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This work is focused on the analysis of the influence of a non-uniformly distributed surface
excitation on sound radiation by a clamped circular plate embedded in a flat rigid baffle. It is
assumed that the vibrations and radiations are axisymmetric and time-harmonic, moreover,
the losses of energy into the plate’s material are neglected. The influence of the surrounding
medium on the vibration of the plate is not taken into account. The distribution of the exciting
pressure is assumed in the form of a function whose shape can be modeled by fitting suitable
values of parameters. The approximation of the distribution of the forcing pressure by the use
of an analytical function makes it possible to consider practical cases. Integral formulae for
describimg the active power have been obtained. The solution of the equation of motion is
achieved by employing an expansion into series of eigenfunctions. An analysis of the influ-
ence of the parameters characterizing the surface excitation on the radiation power has also
been presented. The low and high frequency elementary form asymptotics can be obtained by
using the reached herein formulae and the known approximated expressions.

Key words: acoustic radiation power, circular plate vibration, external non-uniform excita-
tion.

Notations

a radius of the plate,
B bending stiffness of the plate,
c propagation velocity of the wave in a fluid medium,

F (r, t) function describing the distribution of the exciting external pressure,
h thickness of the plate,

In n-th order modified Bessel function,
Jn n-th order Bessel function,
k structural wavenumber,

k0 wave number,
p(r) acoustic pressure,

P total sound power,
Pa active power,
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r radial variable of a point on the plate surface in polar coordinates,
S area of the plate Sn – n-th order Struve function,
t time,

v(r) vibration velocity of the plate’s points,
E Young’s modulus,

η(r, t) function describing the transverse displacements of the plate’s points,
ν Poisson’s ratio,
ρ density of the plate’s material,

ρ0 rest density of the fluid medium,
ω frequency.

1. Introduction

The vibrating surfaces being constructional elements are likely to produce some
harmful noise. The plates or the membranes excited to vibration by an external pressure
produce sound waves which may be considered as an undesirable effect. The sound
radiation by the plates is essentially dependent on the excitation and boundary config-
urations. In order to reduce the harmful noise, it is necessary to know the dependence
of the magnitudes discribing the radiation on the parameters determining the external
excitation, as well as the boundary configurations.

In paper [1], the problem of sound radiation by a circular plate excited by sur-
face pressure distributed non-uniformly over the surface was signalled. W. RDZANEK,
using the Kirchhoff–Love linear model of a plate and the Cauchy’s theorem, obtained
an asymptotic expression for the sound power of the circular plate excited to vibration
by means of external pressure, uniformly distributed on the circle’s surface [2]. Mak-
ing use of the Cauchy’s theorem, the mutual impedance of two circular plates of high
frequencies was obtained by P. WITKOWSKI [3].

However, an analysis of the sound power radiated by a circular plate excited to vibra-
tion by a non-uniformly distributed external surface pressure has not yet been presented
in the literature.

The main aim of this study is to analyse the influence of the shape of the external
excitation on the sound power. The distribution of the excited pressure, known from
experiment, can be approximated by means of an analytical function. The magnitudes
describing the sound radiation obtained in this paper can be used in practical cases.

2. Assumptions of the analysis

A circular plate whose radius equals a is embedded in a flat, rigid baffle and is
surrounded by a gaseous lossless medium. There are no energy losses in the plate’s
material.

Assuming that the density of the medium is small in comparison with that of the
plate’s material, the influence of the medium on the plate’s radiation can be neglected.
Moreover, it is assumed that the vibrations are axisymmetric and time-harmonic. The
transverse displacement of the plate’s points in accordance with the above presented
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assumptions can be formulated as η(r, t) = η(r)e−iωt, where ω and η(r) are the fre-
quency, and the function describing the dependence the amplitude of a displacement on
the radial variable, respectively.

The considerations are based on the Kirchhoff–Love theory of a perfectly elastic
plate what implies that the transverse displacement and thickness of the plate are very
small in comparison with its radius. The plate is forced to vibrations by means of a
pressure distributed non-uniformly over the whole surface. This pressure is time – har-
monic. The external excitation is axisymmetric and can be presented in the following
mathematical form: F (r, t) = F (r)e−iωt. Here F (r) denotes the distribution of the
pressure amplitude on the plate’s surface.

The equation of motion in the case of the source under consideration can be pre-
sented in the following form

(
k−4∇4 − 1

)
η(r) =

F (r)
ρhω2

, (1)

where ρ and h are the density of the plate’s material and its thickness, respectively. In
Eq. (1), k4 = ω2ρh/B is the structural wavenumber, B = Eh3/

[
12(1− ν2)

]
denotes

the plate’s bending stiffness, ν is the Poisson’s ratio, E is the Young’s modulus [4].
A solution of the equation of motion can be reached by the expansion into a series

of eigenfunctions which leads to the form of an infinite sum

η(r) =
∞∑

n=1

cnηn(r), (2)

where

ηn(r) = J0(knr) +
J1(γn)
I1(γn)

I0(knr), (3)

Jn is the Bessel’s function of n-th order and In is the Bessel’s modified function
of n-th order and the particular values of γn are solutions of the following equation
J0(γn)I1(γn)+J1(γn)I0(γn) = 0. Within the limits r ∈ (0, a). The functions ηn(r)r ∈
(0, a) are orthogonal and satisfy the following differential homogeneous equation(
k−4

n ∇4 − 1
)
ηn(r) = 0, where kn = γn/a [1, 7, 8]. Moreover, they satisfy the bound-

ary conditions associated with the clamped edge.
Now the constants in the formula (2) can be expressed in the following integral form

cn =
γ4

(γ4
n − γ4)J2

0 (γn)
1

a2ρhω2

a∫

0

F (r)ηn(r)r dr, (4)

where γ = ka.
The function F (r) is assumed in the form of a polynomial whose powers are even

numbers to make possible an exact computation of the integrals in formula (4). More-
over, it is assumed that: F (0) = F0, F (a) = F1, where F0, F1 denote the values of the
pressure amplitude in the plate’s center and at its edge, respectively.



312 K. SZEMELA, W. P. RDZANEK Jr., W. RDZANEK

The function for the description of the distribution of the exciting pressure can be
written finally in the following form

F (r) = F0

(
1 + (p− s− 1)

(r

a

)2
+ s

(r

a

)4
)

, (5)

where p = F1/F0 and the parameter s in Eq. (5) is introduced to modify the shape of
the surface excitation.

There are a few shapes of excitation for different values of p and s. They are pre-
sented in Fig. 1.

Fig. 1. Left panel: the distribution of the external excited pressure when p = 0.5 for 1: s = −0.4,
2 : s = 0, 3: s = 0.2, 4: s = 0.6. Right panel: the distribution of the external excited pressure when s = 0.3

for 1: p = 0, 2: p = 0.25, 3: p = 0.5, 4: p = 0.75.

Assuming that in Eq. (5) p = 1 and s = 0, a special case of excitation can be
obtained, namely an uniformly pressure distribution on the whole surface.

3. The solution of the equation of motion

The following boundary conditions associated with the clamped edge have to be
satisfied by the function which is a solution to the equation of motion: η(a) = 0,
dη(r)/dr|r=a = 0.

The expansion into series of eigenfunctions leads to a solution of the equation of
motion in the form of the infinite sum (2), in which the coefficients cn are determined
by formula (4). Moreover, this solution satisfies the boundary conditions required.
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Taking into account formula (5) describing the shape of the surface excitation, the
desirable coefficients can be presented as

cn =
2W0γ

4
(
pJ1(γn)I1(γn)γ2

n + γn(1− p− s)D2(γn) + 4sD3(γn)
)

(γ4
n − γ4) γ3

nI1(γn)J2
0 (γn)

, (6)

where Dk(γn) = Jk(γn)I1(γn) + J1(γn)Ik(γn), k = 2, 3 and W0 = F0/ρhω2.
The infinite sum (2) together with formulae (6) and (3), where the latter describes

the adapted system of the orthogonal functions, present the solution of the equation of
motion for the plate under consideration.

4. The integral formulae for the active sound power

The total sound power is defined as

P =
1
2

∫

S

p(r)v∗(r) dS, (7)

where

p(r) =
−ik0cρ0

2π

∫

S

v(r0)
exp(ik0|r− r0|)

|r− r0| dS, (8)

is the sound pressure, v and v∗ are the vibration velocity of the plate’s points and its
conjugated value, respectively, |r− r0| is the distance between points of the source
and that in the soundfield, S is the plate’s area, ρ0, c denote the rest density of the
fluid medium and the propagation velocity, respectively, k0 = 2π/λ is the acoustic
wavenumber withλ denoting the length of the wave in the fluid medium [9].

The active power can be expressed by the Hankel representation as

Pa = πρ0ck
2
0

1∫

0

W (x)W ∗(x)x dx√
1− x2

, (9)

where

W (x) = iω

a∫

0

η(r)J0(k0rx)r dr (10)

is the function describing the radiation directivity of the source in the axisymmetric
case.

In the light of formulae (3) and (6), the function (10) can be presented as a following
sum

W (x) =
4iωW0a

2γ4

β3

∞∑

n=1

enwn(x), (11)
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in which β = k0a,

en =
J0(γn)γ2

n

2W0γ4
cn, (12)

wn(x) =
αnδnJ0(βx)− xJ1(βx)

δ4
n − x4

. (13)

In Eq. (13), the following notations are introduced: αn = J1(γn)/J0(γn) and
δn = γn/β.

Using the expression (11), the active sound power can be formulated as

Pa = P0
16γ8

β4

∞∑

n=1

∞∑

m=1

enemθnm, (14)

where P0 = πρ0cω
2a2W 2

0 should be regarded as a unit of the acoustic power and

θnm =

1∫

0

wn(x)wm(x)x dx√
1− x2

. (15)

Neglecting the acoustic damping and the energy losses into plate’s material, the en

coefficients have real values. In this case the total active power can be expressed by the
modal self and mutual active power only.

In order to use formula (14) for the computations of the active power for some
practical cases, the sums have to be reduced to a finite numbers of terms. The number
of terms depends on the required accuracy and on the value of β.

5. Approximation formulae

Basing on the integral formula (14), the asymptotics for the active radiation power
of the source under consideration can be obtained. Since the approximated expressions
for the integrals (15) valid for both the high and low frequencies are known, formula
(14) can be convenient for obtaining the asymptotics for the active radiation power.

For β ≥ 10, δn < 1 and n = m the asymptotics for the integrals (15) can be written
as [1]

θnm =
1

4δ4
n

{
1
2

1 + α2
n√

1− δ2
n

+
1
2

1− α2
n√

1 + δ2
n

+
2δ4

n

[
(1− α2

nδ2
n) cos φ + 2αnδn sinφ

]

β3/2
√

π(1− δ4
n)2

}
, (16)

where φ = 2β + π/4.
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In the case of n 6= m the asymptotics can be expressed in the following form: [10]

θnm =
1

4δ2
nδ2

m

{
αnδn − αmδm

β(δ4
n − δ4

m)

(
δ2
n

(
1√

1− δ2
m

− 1√
1 + δ2

m

)

+ δ2
m

(
1√

1− δ2
n

− 1√
1 + δ2

n

))

+
2δ2

nδ2
m[(1− αnαmδnδm) cos φ + (αnδn + αmδm) sin φ]√

πβ3/2(1− δ4
n)(1− δ4

m)

}
. (17)

An approximated expression for the active sound power valid for β ≥ 10 can be
found by reducing the number of terms in the sums in Eq. (14) and taking into account
the relations (16) and (17). Moreover, for each term in the sums, the following inequality
δn < 1 must be satisfied [1]. The expression for describing the sound power for high
frequencies formulated in this paper is very useful for some numerical calculations.

When β < γn, γm, the integrals θnm can be replaced by their asymptotics given in
paper [12].

Having reduced the sums in Eq. (14) to a finite number of terms and making use
of the low frequencies asymptotic for integrals (15), the active power valid for low
frequencies will be formulated.

6. Discussions and conclusions

The formula for describing the active power radiated by a circular plate excited to
vibrations by means of non-uniform surface pressure has been obtained. The distribution
of the external pressure given analytically by the function (5) can be modified by means
of the parameters p and s.

By choosing some suitable values for the p and s parameters, it is possible to approx-
imate the shape of excitation known from experiment by means of the function F (r).
In this way, the formulae for the description of the active sound power for a number of
practical cases have been obtained. By employing the integral expression (14) reduced
to a finite number of terms in the sums, the asymptotic expressions for the active radia-
tion power can be formulated. The dependences of the active power on the parameter β

have been plotted in Fig. 2 for some values of p and s. Some of the most simple cases of
the surface excitation have been chosen for a numerical analysis, namely the excitation
spreading from the center of plate to its edge (see Figs. 1).

Figures 2 show that for some of the determined values of β parameter, the active
power tends to infinte values. This results from neglecting the acoustic damping and
energy losses in the plate’s material. Apart from that, the assumed model of the plate
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Fig. 2. The active sound power as a function of the parameter β. It has been assumed that: the plate
radius and plate thickness are equal to 0.25 m and 1 · 10−3 m, respectively, the Young’s modulus, Poisson
ratio and density of the plate material amount to 2.2 · 1011 N/m2, 0.3, 7860 kg/m3, respectively, and the
propagation velocity equals 343 m/s. Moreover, for the left panel p = 0.5 has been taken and for the right

one s = 0.3.

does not enable taking into account the nonlinear effects which are very intensive in the
case of nearby resonance frequencies.

When β ≥ 10, we can insert expressions (16) and (17) into the integrals θnm in
formula (14). In this way, it is possible to obtain a formula for the active power in an
elementary form valid for high frequencies. The latter is very useful for some numerical
calculations.The approximation formula for the active power valid for low frequencies
can be obtained by employing the expressions for the integrals θnm from paper [12] and
reducing the sums in expression (14) to a small number of terms.
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