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General formulae on small-signal sound velocity and parameter of nonlinearity B/A of a
two-component relaxing mixture in the two limiting cases of very low and very high periods of
sound (when the thermal equilibrium between components has enough time to establish or not)
are derived. Sound parameters are expressed in the terms of partial derivatives of individual
equations of state. For the two cases: the mixture of van der Waals gases and the suspension
consisting of the ideal gas and tiny solid or liquid inclusions, sound velocity and parameter
of nonlinearity B/A are evaluated as functions of mass concentration of one of the parts. The
first example concerns to the mixtures consisting of oxygen and helium, and the second one
to the suspension of air and graphite and the water fog. General conclusions about acoustic
features of the two-component mixtures under very high and low frequencies are drawn out.

Keywords: relaxation processes, irreversible thermodynamics, parameter of nonlinearity.

1. Introduction

Relaxation processes consider a finite temporal delay of deviation of microscopic
system from thermodynamic equilibrium, or of returning to it. During sound propa-
gation, a part of energy goes into heat. The beginning of understanding of relaxation
processes as transfer of energy from the external into internal degrees of freedom, and
vice versa, comes to the works by KNESER [1]. Sound propagation in relaxing media is
not only dissipative, but disperse as well [2–6], because the behavior of a given inter-
nal process depends on ratio of its relaxation time and period of acoustic wave. Links
of disperse and damping properties of relaxing medium are expressed by the famous
Kramers–Kronig relations. The relaxation theory of gases is most developed [3]. For
gases, dependence of sound velocity on frequency may be easily illustrated. If sound is
of low frequency and period much greater that the relaxation time: T � τ , equilibrium
has enough time to follow the sound propagation, and the molar heat capacity under
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constant volume is a sum of internal and oscillatory parts, cv, int + cv, osc. The corre-
spondent infinitely small-signal sound velocity equals:

c0 =

√
p0

ρ0

(
1 +

R

cv, int + cv, osc

)
, (1)

where p0, ρ0 are unperturbed pressure and density of the medium, R = 8.314 J/mol/K
is the universal gas constant. For the high frequencies T � τ , cv, int → 0, and adiabatic
sound velocity equals:

c∞ =

√
p0

ρ0

(
1 +

R

cv, osc

)
> c0. (2)

There are other types of relaxation processes in gases, such as translational relaxation
while molecular velocities tend to Maxwell distribution (very fast process), chemical as-
sociations and dissociations [2], phase transitions and other ones. In the air, relaxation
process takes place mainly by means of vibration of oxygen and nitrogen molecules, and
in seawater by means of dissociation of boric acid and magnesium sulfate molecules [6].
In liquids, a structural relaxation may take place [3]. The majority of relaxation pro-
cesses associate with bulk viscosity depending on frequency.

The most exciting problem of non-equilibrium thermodynamics is “acoustic spec-
troscopy”. Unfortunately, distinguishing of two or more relaxation processes and they
characteristic times, meets many difficulties. Nevertheless, about 1 percent of injections
may be experimentally founded by observations of sound velocity and its attenuation.
Acoustic measurements sometimes are an only equipment to conclude about relaxation
processes. They are fruitful in research of liquids with very small time of structural
rebuilding, τ ∼ 10−11 seconds [3].

Author develops the non-equilibrium thermodynamics to evaluate parameter of non-
linearity of mixture B/A as a function of individual equations of state and mass con-
centrations of components. Evaluations in the two limiting cases of sound are provided,
while frequency tends to zero (AT, 0 limit), and under the very high frequency (AA ,∞
limit). So that, the thermal relaxation between two parts is considered, though the indi-
vidual relaxations also may be taken into account in the frames of the discussion below.
It is known, that parameter B/A is expressed in terms of the second partial derivatives
of thermodynamic functions and is more sensitive to the curvature of thermodynamic
functions than linear sound velocity [7]. So that, theoretical predictions of B/A may
provide more trustable than that of sound velocity information about concentration of
every component in the mixture.

For a pure relaxing medium, sound velocity and attenuation depend on a circular
frequency in the following manner [3]:

c(ω) = c0

(
1 +

m

2

ω2τ2

1 + ω2τ2

)
,

(3)

α(ω) =
m

2c0τ

ω2τ2

1 + ω2τ2
,
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where m = (c2
∞

− c20)/c
2
0 � 1. These formulae give maximal possible value of attenu-

ation:

αλmax = αλ(ωτ ≈ 1 +m/4) ≈ πm

2
. (4)

Predictions of AA and AT sound velocities in a mixture give maximum value of attenua-
tion in mixture which is not obviously a simple sum of attenuations in every component.
In the mixtures, the acoustic properties depend on mass concentrations of the parts. We
can conclude about maximal attenuation in mixtures knowing the correspondent value
of m in the mixture as a whole, which depends on mass concentration of parts and
equilibrium thermodynamic state of the mixture.

2. Infinitely small-signal sound velocity and parameter
of nonlinearity B/A in the relaxing mixtures

2.1. Adiabatic-adiabatic processes

When processes occur so fast that heat transfer between components is completely
absent, every component individually and the mixture as a whole behave adiabatically.
A compressibility of such mixture is called adiabatic-adiabatic (AA, ∞) compressibil-
ity. It may be easily derived knowing the compressibility of every component. The adia-
batic compressibility of every homogeneous component β∞ and its linear sound veloc-
ity c∞ may be determined in the following manner:

β∞ = −
(
∂V

∂p

)

s

= −Cv

Cp

(
∂V

∂p

)

T

= −
(
∂V

∂p

)

T

− T

Cp

(
∂V

∂T

)2

p

,

(5)

c∞ = V β−1/2,

where V = 1/ρ is a specific volume, T is temperature, and Cv, Cp are heat capacity
under constant volume and pressure per unit mass, correspondingly. Specific volume of
a substance consisting of two homogeneous parts marked by indices 1 and 2 is:

V = (1 − x)V1 + xV2 , (6)

where x is a constant (over the whole volume) mass concentration of the second com-
ponent in the mixture. AA compressibility of the mixture and sound velocity therefore
equal:

β∞ = (1 − x)β1,∞ + xβ2,∞,
(7)

c∞ = V (β∞)−1/2.
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Equivalently, c∞ is a function of ρ1, ρ2 and γ1 =

(
Cp

Cv

)

1

, γ2 =

(
Cp

Cv

)

2

:

c∞ =
1

ρ

(
1 − x

c21ρ
2
1

+
x

c22ρ
2
2

)
−1/2

=

(
1 − x

ρ1
+

x

ρ2

)(
−1 − x

γ1

(
∂V1

∂p

)

T

− x

γ2

(
∂V2

∂p

)

T

)
−1/2

. (8)

Coefficient of nonlinearity ε may be expressed in terms of the second derivative of
specific volume:

ε∞ = 1 +

(
B

2A

)

∞

=
1

2
ρ3c4

∞

(
∂2V

∂p2

)

s,∞

. (9)

The second partial derivative in the right-hand side of Eq. (9) should be evaluated in the
proper way, like it will be proceeded in the next subsection. For the most cases, partial
parameters of nonlinearity (B/A)∞ are known. Taking into account Eqs. (7), (8), we
conclude that the coefficient of nonlinearity depends on partial quantities as follows:

ε∞ =

(
1 − x

ρ1
+

x

ρ2

)(
1 − x

(c1,∞ρ1)2
+

x

(c2,∞ρ2)2

)
−2

×
(

1 − x

ρ3
1c

4
1,∞

ε1,∞ +
x

ρ3
2c

4
2,∞

ε2,∞

)
. (10)

Formulae (8)–(10) may be easily extrapolated for any number of components in a mix-
ture.

2.2. Adiabatic-isothermal processes

The another important type of processes in a mixture are so slow while expand-
ing and compressing, that heat exchange between components follows these processes.
Therefore, all components have equal temperature, and the parts of the mixture are in
the thermal equilibrium, in contrast to the adiabatic-adiabatic processes considered in
the previous subsection. The system is closed, no heat exchange with surrounding oc-
curs, so that the whole mixture behaves adiabatically. The processes of this kind are
called adiabatic-isothermal (AT, 0) processes. AT processes take place under frequen-
cies so small that there is enough time for establishing of thermal equilibrium between
components. Specific volume of the mixture is a function of p and T , in contrast to the
adiabatic-adiabatic processes, where it is a function of p and entropy s. In the role of
the starting point for the further evaluations, the formula (5) for partial compressibility
and sound velocity may be used. Taking into account (6) and the equality below:

Cp = (1 − x)Cp,1 + xCp,2, (11)
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adiabatic-thermal compressibility takes the form:

β0 = −(1 − x)

(
∂V1

∂p

)

T

− x

(
∂V2

∂p

)

T

− T

(1 − x)Cp,1 + xCp,2

[
(1 − x)

(
∂V1

∂T

)

p

+ x

(
∂V2

∂T

)

p

]2

. (12)

Adiabatic-isothermal sound velocity equals:

c0 =

(
1 − x

ρ1
+

x

ρ2

)
β
−1/2
0 . (13)

Going to evaluating of coefficient of nonlinearity, one should also take into account that
V is now a function of p and T : (

∂V

∂p

)

s

= f(p, T ). (14)

For a homogeneous substance, it follows from (14):
(
∂2V

∂p2

)

s

=

(
∂f

∂p

)

T

+

(
∂f

∂T

)

p

(
∂T

∂p

)

s

, (15)

where (
∂f

∂p

)

T

=

(
∂2V

∂p2

)

T

+
2T

Cp

(
∂V

∂T

)

p

∂2V

∂p∂T
− T

C2
p

∂Cp

∂p

(
∂V

∂T

)2

p

,

(
∂f

∂T

)

p

=
∂2V

∂p∂T
+

1

Cp

[(
∂V

∂T

)2

p

+ 2T

(
∂V

∂T

)

p

(
∂2V

∂T 2

)

p

]
(16)

− T

C2
p

∂Cp

∂T

(
∂V

∂T

)2

p

.

Using the thermodynamic equality(
∂T

∂p

)

s

=
T

Cp

(
∂V

∂T

)

p

, (17)

Equations (15), (16) for a homogeneous medium give finally:
(
∂2V

∂p2

)

s

=

(
∂2V

∂p2

)

T

+
3T

Cp

(
∂V

∂T

)

p

(
∂2V

∂p∂T

)

+
T

C2
p

(
∂V

∂T

)2

p

[(
∂V

∂T

)

p

+ 2T

(
∂2V

∂T 2

)

p

− ∂Cp

∂p
− T

Cp

∂Cp

∂T

(
∂V

∂T

)

p

]
. (18)

Going to the two-component mixture, we account for Eqs. (6), (11), (18) and, impor-
tantly, that the mixture is thermally uniform. As a result, one gets the expressions:

ε0 = 1 +

(
B

2A

)

0

=
1

2
ρ3c40

(
∂2V

∂p2

)

s,0

,
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(
∂2V

∂p2

)

s,0

= (1 − x)

(
∂2V1

∂p2

)

T

+ x

(
∂2V2

∂p2

)

T

+
3T

(1 − x)Cp,1 + xCp,2

[
(1 − x)

(
∂V1

∂T

)

p

+ x

(
∂V2

∂T

)

p

]

×
[
(1 − x)

(
∂2V1

∂p∂T

)
+ x

(
∂2V2

∂p∂T

)]

+
T

((1 − x)Cp,1 + xCp,2)
2

[
(1 − x)

(
∂V1

∂T

)

p

+ x

(
∂V2

∂T

)

p

]2

×
{

(1 − x)

(
∂V1

∂T

)

p

+ x

(
∂V2

∂T

)

p

+ 2T (1 − x)

(
∂2V1

∂T 2

)

p

+2Tx

(
∂2V2

∂T 2

)

p

− ∂((1 − x)Cp,1 + xCp,2)

∂p
− T

(1 − x)Cp,1 + xCp,2

× ∂((1 − x)Cp,1 + xCp,2)

∂T

(
(1 − x)

(
∂V1

∂T

)

p

+ x

(
∂V2

∂T

)

p

)}
. (19)

3. Examples of evaluation of sound velocity and parameter of nonlinearity

3.1. Two van der Waals gases

The linear sound velocity as well as parameter of nonlinearity for two and more van
der Waals gases behaving adiabatically (AA) may be found in the papers by DENISOV
[8, 9]. The general conclusions are that both sound velocity and parameter of nonlinear-
ity tends to that in the pure component while mass concentration of the other component
tends to zero. In contrast to the case of ideal gases, evaluations should take into account
the equation of state for the van der Waals gas:(

p+
a

µ2V 2

)
(µV − b) = RT, (20)

where µ is the molar mass. (The case when the specific excess pressure caused by
particles interaction tends to zero, a → 0, as well as decrease in volume accounting
for molecular sizes, b → 0, corresponds to the ideal gas.) The heat capacity under
constant pressure is the same for ideal and van der Waals gases, but the specific volume
and heat capacity under constant pressure differ in the leading order from that of ideal
gas:

VvdW =
RT

µp
+
b

µ
− a

µRT
= Vid +

b

µ
− a

µRT
,

Cv,vdW = Cv,id, Cp,vdW = Cv,id +
R

µ
+

2pa

µRT 2
= Cp,id +

2pa

µRT 2
,

(21)
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as well as γ = Cp/Cv which influences on the final values of c∞ and B/A∞. The heat
capacity under constant pressure is now a function of temperature and pressure which
should be taken into account while evaluating of B/A in accordance to Eq. (19).

General formulae for the two van der Waals gases are too long to be presented in
the text. For example, the acoustic parameters for mixture of comparatively heavy and
light gases, oxygen (1) and helium (2), are evaluated. Data for the both gases under the
normal conditions are taken from [10]: µ1 = 32·10−3 kg/mol, a1 = 0.1378 m6Pa/mol2,
b1 = 3.183 · 10−5 m3/mol, µ2 = 4.003 · 10−3 kg/mol, a2 = 0.3457 m6Pa/mol2,
b2 = 2.37·10−5 m3/mol. As it was expected, the AA sound velocity is somewhat greater
than AT velocity except of the pure phase, x = 0 or x = 1. Nonlinear distortions in the
AA mixture are stronger as well comparatively to the AT mixture.

a) b)
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Fig. 1. a) AA and AT sound velocities as functions of mass concentration x of helium in the mixture
consisting of helium and oxygen, almost undistinguishable; b) AA and AT parameters of nonlinearity
B/A as functions of mass concentration of helium in the mixture helium-oxygen. Both series relate to

p0 = 101325 Pa, T0 = 293 K.

It was already mensioned in the Introduction, that the parameter of nonlinearity is
highly sensible to the curvature of state equation, while the van der Waals equation of
state is itself approximate and may lead to an error. So that curves of the parameter of
nonlinearity are rather qualitative. Remarks on the role of equation of state in estima-
tions of the sound velocity and nonlinear parameter may be found in the paper by the
author [7].

3.2. Mixtures consisting of ideal gas and tiny inclusions:
air-graphite and air-water suspensions

The basic formulae on small-signal sound velocity and parameter of nonlinearity
B/A in the both limiting cases in the Sec. 2, are written on in terms of quantities fol-
lowing from both equations of state and include partial second order derivatives of the
individual specific volumes with respect to pressure and temperature.

A particular important case of mixtures are those consisting of gas and small tiny in-
clusions, solid or liquid. A mixture as a whole is further considered as the homogeneous
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continuum. Let mark a gas fraction by index “1”, and incompressible inclusions (com-
paratively to the gas) by index “2”. Relative incompressibility of the second fraction
yields simplifying equalities:

(
∂V2

∂p

)

T

=

(
∂V2

∂T

)

p

=

(
∂2V2

∂p2

)

T

=

(
∂2V2

∂T 2

)

p

=
∂2V2

∂p∂T
= 0. (22)

As usual, V2 � V1, so that V ≈ (1− x)V1. That makes AA and AT sound velocity and
coefficient of nonlinearity remarkably simpler:

c∞ = V1

(
− 1

γ1(1 − x)

(
∂V1

∂p

)

T

)
−1/2

,

ε∞ = ε1,

c0 = V1

(
− 1

(1 − x)

(
∂V1

∂p

)

T

− T

(1 − x)Cp,1 + xCp,2

(
∂V1

∂T

)2

p

)
−1/2

,

ε0 =
c40

2(1 − x)3V 3
1

(
∂2V

∂p2

)

s,0

, (23)

(
∂2V

∂p2

)

s,0

= (1 − x)

(
∂2V1

∂p2

)

T

+
3T (1 − x)2

(1 − x)Cp,1 + xCp,2

(
∂V1

∂T

)

p

(
∂2V1

∂p∂T

)

+
T (1 − x)3

((1 − x)Cp,1 + xCp,2)
2

(
∂V1

∂T

)2

p

×
{(

∂V1

∂T

)

p

+ 2T

(
∂2V1

∂T 2

)

p

− ∂Cp,1

∂p

− T

(1 − x)Cp,1 + xCp,2

(
∂(1 − x)Cp,1 + xCp,2

∂T

)(
∂V1

∂T

)

p

}
.

Note that incompressibility of the second phase means that c0,2 = c∞,2 = ∞. That
is obviously does not agree with experimental data. Sound velocity may be set infinite
only comparatively to the sound velocity in gas.

Let consider a mixture including an ideal gas with constant heat capacity Cp,1. De-
pendence of Cp,2 on pressure is known to be weak for solids and liquids. An ideal gas
obeys the equation of state as follows:

pV =
RT

µ
, (24)

where R is the universal gas constant and µ a molar mass of gas. The heat capacity Cp,1

and correspondent partial derivatives for ideal gas take the form:

Cp,1 =
γR

(γ − 1)µ1
=

R

2µ1
(f + 2), (25)
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(
∂V1

∂T

)

p

=
R

µ1p
,

(
∂2V1

∂T 2

)

p

= 0,

(
∂V1

∂p

)

T

= − RT

µ1p2
,

(
∂2V1

∂p2

)

T

=
2RT

µ1p3
,

∂2V1

∂T∂p
= − R

µ1p2
,

where f denotes a number of freedom of a molecule. Inserted in the basic formulae
(23), these equalities considerably simplify their final form.

For example, let evaluate sound parameters for the mixture consisting of air and
graphite 6C, and for the mixture consisting of air and water. Under temperature T =
293 K and pressure p = 101325 MPa, graphite has density ρ2 = 2 · 103 kg/m3, its heat
capacity is Cp,2 = 6.3 J/kg/K, and its temperature gradient in this point is ∂Cp,2/∂T =
1.08 J/kg/K2 [11]. Water quantities under the same conditions are as follows: ρ2 =
103 kg/m3, Cp,2 = 4182 J/kg/K, ∂Cp,2/∂T = −0.34 J/kg/K2 [12]. The molar mass
of air is µ1 = 28.96 · 10−3 kg/mol, γ1 = 1.4, so that its computed density and heat
capacity equals ρ1 = 1.19 kg/m3, Cp,1 = 1004.8 J/kg/K.

Research of sound in solids needs considering not only quasi-longitudinal mode, but
quasi-transversal ones (slow and fast) as well. The error caused by limit of incompress-
ible solid grows with mass concentration of solid particles in the mixture. As for the
mixture including water, the effects connected with finite drop dimension would lead
to strong dispersion. The conclusion is that for large mass concentrations of graphite or
water, x, results are not trustable. There is one more reason to conclude that the mixture
is not longer suspension for the large x.

AA and AT infinitely small-signal sound velocities differ very weakly for graphite
over all the domain x, but AA and AT parameters of nonlinearity B/A differ essentially.
(B/A)∞ approximately equals to that in the pure air 0.4 because of equality V2 � V1. It
equals at x = 0 to (B/A)0, since in the absence of the second phase, sound propagates
over the pure air.

a) b)
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Fig. 2. a) AA (dashing) and AT (solid) sound velocity as function of mass concentration x of graphite or
water in the mixture. AA sound velocity in the both mixtures is indistinguishable from AT velocity in the
air-graphite mixture; b) AA (dashing) and AT (solid, bold: graphite, thin: water) parameter of nonlinearity
B/A as function on mass concentration of graphite or water in the mixture. Curves are trustable for the

small concentrations x. Both series relate to p0 = 101325 Pa, T0 = 293 K.
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For the air-water mixture, AA and AT sound velocities differ essentially. The reason
is in the large heat capacity of water compared to that of graphite and in its smaller
density. As it is expected, AT parameters of nonlinearityB/A considerably deviate from
AA quantities. AA processes provide larger nonlinearity. The rough estimations of the
sound velocity and parameter of nonlinearity in the air-water and air-graphite mixtures
prove that measurements of parameter of nonlinearity rather than sound velocity may
be helpful in determination of mass concentration of inclusions.

4. Conclusions

It should be pointed out, that the theory of this research applies in the previous
sections, among mixtures of the van der Waals gases, to the air-bearing suspensions in-
cluding tiny particles of solid (graphite) or liquid (water), that are distributed uniformly
over all the mixture volume (x = const). We do not investigate here effects connected
with finite volume of inclusions, or inhomogeneous mass concentration. In the reality,
other important physical phenomena being out of interest of the present research, may
take place. There are, among other: phase transfer (before water and its vapor), effects
of surface tension, sound dispersion caused by finite volume of inclusions, effects of
gravity force, which makes a mixture disperse and inhomogeneous. In many cases, a
mixture could not be treated as a homogeneous continuity.

In spite of the simplifying conditions, the evaluations of sound velocity and param-
eter of nonlinearity reveal the possibility of determination of mass concentration of one
of the parts. Especially it concerns to predictions basing on the parameter of nonlinear-
ity, since it is more sensitive to variations of concentration of inclusions. Expressions
for low-frequency (AT) and high-frequency (AA) sound velocity and the parameter of
nonlinearity (Eqs. (8), (10), (13), (19)) are exact, the two last being novel. They con-
sider compressibility of every part and dependence of heat capacity on pressure and
temperature. The difficulty is in establishing of correspondent experimental data for all
components of a concrete suspension. Unfortunately, there are absent data about values
of ∂2V/∂p2 and other second derivatives participating in Eq. (19) for the majority of
substances. The necessary quantities may be extracted from approximate equations of
state like van der Waals equation like it was proceeded in the Sec. 3.1. Analysis reveals
that AA processes in the mixture are characterized by the larger both sound speed and
nonlinearity comparatively to the AT processes.
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