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This paper presents a study of acoustic scattering by a pair of parallel circular thermo-
viscous fluid cylinders submerged in an unbounded viscous thermally conducting medium.
The translational addition theorem for cylindrical wave functions, the appropriate wave field
expansions and the pertinent boundary conditions are employed to develop a closed-form
solution in the form of infinite series. The analytical results are illustrated with a numerical
example in which two identical thermoviscous fluid cylinders are insonified by a nearby paral-
lel acoustic line source at broadside/end-fire incidence. The backscattered pressure amplitude
is numerically evaluated and discussed for representative values of the parameters character-
izing the system. The effects of source position, transmission frequency and proximity of the
two cylinders are examined. Particular attention has been focused on multiple scattering in-
teractions as well as thermoviscous effects. The imperative influence of thermoviscosity on
the analysed phenomena is revealed by notable reduction of backscattering amplitude at in-
termediate and high frequencies. The numerical results also show that the multiple scattering
interaction effects are of great (moderate) consequence for end-fire (broadside) incidence at
small separations of the cylinders. A limiting case involving a pair of ideal compressible fluid
cylinders is considered and a fair agreement with preceding solutions is established.
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1. Introduction

There exists a vast body of literature on scattering theory, extending back for more
than a century and across the boundaries of many disciplines (acoustics, electromagnet-
ics, quantum mechanics). Particularly, the scattering of waves by two-dimensional cir-
cular cylinders is a fundamental problem, which has attracted attention of great many re-
searchers in both acoustics (MORSE and INGARD [32]) and electromagnetics (BALANIS
[7]). In this section, we shall briefly review the research literature relevant to the present



244 SEYYED M. HASHEMINEJAD, M. A. ALIBAKHSHI

study, i.e., the investigations of sound scattering by fluid cylinders and also by cylindri-
cal objects with allowance for different dissipation mechanisms such as viscothermal
and viscoelastic losses. KOZHIN [19] studied sound propagation in a viscous medium
containing cylindrical filaments by calculating the field scattered by a cylinder sus-
pended freely in the viscous medium. LIN and RAPTIS [22] extended the so-called
ECAH theory (i.e., the most well known acoustic theory for heterogeneous systems
with allowance for viscous and thermal losses) to study the scattering by a free ther-
moelastic cylinder submerged in a thermoviscous fluid. Subsequently, the latter authors
presented a general analysis for scattering of a plane sound wave obliquely incident
upon a thin, elastic circular cylinder immersed in an unbounded viscous fluid (LIN and
RAPTIS [24]). As a first step towards the numerical solution of the inverse scattering
problem for acoustic and elastic waves, ALEMAR et al. [2, 3] investigated the scattering
of acoustic waves from an infinite cylindrical fluid obstacle immersed in a fluid load-
ing medium of greater/smaller density. They subsequently showed, in a step-by-step
approach, how the Resonance Scattering Theory permits the simultaneous prediction
of the size, orientation, and nature of a cylindrical fluid-scatterer (ALEMAR et al. [4]).
CHANDRA and THOMPSON [10] employed the method of Padé approximants to de-
termine the scattered pressure from a fluid cylinder having a strong compressibility
contrast. BOAG et al. [9] used a multifilament source model to present the solution
for the problem of two-dimensional acoustic scattering from homogeneous fluid cylin-
ders. ROUSSELOT [35] also studied the acoustic field scattered by a fluid cylinder. LEE
et al. [21] investigated the effects of material attenuation on acoustic resonance scat-
tering from an air-filled cylindrical shell immersed in water. More recently, GINS-
BERG [13] studied the effect of viscosity in 2D scattering of a plane sound wave from
a partially coated infinite cylinder. WEI et al. [42] expressed the radiation force-per-
length on an infinitely long fluid cylinder in an acoustic plane standing wave in terms
of partial-wave scattering coefficients for the corresponding travelling wave scattering
problem. The latter authors obtained a simple long wavelength approximation of the
radiation force for the following situations: a hot gas column (used to approximate a
small flame), a compressible liquid bridge in a Plateau tank, a liquid bridge in air, and
a cylindrical bubble of air in water. Also, SCOTTI and WIRGIN [37] studied the in-
verse medium problem (i.e., the retrieval of the material constants) for a generally lossy
fluid-like circular cylindrical object in a lossless fluid-like host probed by plane-wave
acoustic radiation. MITRI et al. [28] calculated acoustic backscattering from cylindri-
cal targets, suspended in an inviscid fluid including the effects of absorption of shear
and compressional waves in viscoelastic materials. Just recently, HASHEMINEJAD and
SAFARI [17] employed the novel features of the Havriliak–Negami model (HARTMAN
et al. [14]) to investigate the effects of dynamic viscoelastic properties on acoustic scat-
tering by viscoelastically coated cylinders submerged in a viscous fluid. MITRI [29]
presented theoretical calculations for the acoustic radiation force experienced by fluid,
rigid, elastic and viscoelastic cylinders immersed in ideal fluids and placed in a standing
or quasistanding wave field. The latter author also analyzed the effect of hysteresis-type
of absorption on the frequency dependence of the acoustic radiation force for infinite
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and absorbing solid cylinders [30] and cylindrical shells (MITRI [31]) placed in a plane
incident ultrasound field.

Many researchers have studied the mutual interaction between multiple objects sub-
ject to a primary acoustic field. In particular, exact and approximate solutions have been
developed for scattering of plane waves by multiple parallel circular cylinders. One of
the earliest solutions to this problem (for rigid cylinders) was developed by TWER-
SKY [41], who decomposed the total field into an incident field plus a higher order
scattered field contributions whose coefficients were determined in an iterative manner.
Additional solution techniques were later developed by YOUNG and BERTRAND [44]
who examined both theoretically and experimentally the scattered field produced by a
plane acoustic wave normal to the axis of two identical parallel, rigid cylinders. An an-
alytical study of multiple scattering of a plane sound wave by a group of circular, rigid
cylinders oscillating in an ideal fluid is performed by LIN and RAPTIS [23]. The solution
of diffraction of acoustic waves by a system consisting of two circular, nonparallel, and
nonintersecting cylinders is presented by KUBENKO [20]. ZHUK [46, 47] studied the
interaction of acoustic waves with a pair of parallel impenetrable circular cylinders im-
mersed in a viscous fluid medium. SCHARSTEIN [36] used the Graf’s addition theorem
for cylindrical harmonic to compute the scattered field due to two parallel soft circular
cylinders illuminated by a plane acoustic wave for several geometries and incidence an-
gles. A new approach based on the group theory in order to study acoustic scattering
by a pair of identical parallel cylinders is developed by DECANINI [11]. Scattering of a
plane acoustic wave by an infinite penetrable (impenetrable) circular cylinder, parallel
with another one of acoustically small radius, is examined by ROUMELIOTIS et al. [34].
WU et al. [43] presented the acoustic band gap results for two-dimensional arrays of
water (mercury) cylinders with circular cross-section in a mercury (water) host. Just re-
cently, a general analytic method for evaluating the scattered fields created by multiple
rigid circular cylinders arranged in an arbitrary parallel configuration is developed by
SHERER [38].

The above review clearly indicates that while there exists a vast body of literature
on acoustic wave scattering from cylindrical objects suspended in an ideal or a viscous
fluid medium, rigorous analytic or numerical solutions including thermoviscous as well
as multiple scattering effects seem to be nonexistent. Our primary objective is to fill
this gap. Therefore, noting that the most fundamental problem of multiple scattering in
two dimensions involves a cluster of two circular cylinders, we employ the translation
addition theorem for cylindrical Bessel functions to study theoretically and numerically
the scattering of compressional acoustic waves by a pair of interacting thermoviscous
fluid cylinders due to a nearby acoustic line source suspended in an unbounded viscous
thermally conducting fluid medium. The proposed model is of noble interest essentially
due to its inherent value as a canonical problem in theoretical acoustics. It can form an
invaluable guide in establishing proximity thresholds for the influence of multiple scat-
tering in terms of thermoviscous fluid properties, average distance between the cylinders
and the incident wave field. It has promising applications in a wide range of physical and
technical fields including acoustic analysis of highly concentrated cylindrical emulsions
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(PRINCEN [33]) and liquid composites (WU et al. [43]). It may also be of practical in-
terest in passive acoustic stabilization and breakup control of long liquid bridges, small
diffusion flames and hot cylindrical fluid objects under microgravity conditions (see
WEI et al. [42]; MARR–LYON et al. [25]; MARSTON [26, 27]). Lastly, the presented
exact solution can serve as the benchmark for comparison to other solutions obtained
by strictly numerical or asymptotic approaches.

2. Formulation

2.1. Basic equations

There is now available a seemingly endless variety of models dealing with thermo-
viscous effects in acoustic wave propagation. The most exclusive model is based on
a solution of the full set of basic governing equations, i.e., all terms in the linearized
Navier Stokes equations are taken into account. This inclusive treatment of thermovis-
cosity can greatly complicate the analysis because the fluid medium can then support
shear and thermal as well as compressional modes, both of which must be accounted for
in satisfying the boundary conditions at the interfaces. The classical Helmholtz decom-
position expansion may be employed advantageously to express fluid-particle velocity
vector in the thermoviscous acoustic medium in terms of a compressional-wave scalar
potential and a viscous-wave vector potential as (TEMKIN [40])

u = −∇ϕ +∇×ψ. (1)

The governing equations for ϕ, ψ and the excess temperature T is then written as
(TEMKIN [40]; BELTMAN [8])

−ω2ϕ + iω
ηc2

γ
T =

(
c2

γ
− iωβ

)
∇2ϕ,

−iωT =
κ

ρCv
∇2T +

γ − 1
η

∇2ϕ,

−iωψ = ν∇2ψ,

(2)

where i =
√−1, κ is the thermal conductivity, Cv is the specific heat at constant vol-

ume, ρ is the mass density, β = 4ν/3 + µb/ρ, ν = µ/ρ is the kinematic viscosity, µ is
shear (dynamic) viscosity, µb is the bulk (expansive) viscosity, c is the adiabatic speed
of sound, η is the coefficient of thermal expansion, γ = Cp/Cv is the specific heat ratio
and Cp is the specific heat at constant pressure. In view of the fact that the incident
wave is time-harmonic, with the circular frequency ω, we shall assume harmonic time
variations throughout with the e−iωt dependence suppressed for simplicity.
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The above governing equations may be algebraically manipulated to yield Helmholtz-
type equations (HASHEMINEJAD and GEERS [16])

(∇2 + k2
c

)
ϕc = 0,

(∇2 + k2
t

)
ϕt = 0,

(∇2 + k2
s

)
ψ = 0,

(3)

where the subscripts c, t, and s denote compressional, thermal, and shear, respectively.
In addition, ϕ = ϕc +ϕt, and accurate the approximations for kc, kt and ks are given as

kc =
ω

c

[
1 + i

ων

2c2

(
4
3

+
µb

µ
+

γ − 1
Pr

)]
,

kt = (1 + i)
√

ω/2σ,

ks = (1 + i)
√

ω/2ν,

(4)

where Pr = µCp/κ is the Prandtl number and σ = κ/ρCp is the thermal diffusivity.
The geometry problem and the coordinate systems used are depicted in Fig. 1.

A cylindrical sound wave emerging from a nearby line source is normally incident on

Fig. 1. Geometry problem.
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the cylinders. Every origin Oi (i = 1, 2, 3) of the cylindrical coordinate system (ri, θi)
is placed at the center of the respective fluid cylinder and the line source as shown in
the figure. Making use of (1) through (3), while keeping in mind the symmetry prob-
lem, ψ = (0, 0, ψ), the radial and tangential velocities and the excess temperature are
determined as (HASHEMINEJAD and GEERS [16]):

ur = −∂ϕ

∂r
+

1
r

∂ψ

∂θ
,

uθ = −1
r

∂ϕ

∂θ
− ∂ψ

∂r
,

T = bcϕc + btϕt,

(5)

where

bc =
γ

iωηc2

[
ω2 − k2

c

(
c2

γ
− iωβ

)]
,

bt =
γ

iωηc2

[
ω2 − k2

t

(
c2

γ
− iωβ

)]
.

(6)

In addition, the classical relations for radial and tangential stresses, heat flux, and
acoustic pressure may be employed to yield the following potential-based expressions
(LIN and RAPTIS [22]):

σrr = −p−
(

µb − 2
3
µ

)
∇2ϕ− 2µ

(
∂2ϕ

∂r2
+

1
r2

∂ψ

∂θ
− 1

r

∂2ψ

∂r∂θ

)
,

σrθ = µ

(
−2

r

∂2ϕ

∂r∂θ
+

2
r2

∂ϕ

∂θ
+

1
r2

∂2ψ

∂θ2
+

1
r

∂ψ

∂r
− ∂2ψ

∂r2

)
,

q = −κ

(
bc

∂ϕc

∂r
+ bt

∂ϕt

∂r

)
,

(7)

where

p = −iωρϕ−
(

µb +
4
3
µ

)
∇2ϕ. (8)

2.2. Field expansions and boundary conditions

Following the standard methods in theoretical acoustics, the dynamics of the multi-
scattering problem may be expressed in terms of appropriate scalar potentials. In the sur-
rounding thermoviscous fluid medium, the possibility of outgoing waves exists, while
in the fluid cylinders only incoming waves are possible. Therefore, keeping in mind the
radiation condition, the outgoing solutions can be expressed as
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ϕ
(i)
cM (ri, θi, ω) =

∞∑
n=−∞

a(i)
n (ω)Hn(kcMri)einθi ,

ϕ
(i)
tM (ri, θi, ω) =

∞∑
n=−∞

b(i)
n (ω)Hn(ktMri)einθi ,

ψ
(i)
M (ri, θi, ω) =

∞∑
n=−∞

c(i)
n (ω) Hn(ksMri)einθi ,

(9)

with i = 1 and 2 corresponding to the first and second cylindrical coordinates, respec-
tively (Fig. 1), and the subscript M refers to the boundless thermoviscous medium,
Hn(x) = Jn(x) + iYn(x) is the cylindrical Hankel function of the first kind of order n

(ABRAMOWITZ and STEGUN [1]), and a
(i)
n (ω), b

(i)
n (ω) and c

(i)
n (ω) are unknown scat-

tering coefficients. Similarly, the solution of the Helmholtz equations for the acoustic
velocity potentials inside each fluid cylinder may be represented by

ϕ
(i)
cB(ri, θi, ω) =

∞∑
n=−∞

d(i)
n (ω) Jn(kcBri)einθi ,

ϕ
(i)
tB(ri, θi, ω) =

∞∑
n=−∞

e(i)
n (ω) Jn(ktBri)einθi ,

ψ
(i)
B (ri, θi, ω) =

∞∑
n=−∞

f (i)
n (ω) Jn(ksBri)einθi ,

(10)

in which Jn(x) is the cylindrical Bessel function of the first kind (ABRAMOWITZ and
STEGUN [1]) and the subscript B refers to the cylindrical bodies. Moreover, the velocity
potential associated with the line source is written as (SKUDRZYK [39])

φs = φ0H0(kcMr3) (11)

in which φ0 is the line source amplitude. Consequently, the total field potentials in
the presence of the cylindrical scatterers, after accounting for all multiple scattering
interactions, may initially be expressed as

φM = φs + ϕ
(i)
cM + ϕ

(i)
tM + ϕ

(j)
cM + ϕ

(j)
tM = φ0H0(kcMr3)

+
∞∑

n=−∞

[
a(i)

n (ω) Hn(kcMri) + b(i)
n (ω) Hn(ktMri)

]
einθi

+
∞∑

n=−∞

[
a(j)

n (ω) Hn(kcMrj) + b(j)
n (ω) Hn(ktMrj)

]
einθj , (12)
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ψM = ψ
(i)
M + ψ

(j)
M =

∞∑
n=−∞

c(i)
n (ω) Hn(ksMri)einθi

+
∞∑

n=−∞
c(j)
n (ω) Hn(ksMrj)einθj , (13)

where i, j = 1, 2 (i 6= j). Here we note that the last terms in the above equations, which
represent the scattered field from the j-th cylinder, are expressed in the j-th coordi-
nate system. These terms have to be transformed to the cylindrical coordinate system
centered at the i-th cylinder before imposing the boundary conditions.

The unknown scattering coefficients a
(i)
n (ω) through f

(i)
n (ω) must be determined by

imposing the suitable boundary conditions. The continuity of the normal and tangential
velocity components, normal and tangential stress components, temperature and heat
flux at the interface of each cylinder demands that (HASHEMINEJAD and GEERS [16]).

u
(i)
rM

∣∣∣
ri=ai

= u
(i)
rB

∣∣∣
ri=ai

, σ
(i)
rrM

∣∣∣
ri=ai

= σ
(i)
rrB

∣∣∣
ri=ai

, T
(i)
M

∣∣∣
ri=ai

= T
(i)
B

∣∣∣
ri=ai

,

u
(i)
θM

∣∣∣
ri=ai

= u
(i)
θB

∣∣∣
ri=ai

, σ
(i)
rθM

∣∣∣
ri=ai

= σ
(i)
rθB

∣∣∣
ri=ai

, q
(i)
M

∣∣∣
ri=ai

= q
(i)
B

∣∣∣
ri=ai

,
(14)

2.3. Wave transformations and series representations

Many radiation and scattering problems involve waves of one characteristic shape
(coordinate system) that are incident upon a boundary of some other shape (coordinate
system). There exists, however, a class of mathematical relationships called wave trans-
formations that circumvent this difficulty in many cases by allowing one to study the
fields scattered by the various bodies, all referred to a common origin. Accordingly,
to fulfil orthogonality in the current problem, we need to express the cylindrical wave
functions of the (rj , θj) coordinate system in terms of cylindrical wave functions of
the (ri, θi) coordinate system by application of the classical form of the translational
addition theorem for cylindrical coordinates (IVANOV [18]):

Hn(krj) ei nθj =
∞∑

m=−∞
Hn−m(klji)Jm(kri) ei (n−m)θji+i mθi , (15)

where lji (i, j = 1, 2, 3, i 6= j) is the distance between the centers of the j-th and i-th
coordinate systems, θji is the angle between the OjOi line and the xj axis.

At this point, we can utilize the addition theorem (15) in (11) through (13) to ob-
tain the total acoustic field potentials with respect to the coordinate system of the i-th
cylinder as
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φM (ri, θi) = φs(ri, θi) + ϕ
(i)
cM (ri, θi) + ϕ

(i)
tM (ri, θi) + ϕ

(j)
cM (ri, θi) + ϕ

(j)
tM (ri, θi)

=
∞∑

n=−∞

[
λ(i)

n Jn(kcMri) + a(i)
n (ω) Hn(kcMri) + b(i)

n (ω) Hn(ktMri)
]

ei nθi

+
∞∑

n=−∞

∞∑
m=−∞

a(j)
m (ω) Hm−n(kcM lji) Jn(kcMri) ei(m−n)θjiei nθi

+
∞∑

n=−∞

∞∑
m=−∞

b(j)
m (ω) Hm−n(ktM lji) Jn(ktMri) ei(m−n)θjiei nθi , (16)

ψM (ri, θi) = ψ
(i)
M (ri, θi) + ψ

(j)
M (ri, θi) =

∞∑
n=−∞

c(i)
n (ω) Hn(ksMri)einθi

+
∞∑

n=−∞

∞∑
m=−∞

c(j)
m (ω)Hm−n(ksM lji) Jn(ksMri) ei(m−n)θjieinθi . (17)

where i, j = 1, 2 (i 6= j) and λ
(i)
n = φ0 H−n(kcM l3i)e−i n θ3i . A subsequent application

of the expansions (9), (10), (16) and (17) in the boundary conditions (14), leads to a
linear systems of equations:

T
(1)
1 (kcMai) a(i)

n + T
(1)
1 (ktMai) b(i)

n + T
(1)
2 (ksMai) c(i)

n − T
(2)
1 (kcBai) d(i)

n

− T
(2)
1 (ktBai) e(i)

n − T
(2)
2 (ksBai) f (i)

n + T
(2)
1 (kcMai)A(j)

mn

+ T
(2)
1 (ktMai)B(j)

mn, +T
(2)
2 (ksMai)C(j)

mn = −λ(i)
n T

(2)
1 (kcMai), (18)

T
(1)
2 (kcMai) a(i)

n + T
(1)
2 (ktMai) b(i)

n − T
(1)
1 (ksMai) c(i)

n − T
(2)
2 (kcBai) d(i)

n

− T
(2)
2 (ktBai) e(i)

n + T
(2)
1 (ksBai) f (i)

n + T
(2)
2 (kcMai)A(j)

mn

+ T
(2)
2 (ktMai)B(j)

mn − T
(2)
1 (ksMai)C(j)

mn = −λ(i)
n T

(2)
2 (kcMai), (19)

T
(1)
3 (kcMai) a(i)

n + T
(1)
3 (ktMai) b(i)

n + T
(1)
4 (ksMai)c(i)

n − T
(2)
3 (kcBai) d(i)

n

− T
(2)
3 (ktBai) e(i)

n − T
(2)
4 (ksBai)f (i)

n + T
(2)
3 (kcMai) A(j)

mn

+ T
(2)
3 (ktMai) B(j)

mn + T
(2)
4 (ksMai)C(j)

mn = −λ(i)
n T

(2)
3 (kcMai), (20)

T
(1)
4 (kcMai)a(i)

n + T
(1)
4 (ktMai)b(i)

n − T
(1)
5 (ksMai)c(i)

n − T
(2)
4 (kcBai)d(i)

n

− T
(2)
4 (ktBai)e(i)

n + T
(2)
5 (ksBai)f (i)

n + T
(2)
4 (kcMai)A(j)

mn

+ T
(2)
4 (ktMai)B(j)

mn − T
(2)
5 (ksMai)C(j)

mn = −λ(i)
n T

(2)
4 (kcMai), (21)
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T
(1)
6 (kcMai)a(i)

n + T
(1)
7 (ktMai)b(i)

n − T
(2)
6 (kcBai)d(i)

n − T
(2)
7 (ktBai)e(i)

n

+ T
(2)
6 (kcMai)A(j)

mn + T
(2)
7 (ktMai)B(j)

mn = −λ(i)
n T

(2)
6 (kcMai), (22)

T
(1)
8 (kcMai)a(i)

n + T
(1)
9 (ktMai)b(i)

n − T
(2)
8 (kcBai)d(i)

n − T
(2)
9 (ktBai)e(i)

n

+ T
(2)
8 (kcMai)A(j)

mn + T
(2)
9 (ktMai)B(j)

mn = −λ(i)
n T

(2)
8 (kcMai), (23)

where

A(j)
mn(ω) =

∞∑
m=−∞

a(j)
m (ω) Hm−n(kcM lji)ei(m−n)θji ,

B(j)
mn(ω) =

∞∑
m=−∞

b(j)
m (ω) Hm−n(ktM lji)ei(m−n)θji ,

C(j)
mn(ω) =

∞∑
m=−∞

c(j)
m (ω) Hm−n(ksM lji)ei(m−n)θji ,

(24)

and
T

(l)
1 (kr) = −kZ(l)

n
′(kr), T

(l)
2 (kr) = (in/r)Z(l)

n (kr),

T
(l)
3 (kr) = (iω ρl − 2µlk

2)Z(l)
n (kr)− 2µlk

2Z(l)
n
′′(kr),

T
(l)
4 (kr) = (2µlin/r2)

[
krZ(l)

n
′(kr)− Z(l)

n (kr)
]
,

T
(l)
5 (kr) = (µl/r2)

[
−n2Z(l)

n (kr) + krZ(l)
n
′(kr)− k2r2Z(l)

n
′′(kr)

]
,

T
(l)
6 (kr) = b(l)

c Z(l)
n (kr), T

(l)
7 (kr) = b

(l)
t Z(l)

n (kr),

T
(l)
8 (kr) = −b(l)

c κlkZ(l)
n
′(kr), T

(l)
9 (kr) = −b

(l)
t κlkZ(l)

n
′(kr),

(25)

in which Z
(1)
n (kr) = Hn(kr), Z

(2)
n (kr) = Jn(kr), and the primes denote differentia-

tion with respect to the argument, while l = 1 (l = 2) refers to the parameters associated
with the surrounding ambient medium (fluid cylinders). This completes the necessary
background required for the exact acoustic analysis of the problem. Next, we consider
some numerical examples.

3. Numerical results

Realizing the crowd of parameters and the relatively intense computations involved
here, no attempt is made to exhaustively evaluate the effect of varying each of them. The
intent of the collection of data presented here is merely to illustrate the kinds of results
to be expected from some representative choices of values for these parameters. From
these data certain trends are noted and general conclusions are made about the relative
importance of specific parameters. Accordingly, we confine our attention to a particular
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model. First, to better examine the thermoviscous effects, the fluid surrounding the two
cylinders is assumed to be glycerine at atmospheric pressure and 300 Kelvin. The fluid
cylinders are supposed to be identical (a1 = a2 = a =0.001 m), positioned alongside
each other (i.e., θ12 = 0 and θ21 = π in Fig. 1), and made of olive oil, with their physical
properties as given in Table 1 (BABICK et al. [5]).

Table 1. The input parameter values used in calculations.

Parameter Glycerine Olive oil Water FC-75

µ (kg/m.s) 0.95 0.084 0.000894 0.00079

µb (kg/m.s) 0.95 0.084 0.00250 0.00079

c (m/s) 1910 1440 1497 613.77

κ (N/s.K) 0.286 0.19 0.5950 0.06398

η (K−1) 6.1× 10−4 7.2× 10−8 2.57× 10−4 1.799× 10−3

Cp (J/kg.K) 2427 2000 4179 1044

Cv (J/kg.K) 2427 2000 4138 1038

ρ (kg/m3) 1250 900 1000 1730

A FORTRAN code was constructed for treating boundary conditions and to cal-
culate the unknown scattering coefficients and the relevant acoustic field quantities
as functions of the nondimensional frequency ka = Re {kcMa}, source position
(rs(= l31), θs(= θ31)), and the center-to-center distance d(= l12 = l21) (see Fig. 1).
Accurate computations of cylindrical Bessel functions of complex arguments and their
derivatives were accomplished by utilizing the module CH12N described in the mono-
graph of ZHANG and JIN [45]. The precision of the values calculated were checked
against Maple specialized math functions “HankelH1” and “BesselJ”, and also the
printed tabulations in the handbook of ABRAMOVITZ and STEGUN [1]. Matrix inver-
sions were carried out using the subroutine ZGEFA from the portable numerical soft-
ware library LINPAK (DONGARRA et al. [12]). The computations were performed on
a Pentium IV personal computer with truncation constants of nmax = mmax = 35
to assure convergence in the high frequency range, and also in the case of closeness
of the cylinders. In addition to avoid numerical overflow/underflow problems at high
wave numbers (i.e., for large complex arguments), an extension of the range of the
floating-point numbers was pursued. This would enable us to make the computation
using a numeric precision beyond the single or double precisions ordinarily provided in
hardware. Accordingly, a very powerful multi-precision FORTRAN software package
MPFUN developed by David H. BAILEY [6] from NASA was employed to compute
mathematical functions on floating point numbers of arbitrarily high precision.

The most relevant acoustic field quantity is the scattered pressure amplitude. Using
(8) and keeping (16) in mind, the scattered pressure amplitude with respect to the first
coordinate system may be written as



254 SEYYED M. HASHEMINEJAD, M. A. ALIBAKHSHI

|pscat(r1, θ1, ω)|

=
∣∣∣∣ − iω ρ1φM (r1, θ1, ω) +

(
µb1 +

4
3
µ1

) [
k2

cMφcM (r1, θ1, ω)

+k2
tMφtM (r1, θ1, ω)

] ∣∣∣∣, (26)

where
φcM (r1, θ1, ω) = ϕ

(1)
cM (r1, θ1, ω) + ϕ

(2)
cM (r1, θ1, ω),

φtM (r1, θ1, ω) = ϕ
(1)
tM (r1, θ1, ω) + ϕ

(2)
tM (r1, θ1, ω),

φM (r1, θ1, ω) = ϕcM (r1, θ1, ω) + ϕtM (r1, θ1, ω).

(27)

The two most important source angles are θs = 0 (end-on incidence) and θs = π/2
(broadside incidence), as they help best to expose the physics of the problem. Figure 2
displays the variation of the normalized backscattered pressure magnitude at a far-field
point (|pscat(r1 = 100a, θ1 = π + θs, ω)|/ρ1c

2
1) with ka for a unit amplitude line

source (φ0 = 1) at selected source positions (rs = 2a, 5a; θs = 0, π/2) and distance
parameters (d/a = 2, 4, 10). We have also generated the backscattered amplitude curves
for two identical ideal fluid cylinders by using an independently developed FORTRAN
code. The main observations are as follows. At very low incident wave frequencies
(ka ¿ 1), all lines roughly coincide and thus both the thermoviscous and source prox-
imity effects are very insignificant regardless of the center-to-center distance of the fluid
cylinders. Thermoviscosity has a depressing effect on the backscattered pressure ampli-
tudes mainly at intermediate and high frequencies. In particular, we see a relatively rapid
decrease in the overall pressure magnitudes for the thermoviscous cylinders in compar-
ison with those of the ideal fluid cylinders as the frequency increases. Furthermore,
we generally observe a somewhat larger thermoviscous effects in the end-on incidence
(θs = 0) case in comparison with the broadside incidence (θs = π/2) situation, es-
pecially at higher frequencies. As the distance parameter (d/a) increases, the overall
pressure magnitudes appear to decrease, more rapidly in the end-on incidence (θs = 0)
situation. Also, the backscattered pressure peaks become more densely packed as the
separation grows. This behaviour is principally caused by the interference of the fields
scattered by the two cylinders. More exactly, it is associated with fact that the phase
difference between the scattering cylinders oscillates with increasing frequency as the
separation between the cylinders grows (HASHEMINEJAD and BADSAR [15]). This be-
comes clearer if we note that the oscillating nature of the phase factors Hn−m(kcMd),
Hn−m(ktMd) and Hn−m(ksMd) present in the final equations imply different arrival
times for these waves, which form an oscillation pattern in the latter terms at large ar-
guments. Also, the increasing of the line source proximity, rs, seems to have a larger
effect on the backscattered pressure magnitudes in the broadside incidence (θs = π/2)
situation, especially for small distance parameters.

To best observe the multiple scattering effects, we favourably suppose the fluid
cylinders to be made of 3M “Fluorinert” chemical FC-75 (see http://mmm.com)
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Fig. 2. Plot of the amplitude of the back-scattered form function versus nondimensional frequency for
end-on/broadside incidence upon the fluid cylinders at selected distance parameters.
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immersed in water, with their physical properties summarized in Table 1 (note the very
low values of the thermoviscous parameters). Figures 3 through 5 examine the multiple
scattering effects on the variation of the normalized backscattered pressure amplitude
with the nondimensional frequency at selected source positions (rs = 2a, 10a, 50a; θs =
0, π/2) and distance parameters (d/a = 2, 4, 10). In order to best understand these
effects, we show (in dashed lines) the backscattered pressure plots for a pair of "non-
interacting" fluid cylinders. Here, the interaction effects are wholly omitted by making
separate computations for the scattered field associated with each individual cylinder
and subsequently adding the results to obtain the modified (non-interacting) backscat-
tered pressure amplitude, i.e., we have essentially ignored all cylindrical wave trans-
formations introduced by the application of the translational addition theorem in the
entire formulation. We further display (in dotted lines) the corresponding plots of twice
the backscattered pressure amplitude for a single fluid cylinder submerged in an infi-
nite unbounded medium. A careful examination of the figures leads to the following
important observations. The broadside incidence (θs = π/2) case is studied first with
the aim of best isolating the two cylinders’ interaction effects. The difference between
the full interaction results (solid line) from twice that of a single cylinder (dotted line)
reveals the important features of this interaction. In the case of two nearly touching fluid
cylinders (d/a = 2), the solid line exhibits noticeable oscillations about the dashed line
and thus the multiple-scattering interactions between the two cylinders are significant.
Also, when the line source is positioned relatively far away from the fluid cylinders
(rs = 50a), there is a nearly zero phase difference for broadside incidence (i.e., the
backscattering echoes reach the far-field observer nearly at the same time), the backscat-
tered pressure curves associated with the non-interacting cylinders (dashed line) almost
perfectly coincide with twice that of a single cylinder (dotted line) at this separation
distance (see Fig. 5). As the separation grows to d/a = 4, the dashed and the solid lines
begin to overlap roughly at most frequencies which implies a decrease of multiple scat-
tering effects for larger separations. When the separation grows to d/a = 10, there is a
very small trace of multiple-scattering effects, since the dashed line follow very closely
the solid line in the frequency range of interest, especially for the line source being lo-
cated relatively far away (rs = 50a). This further points to the insignificant interaction
effects at broadside incidence for relatively large separations. The end-fire incidence
(θs = 0) case reveals more interesting features of the multiple-scattering interactions.
For two nearly touching cylinders (d/a = 2), the relatively large differences observed
between the solid line and the dashed line indicate the importance of multiple scatter-
ing effects for end-on incidence at small separations. When the separation parameter
is increased to d/a = 10, multiple-scattering interactions decrease drastically at low
and intermediate frequencies, as the solid line begins to more closely follow the dashed
line at these frequencies. Also, the dotted line (i.e., twice the value of form function for
a single cylinder) seems to become roughly the envelope of the peaks of the backscat-
tered pressure (solid lines), especially when the line source is located relatively far away
(rs = 50a).
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Fig. 3. Plot of the amplitude of the back-scattered form function versus nondimensional frequency for
end-on/broadside incidence upon the thermoviscous cylinders at selected source position (rs = 2a) and

distance parameters.
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Fig. 4. Plot of the amplitude of the back-scattered form function versus nondimensional frequency for
end-on/broadside incidence upon the thermoviscous cylinders at selected source position (rs = 10a) and

distance parameters.
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Fig. 5. Plot of the amplitude of the back-scattered form function versus nondimensional frequency for
end-on/broadside incidence upon the thermoviscous cylinders at selected source position (rs = 50a) and

distance parameters.
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Finally, in order to check the overall validity of the calculations, we replaced the
line source in our formulation with an incident plane wave of the general form

φinc =
∞∑

n=−∞
φ0 inJn(kcMr1) ein (θ1−θs), and computed the total scattering cross-section

(see equation 34 in the work by ROUMELIOTIS et al. [34]) versus angle of plane wave
incidence (θs) at selected radii ratios for a pair of nearly inviscid and relatively large
fluid cylinders immersed in an infinite fluid medium by setting µ → 0 in our general
FORTRAN code. The numerical results, as shown in Fig. 6, accurately reproduce the
curves displayed in Fig. 4 of ROUMELIOTIS et al. [34] paper.

Fig. 6. Total scattering cross-section versus angle of wave incidence for a pair of nearly inviscid fluid
cylinders at selected radii ratios.

4. Conclusions

This study solves the very important problem of acoustic multiple scattering in two
dimensions. It treats the interaction of a nearby acoustic line source with a pair of par-
allel viscous thermally conducting fluid cylinders submerged in a boundless lossy fluid
medium. The solution is based on the linearized coupled equations of motion for a dy-
namic description of thermoviscous fluid behaviour and the translational addition the-
orem for cylindrical wave functions. The backscattered pressure amplitudes are plotted
for end-on/broadside incidence at selected frequencies and separations. At very low in-
cident wave frequencies (ka ¿ 1), both the thermoviscous and source proximity effects
are very insignificant, regardless of the closeness of the fluid cylinders. Thermoviscos-
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ity has a remarkable depressing effect on the backscattered pressure amplitudes mainly
at intermediate and high frequencies. In particular, a relatively rapid decrease in the
overall backscattered pressure magnitudes for the thermoviscous cylinders in compar-
ison with those of the ideal fluid cylinders at these frequencies is observed, especially
in the end-on incidence situation. Also, the multiple-scattering interactions are found to
be very significant for end-on incidence upon two closely positioned fluid cylinders. In
the broadside incidence case, on the other hand, there is a very small trace of multiple-
scattering effects, especially as the separation of the cylinders increases. The presented
work demonstrates the call for consideration of multiple scattering interactions as well
as the thermoviscous loss effects in problems involving multiple fluid cylinders sus-
pended in an absorptive fluid medium. It is of practical interest in acoustic analysis
and characterization of cylindrical emulsions, periodic liquid composites, and passive
acoustic stabilization of long liquid bridges, small diffusion flames and hot cylindrical
fluid objects under microgravity conditions.
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