with theoretically determined curve.

The speed of matrix composition is significantly affected by the number of nodes in
the quadrature used (parameter C1). The costs of main matrix composition in DBEM
and IBEM increase, respectively linearly and with the square, with the number of quadra-
ture nodes.
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Fig. 3. Main matrix composition costs for IBEM method depending on the number of elements Ne and
number of Gaussian quadrature nodes nG in comparison with theoretically determined curve (broken line).

3. Coupled BEM/FEM and FEM/FEM computing costs

Coupled BEM/FEM and FEM/FEM are used for the analysis of vibroacoustic prob-
lems which takes interaction between the structure and fluid into account. One of the
methods in a couple is used for modelling the acoustic field while the other one is used
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for modelling the vibrations of the elastic structure. In BEM/FEM method, the FEM
generally is used for modelling the elastic structure while the BEM – for modelling
the fluid.

In DBEM/FEM, system of Eqs. (1) assumes the following form [6]:
[

Ks + jωCs − ω2Ms ST
DBEM

ρ0ω
2E B

]{
u
p

}
=

{
Fs

Λa

}
, (8)

where Ks, Cs, Ms – stiffness, damping and mass matrices in an FEM model of the
elastic structure, B,E – coefficient matrices of DBEM, SDBEM – a matrix defining the
coupling between the acoustic field and the elastic structure, u, p – vectors of displace-
ment and acoustic pressure, Fs – vector of external mechanical force, Λa – vector of
external acoustic load, ρ0, ω – the density of the fluid and circular frequency.

A coupled model’s number of degrees of freedom is a sum of the degrees of freedom
of the acoustic model and the degrees of freedom of the elastic structure. Since different
matrices SDBEM and E are situated symmetrically relative to the main diagonal and
matrices B, E, SDBEM are fully populated and asymmetric matrices, the main matrix
of system of Eqs. (8) is also fully populated and asymmetric. Thus the main matrix
in DBEM/FEM has the same properties as in DBEM, whereas the model’s number of
degrees of freedom increases by the number of degrees of freedom associated with the
elastic structure.

In IBEM/FEM, system of Eqs. (1) assumes the following form [6]:
[

Ks + jωCs − ω2Ms GT

G H/ρω2

]{
u
µ

}
=

{
Fs

Λa

}
, (9)

where G,H – coefficient matrices of IBEM, µ – the vector of double-layer acoustic
potential.

Matrices Ks, Cs, Ms are symmetric banded matrices, H is a symmetric fully pop-
ulated matrix, G is a fully populated matrix. Thus the main matrix in IBEM/FEM
is fully populated and symmetric. The number of degrees of freedom of the coupled
IBEM/FEM model is a sum of the degrees of freedom of the acoustic model and those
of the elastic structure model, whereas the main matrix has the same properties as the
matrix in IBEM.

Since the main matrices of DBEM/FEM and DBEM have identical properties as
well as the main matrices of IBEM/FEM and IBEM have identical properties, the com-
parison of the coupled methods will yield the same results as the comparison of the
uncoupled DBEM and IBEM.

In the case of classic FEM/FEM, system of Eqs. (1) is defined as [8]:
[

Ks + jωCs − ω2Ms −ρ−1ST
FEM

−ω2SFEM Ka + jωCa − ω2Ma

]{
u
p

}
=

{
Fs

Λa

}
, (10)

Ka, Ca, Ma – stiffness, damping and mass matrices in the acoustic model, SFEM –
a matrix defining the coupling between the acoustic field and the elastic structure.
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The main matrix in FEM/FEM is an asymmetric matrix and it needs large computa-
tional memory. For this reason FEM/FEM in the classic form is seldom used in practical
computer applications for the analysis of coupling vibration and acoustic field. There
are several ways in which the main matrix in FEM/FEM can be made symmetric again
[8–10], but all of them are applicable to only a small class of finite elements or require
the definition of an additional variable in the form of an acoustic displacement potential
or an acoustic velocity potential. As a result of using additional variable, the number of
degrees of freedom in a discrete model usually doubles.

Since there are many techniques of restoring the main matrix symmetry in coupled
FEM/FEM, BEM/FEM and FEM/FEM should be compared separately for each of the
techniques, which goes beyond the paper’s scope. In the case of techniques which do not
use an additional variable in the form of an acoustic displacement or velocity potential
but restore the main matrix symmetry [9], the results of a comparison of BEM/FEM and
FEM/FEM will be identical as the ones obtained for uncoupled BEM and FEM.

4. Comparison of FEM and BEM computing costs

A comparison of computing costs and computational memory between the methods
for two-dimensional rectangular and three-dimensional parallelepiped models (Fig. 4)
was made.

Fig. 4. Shape of analysed two- and three-dimensional areas.

Parameters me, ne and ke specify the number of discrete elements per one dimen-
sion of the modelled area. DBEM, IBEM and FEM were compared. The analysis was
carried out for models made up of linear and parabolic discrete elements. The meth-
ods were compared according to the total number of mathematical operations needed to
solve the system of Eqs. (1) and the size of memory needed to store the main matrix.
In the case of BEMs, the analysis was made for quadrature with a different number
of nodes.
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The basic parameters of the discrete meshes for a two-dimensional rectangular area
and a three-dimensional parallelepiped area for the most common types of elements are
shown in Tables 1 and 2. The formulas (in the tables) for the number of nodes are exact
for meshes made up of at least a dozen or so discrete elements. The formulas can also
be used for rough estimates in the analysis of computing costs for other than cuboidal
chambers.

Table 1. Number of discrete mesh nodes and elements in BEM for two-dimensional rectangular and
three-dimensional parallelepiped areas. Calculated values of coefficient C0 for BEMs.

Area
Type of
elements

Number of
elements Ne

Number of nodes/
equations Nw

Coefficient C0

DBEM IBEM

me×ne

2(ne + me) 2(ne + me) 255 109

2(ne + me) 4(ne + me) 158 126

me×ne×ke

2(neme + neke + meke)
2(neme + neke + meke+1)
≈2(neme + neke + meke)

238 82

4(neme + neke + meke)
2(neme + neke + meke+1)
≈2(neme + neke + meke)

396 65

2(neme + neke + meke)
2(3neme+3neke+3meke+1)
≈6(neme + neke + meke)

138 216

4(neme + neke + meke)
2(4neme+4neke+4meke+1)
≈ 8(neme + neke + meke)

192 146

In the analysis of BEM computing costs, the number of mathematical operations
performed during the composition of the main matrix is calculated from Eq. (7). For
this purpose, the computer program Sysnoise v.5.2r for the FEM and BEM analysis of
vibroacoustic problems [6] was employed to calculate coefficient C0 from the following
relations:

C
(DBEM)
0 =

T (DBEM) × cpm

C1N2
w

,

C
(IBEM)
0 =

T (IBEM) × cpm

C2
1N2

e

,

(11)

where T – matrix composition time [s], cpm – computing power [flop].
The calculated values of coefficient C0 are shown in Table 1.
The value of coefficient C0 may depend on the actual implementation of the method

and the algorithm employed for the elimination of singularities associated with the
Green function. But the difference in the results of the comparison of DBEM and IBEM
as well as FEM and DBEM/IBEM by other computing programs than Sysnoise should
not be large. In the case of DBEM and IBEM, the obtained results can be easily rescaled
to other values of coefficient C0 [7].
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Table 2. Number of discrete mesh nodes and elements in FEM for two-dimensional rectangular and
three-dimensional parallelepiped areas.

Area
Type of
elements

Number of
elements Ne

Number of nodes/
equations Nw

me×ne

neme
(ne+1)(me+1)

≈neme + ne + me

2neme
(ne+1)(me+1)

≈neme + ne + me

neme
(ne+1)(2me+1)+ne(me+1)
≈3neme+2(ne + me)

2neme
(ne+1)(2me+1)+ne(me+1)+neme

≈4neme+2(ne + me)

me×ne×ke

nemeke
(ne+1)(me+1))(ke+1)

≈nemeke + neme + neke + meke + ne + me + ke

2nemeke
(ne+1)(me+1))(ke+1)

≈nemeke + neme + neke + meke + ne + me + ke

nemeke

4nemeke+3(neme + neke + meke)
+2(ne + me + ke)+1

≈4nemeke+3(neme + neke + meke)+2(ne + me + ke)

2nemeke

5nemeke+4neme+3(neke + meke)
+2(ne + me + ke)+1

≈5nemeke+4neme+3(neke + meke)+2(ne + me + ke)

When comparing the methods, a two-dimensional rectangular area and a three-
dimensional area, having the shape of a cube divided into respectively ne × ne and
ne × ne × ne elements, were analysed.

DBEM, IBEM and FEM were compared by determining the number of discrete
mesh elements for which their computing costs are the same. Since the modelled area
was represented by ne×ne (2D) or ne×ne×ne (3D) elements, one parameter ne, which
specifies the number of finite/boundary elements per one dimension of the modelled
area, was used. In the case of triangular elements, parameter ne stands for half the
number of triangular finite/boundary elements per one dimension. The methods were
compared by solving the following equations:

methods: IBEM - DBEM

(KK + KF + KS)(IBEM) = (KK + KF + KS)(DBEM) ,

methods: BEM - FEM

(KK + KF + KS)(BEM) = (KF + KS)(FEM) ,

(12)

where KK , KF , KS – costs of respectively main matrix composition, factorization and
forward/backward elimination for comparable methods.
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Computing costs for meshes made up of the same elements in the case of BEM and
for meshes consisting of elements having a similar shape in the case of BEM/FEM: one-
dimensional linear element for BEM, two-dimensional linear quadrangular/triangular
element for FEM, one-dimensional parabolic element for BEM, two-dimensional
parabolic quadrangular/triangular element for FEM, two-dimensional linear quadran-
gular element for BEM, three-dimensional linear hexahedral element for FEM and so
on, were analysed. Tables 3–5 show the results of the comparison of DBEM/IBEM and
BEM/FEM.

In the case of BEM/FEM, besides the parameter ne and total number of discrete
elements Ne, also the computer memory M (Method) needed to store main matrix A is
given. In the “Notes” column, a computing costs relationship between the considered
methods for models made up of a larger number of elements than the one shown in
column “Ne” is given. If instead of a numerical value, a cost relationship for comparable
methods is shown in column “Ne”, this means that for the considered quadrature the cost
relationship does not depend on model size.

For the comparison of DBEM and IBEM the results are shown for quadrature with
1–5 nodes for 2D area and with 1–25 nodes for 3D area. For a comparison of BEM
and FEM the results are shown for quadrature with 2–4 nodes for 2D area and with
4–16 nodes for 3D area. In the case of linear and parabolic elements, quadrature with
a larger number of nodes is very seldom used in modelling and a cost analysis is then
of no practical importance. Because of the different computing algorithms used in the
Gaussian quadrature for triangular and quadrangular elements, the number of nodes for
a quadrature with the same order is different for the elements.

Relationships between the computing costs and the number of linear elements per
one model dimension ne for 2D and 3D areas and quadrature with respectively two and
four nodes are shown in Figs. 5 and 6.

Fig. 5. Number of mathematical operations versus number of linear elements for two-dimensional area
and two-node quadrature.
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Fig. 6. Number of mathematical operations versus number of linear quadrangular/hexahedral elements for
three-dimensional area and four-node quadrature.

According to Figs. 5 and 6, the IBEM computing costs for 2D area and a two-
node quadrature are always lower than the computing costs of DBEM, while the FEM
computing costs are lower than the costs of BEM only for small models (less than 484
linear finite elements). In the case of 3D area, the IBEM computing costs are lower than
those of DBEM only for large models (more than 600 linear quadrangular boundary
elements) while the FEM computing costs are lower than those of BEMs for small,
medium-sized and large models (less than 8000 linear hexahedral finite elements). The
computing costs of FEM increase with the number of discrete elements much faster than
those of BEMs.

5. Discussion of results

5.1. Comparison of IBEM and DBEM methods

It is commonly thought that since integration in IBEM is performed twice over
all the elements during the composition of the main matrix, the method is faster than
DBEM only for very large models. But the presented results show that in some cases
IBEM may be faster than DBEM for both large and small models, e.g. for quadrature
with five nodes (Table 3).

In the case of two-dimensional models built from linear elements, IBEM is faster
than DBEM, regardless of the model size, for quadrature with one or two nodes. For
quadrature with three or more nodes, IBEM is faster than DBEM only for medium-sized
and large (more than 328 elements) models. The point of intersection of computing costs
for the methods depends largely on the number of nodes of the quadrature used, i.e. on
the latter’s order.
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For 2D models made up of parabolic elements, IBEM is faster than DBEM, regard-
less of model size, for quadrature with 1÷5 nodes. IBEM is faster than DBEM for the
above models for quadrature with as many as 5 nodes because the costs of composing
the main matrix in the IBEM method are directly proportional to the second power of
the number of elements, while in the DBEM – to the second power of the number of
nodes. 2D models built from parabolic elements have twice as many nodes as elements
(Table 1), whereas the costs of factorising matrix A in IBEM are by half lower than in
DBEM.

In the case of 3D models made up of linear elements, IBEM is faster than DBEM,
regardless of model size, only for quadrature with one node. If quadrature with a larger
number of nodes is used, IBEM is faster than DBEM only for large models (more than
600 elements).

For 3D models made up of linear triangular boundary elements, IBEM is much
slower than DBEM because of the much larger number of elements at the same number
of nodes.

In the case of 3D models made up of parabolic parameters, IBEM is faster than
DBEM for small models only for quadratures with 1 and 4 nodes. For quadratures with
a larger number of nodes, IBEM is faster than DBEM for medium-sized and large (more
than 300 elements) models.

The point of intersection of computing costs for the methods for 3D area is also
strongly dependent on the number of nodes of the quadrature used.

In IBEM, the computing memory needed to store the main matrix is twice smaller
than in DBEM, which is a further argument for using IBEM for modelling large acous-
tical systems.

5.2. Comparison of FEM and BEM methods

From the comparative analysis of FEM and BEM one can draw the following con-
clusions.

In the case of a 2D area and quadrature with 2÷4 nodes, FEM is faster than DBEM
for models made up of maximum 22÷26 linear elements or maximum 11÷16 parabolic
elements per one dimension (Table 4), which corresponds to a mesh with 88÷ 104 lin-
ear boundary elements or 484 ÷ 676 linear finite elements and to a mesh with 44 ÷ 64
parabolic boundary elements or 220 ÷ 340 parabolic finite elements. The point of in-
tersection of computing costs for DBEM and FEM is weakly dependent on the order of
the quadrature used.

In the case of 2D area and quadrature with 2÷4 nodes, FEM is faster than IBEM for
models consisting of maximum 23÷ 33 linear elements or maximum 7÷ 15 parabolic
elements per one dimension (Table 5), which corresponds to a mesh with 92÷ 132 lin-
ear boundary elements or 529÷ 1089 linear finite elements and to a mesh with 28÷ 60
parabolic boundary elements or about 100 ÷ 290 parabolic finite elements. Thus FEM
is faster than DBEM and IBEM for small and medium-sized models. The point of inter-
section of computing costs depends largely on the order of the quadrature used.
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In the case of 3D models and quadrature with 4÷16 nodes, FEM is faster than BEM
for small, medium-sized and large models. In practice, a quadrature with the number
of nodes below 4 is not used for 3D areas. In the case of a quadrature with 4 nodes,
BEM is faster than FEM only for models made up of 2400 linear boundary elements
or 8000 linear finite elements and at least 1014 parabolic boundary elements or 2197
parabolic finite elements (Table 5). For models with the same computing costs, the
size of memory needed to store the main matrix in FEM is about twice as large as
in IBEM and about 2–8 time larger than in IBEM. For example, IBEM’s and FEM’s
computing costs for a three-dimensional model, using linear quadrangular elements and
a quadrature with four nodes, are the same for meshes consisting of 2400 boundary
elements (22 MB) or 8000 finite elements (65 MB). It may be difficult to store a 65 MB
main matrix in the operating memory while the use of algorithms dividing the matrix
into smaller matrices stored on the hard disk dramatically increases the computing time.
Therefore when selecting a method for modelling a 3D area, one should consider both
the computing cost and the size of computer memory needed for the computations.

Computing costs for 3D models are strongly dependent on the order of the quadra-
ture used.

6. Conclusions

The computing costs of FEM and BEM and coupled FEM/FEM and FEM/BEM
for acoustical problems have been compared. The analysis was made for FEM, the
collocative-variational boundary element method (DBEM) and the variational boundary
element method (IBEM). The costs of the above methods were compared for bounded
areas and criteria for selecting the method with the lowest costs for a given discrete
model size have been determined.

The analysis has shown some interesting facts.
In the case of acoustic field modelling by DBEM and IBEM, the computing costs

are strongly dependent on the order of the quadrature used. The costs of computing
quadrature in IBEM increase much faster with quadrature’s number of nodes than in
DBEM.

DBEM computing costs are generally considerably lower than those of IBEM only
for small models. In some cases, IBEM is faster than DBEM regardless of the size of the
discrete model. For example, in the case of 2D models made up of parabolic elements
for quadrature with as many as 5 nodes, the computing costs of IBEM are much lower
than those of DBEM regardless of the size of the discrete model. This is so because of
the dominance of factorisation costs in the total computing costs for two-dimensional
discrete models made up of parabolic elements.

In the case of three-dimensional models made up of triangular boundary elements,
IBEM computing costs are generally much higher than those of DBEM. Thus for the
analysis of such models the latter method is more advantageous.

FEM computing costs may be lower than those of BEM. For two-dimensional areas
FEM is faster than BEM only for small models. In the case of three-dimensional areas,
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FEM is faster than BEM for small, medium-sized and large models made up of as many
as tens of thousands of linear finite elements. When selecting a method for modelling
three-dimensional area by FEM and BEM, one should consider both the computing
costs and the size of computer memory needed for the computations.

The analysis of computing costs was carried out for areas with a simple geometry,
represented by homogenous meshes. The analysis was limited to such models since no
analytical equation for the number of degrees of freedom for a discrete model with any
geometry or with an inhomogeneous mesh could be formulated. But practical experi-
ence indicates that the actual relationship for FEM and BEM computing costs for areas
with an uncomplicated geometry, but different from that of the parallelepiped (rect-
angular), and with inhomogeneous discrete meshes is very similar to the relationship
determined in this paper.
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