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The aim of this work is to explore and analyze the influence of the transducer bandwidth on
the compressed echoes resulted from the Golay complementary codes transmission. For that
reason, a computer simulation and experimental verification were performed that reflected
the influence of the transducer bandwidth on the distortion of a signal. This study helps to
elucidate why the echoes ringing is present for narrow bandwidth transducers. As known, the
shape and symmetry of the pulse waveform and its interaction with the transducer bandwidth
and its tuning circuitry have a profound effect on the pulse echo performance achievable from
a medical scanning probe.

The computer simulation was performed using the Matlab R© software for different frac-
tional transducer bandwidths – from wideband transducers of 100% (ideal case), 90%, 75%
to narrowband ones of 50% and 25%. The 16-bits Golay complementary sequences at nom-
inal frequency of 1 MHz were used to illustrate the transducer bandwidth influence on the
resulted signal. It was shown that the decreasing of the transducer bandwidth results in a con-
siderable drop of the amplitude of the compressed echoes from 20.1 V for the 90% fractional
bandwidth down to: 17.1 V, 12.5 V and 6.6 V for 75%, 50% and 25% bandwidths, respec-
tively. The widths of the compressed echoes were widening at the same time from 708 ns
up to 2.38 µs reducing the axial resolution from about 1 mm to over 3.6 mm. In the exper-
iments, two transducers with different fractional bandwidths of 70% and 35% and nominal
frequencies of 4.8 MHz and 6 MHz, respectively, were used.
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1. Introduction

The distortion of electrical signals is one of the fundamental problems resulting in
the final echo detection in ultrasonography. Even if the immediate problem is not an
electrical one, the basic parameters of interest are often changed into electrical signals
by means of different transducers [1, 5].
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In our recent works [2, 3, 9, 10], we have discussed and explored the coded se-
quences with frequency modulation as well as the phase modulation for echo enhance-
ment and noise cancellation in medical ultrasound systems. These coded signals evoke
more and more interest in medical ultrasound.

The effect of the transducer bandwidth on the characteristics of ophthalmic ultra-
sound images was also explored by SILVERMAN et al. [6]. For that reason the two
ultrasonic transducers, one with a narrow bandwidth of 35% and another one with a
broad bandwidth of 77%, at a nominal centre frequency of 10 MHz, were evaluated.
The comparative results were shown in a form of scans of a tissue-mimicking phantom
that simulated the different organs scanned in ophthalmology.

This study helps to elucidate the influence of the transducer bandwidth on the trans-
mitted/received signal and to discuss the experimental results showing that a short pulse
does not always provide a better axial resolution than a longer cycle used by the same
ultrasonic transducer. Main parameters of linear filter, i.e. the time, frequency and tran-
sient responses, are addressed. Analog and digital signals filtering are discussed, too.
The spectrum analysis can be used to measure the pulse characteristics of ultrasonic
transducers by expressing the amplitude of the acoustic pulse as a function of fre-
quency. Several examples of signal distortion were obtained using computer simulation.
The strengths and limitations of a narrowband single transducer in comparison with a
broadband one for medical ultrasound applications are discussed.

2. Linear filter. Analysis

Many systems are reasonably designed to be linear and to meet the design specifica-
tions. This has a fortuitous side benefit when attempting to analyze filters, networks, etc.
A real signal can be considered to be a sum of sine waves. Also, the response of a linear
filter is the sum of responses to each component of the input. Therefore, if the response
of the filter to each of the sine wave components of the input spectrum is known, the
output can be predicted.

Any given ultrasonographic signal can be considered in two different domains: the
time and the frequency ones. That one mostly used, is the time domain. In most cases,
the Fourier transform is used to transform a signal from the time domain into the fre-
quency one and vice-versa.

The frequency response of the system is defined as the ratio of the phasor output to
the phasor input where the output and input may be either the voltage or the current.
Most common the ratio of the phasor output voltage to the phasor input voltage.

H(ω) =
Vout(ω)

Vin(ω)
. (1)

H(ω) is often referred to as the voltage transfer function.
Considering the frequency response, the filters fall generally into one of the three

categories: low-pass filters, high-pass filters and band-pass filters or a combination of
these. As the names suggest, their frequency responses have a relatively high gain in
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the band of frequencies allowing these frequencies to pass through the filter. Other fre-
quencies suffer a relatively high loss and are rejected by the filter. An ideal filter is
not realizable physically, but in practice, it is possible to design a physical filter that
approximates closely an ideal filter if needed.

For the sake of this work, we were simulating filters considering their amplitude
response rather than the impulse and step responses. To preserve shape, when a signal
splits into its Fourier components, all the components must pass through the system
with the same gain factor and the same delay. Distortion due to frequency-dependent
gain is the amplitude distortion, this one due to a frequency-dependent delay is the
phase distortion.

Figure 1 shows qualitatively the transient response of a band-pass filter. If the reso-
nance is narrow compared to its frequency, then it is said to be a high “Q” resonance,
where the quality factor Q of the filter is defined as:

Q =
Center Frequency of Resonance

Bandwidth of −3dB Points
. (2)

Fig. 1. Transient response of band-pass filters. Similar characteristics are obtained by ultrasonic
transducers.
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Figure 1a shows a filter frequency response when the filter quality Q is ideal. In this
case, an impulse response is not damped. Figure 1b shows a high Q filter frequency
response. It has an impulse response which dies out very slowly. A time response which
decays slowly is said to be lightly damped. Figure 1c shows a low Q resonance. It has
an impulse response which dies out quickly. In this case, a time response is heavily
damped. This illustrates a general principle: signals which are broad in one domain are
narrow in the other one.

3. Signal distortion during transmission

The signal distortion, which often happens in practical problems of ultrasonogra-
phy, is discussed here. In a filter or device, any departure of the output signal waveform
from that which should result from the input signal waveform is called signal distortion.
Signal distortion may result from many factors. Mainly it depends on the transmitting-
receiving path that consists of devices which include nonlinearities in the transfer func-
tion of the active device, such as a transistor or operational amplifier. A distortion may
also be caused by a passive component such as a coaxial cable or by inhomogeneities,
reflections, frequency dependent absorption etc. in the propagation path. As a result,
different artefacts in the obtained ultrasound image can occur.

There are two main kinds of filters: analog and digital filters. They are quite different
in their physical makeup and in how they work. Each of them has self-advantages and
disadvantages.

Analog signal filtering allows:
• trend removal – high-pass filtering;
• selection of useful frequency bands – low-pass, band-pass and high-pass filtering;
• signal-to-noise ratio improvement;
• anti-aliasing filter;
• frequency analysis.
Signal filtering described here is, in a way, a continuation of the aforementioned

signal processing in [9].
An analog filter uses analog electronic circuits made up of components such as

resistors, capacitors and op amps to produce the required filtering effect. Such filter cir-
cuits are widely used in applications such as noise reduction, video signal enhancement,
graphic equalizers in hi-fi systems and many other areas.

There are well-established standard techniques for designing an analog filter circuit
for a given requirement. At all stages, the signal being filtered is an electrical volt-
age or current which is a direct analogue of the physical quantity (e.g. transducer out-
put) involved. The analog input signal must first be sampled and digitized using an
ADC (analog-to-digital converter). The resulting binary numbers, representing succes-
sive sampled values of the input signal, are transferred to the processor, which carries
out numerical calculations on them. These calculations typically involve multiplying the
input values by constants and adding the products together. If necessary, the results of
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these calculations, which now represent sampled values of the filtered signal, are output
through a DAC (digital-to-analog converter) to convert the signal back to the analog
form. Figure 2 shows the basic setup of such a system.

Fig. 2. Basic setup of analog signal filtering.

Digital filters that incorporate digital-signal-processing techniques have received a
great deal of attention in technical literature in recent years. Digital filters offer features
that have no counterparts in other filter technologies. These things can been done by
utilizing digital filters (unlimited flexibility) that are not possible in the analog world.

The main advantages of digital filters in comparison with the analog ones are:
• programmable, i.e. they can be easily changed without affecting the circuitry

(hardware);
• easily designed, tested and implemented on a general-purpose computer or work-

station;
• extremely stable with respect to both time and temperature;
• much more versatile in their ability to process signals in a variety of ways; this

includes the ability of some types of digital filters to adapt to changes in the
characteristics of the signal;

• allows the extraction of useful frequency bands, noise reduction, frequency ana-
lysis.

4. Transducer band-pass filtering. Computer simulation

As already mentioned above, signal filtering has a potential effect on signal dis-
tortion. Here the influence of the filter bandwidth on the amplitude of the compressed
signal using computer simulation is considered. The influence of the filter, amplifier
or ultrasonic transducer frequency bandwidth on the transmitted/received signal can
be examined by applying the band-path filtering. The computer calculations were per-
formed using the Matlab R© software. The algorithm looks as follows: at first two Golay
complementary sequences are numerically synthesized. Next their Fourier transforms
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are evaluated by means of the FFT algorithm (fft routine in Matlab R©). The band-pass
filtering is performed by the Chebyshev filter of second order with different bandwidth
(cheby1 routine in Matlab R©), followed next by the inverse Fourier transform evaluation
by means of the FFT algorithm (ifft routine in Matlab R©). The correlation of the filtered
signal with the transmitted one is performed using a correlation function (xcorr rou-
tine in Matlab R©). The results obtained are plotted using the plot function in Matlab R©.
Experimental results, which take into account the influence of both the bandwidth of the
transmitting-receiving path and the ultrasonic transducer are considered in the second
part of this section.

Figure 3 demonstrates the sequence of the filtering procedure for a Golay comple-
mentary pair of 16 bits length at a centre frequency of 1 MHz. This procedure is shown
for the ideal case, in other words when the full spectrum is passed completely through
the filter (transducer).

At first two Golay sequences of length of 16 bits are shown (Fig. 3a). The time du-
ration of such sequences is equal to 16 µs for the frequency of 1 MHz. Then, the power
spectrum of each sequence obtained using the FFT algorithm is shown in Fig. 3b. The
power spectra of such sequences are not as narrow as for the sine burst of compatible
duration since any changing of phase leads to a spectrum widening. Since Fig. 3 rep-
resents an ideal case, the full spectrum is passed through. Next, the power spectrum is
transformed into the time domain using the inverse Fourier transform (Fig. 3c). In the
case presented, the filtered sequences are identical with the transmitted ones, without
any distortions. The filtered signals obtained are correlated with original ones, respec-
tively (Fig. 3d). Note: the time duration of the resulted signal equals 2T , where T is the
time duration of the sequences. In this case it is equal to 32 µs. The amplitudes of these
signals are equal to N , where N is the sequences length; in our case it is equal to 16.
It should be noted that each of the correlated output signals has a considerable amount
of side-lobes. Adding two resulting correlated signals, which have side-lobes equal in
amplitude but opposite in sign, results in a final output, the side-lobes’ amplitude of
which is equal to zero (Fig. 4). It is a specific property of the Golay codes, particularly
suitable for the unambiguous range detects ability.

The procedure described above reflects the real case when the filtering is realized
twice; the first time when the signal is transmitted and the second time when the signal
is received.

The same procedure was executed for different fractional bandwidths, namely for
90%, 75%, 50%, and 25%. All these computer simulations were calculated at the centre
frequency of 1 MHz.

Figure 5 illustrates the computer simulation of the RF signals after a double passing
through the transducer during transmission and reception. This computer simulation
is similar to the situation that occurs in a real case except the potential influence of
the electronic and acoustical noise. However, in our case the noise influence is not so
important since we have concentrated here on the signal distortion, i.e. on the echo’s
shape and its amplitude after filtering that takes place when the spectrum of the coded
sequences is wider than bandwidth of the transducer.
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Fig. 3. Procedure of filtering Golay sequences of length of 16 bits at a centre frequency 1 MHz – 100%
bandwidth.
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Fig. 4. Sum of the two correlated Golay sequences.

Figure 5 shows clearly the influence of the transducer bandwidth on the echoes’
amplitudes and their distortions. For the very narrow transducer bandwidth the signal
distortion rearranges the shape of the signal that leads to a considerable widening of
the compressed signal. Also the amplitude of the signal decreases proportionally to the
narrowing of the transducer bandwidth.

The compressed signals for the fractional bandwidth of 90%, 75%, 50%, and 25%
are shown in Fig. 6. For an objective comparison, the amplitude of the every compressed
signal is given.

From the results described above two things should be noted: the shapes of the
signals obtained and their amplitudes. Similar shapes and, consequently, comparable
resolutions are obtained transmitting the coded signals through transducers with frac-
tional bandwidths 90% and 75%. In the case of transducers with the narrower fractional
bandwidths, i.e. 50% and 25%, the signal width is wider and in a worse case can lead to
axial resolution ambiguity in the ultrasonic image. It should be also noted that the am-
plitude depends on the fractional transducer bandwidth and is lower when the transducer
bandwidth is narrower and therefore the resulting penetration in the tissue decreases.

Comparing the amplitude of the compressed echoes for different bandwidths shows
that for a 100% bandwidth, the relative amplitude is equal to 32, which is in agreement
with the theoretical gain for Golay codes of 16 bits length. By decreasing the transducer
bandwidth, the relative amplitude of the compressed echoes drops; for the 90% frac-
tional bandwidth it is equal to 20.1 volts, i.e. it is 37.2% less than for the full bandwidth,
or the 75% fractional bandwidth, the amplitude drops by 45% to 17.6 volts, for the 50%
bandwidth the amplitude drops correspondingly by 61% to 12.5 volts, and for the worst
considered case, where fractional bandwidth of the transducer is 25%, the amplitude of
the compressed echo is 6.6 volts that corresponds to a 79% amplitude drop.
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Fig. 5. RF signals passed through a transducer with different fractional bandwidths (left) and bandwidth
of the Golay code and transducer (bold grey line) (right).
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Fig. 6. Compressed signals for different fractional transducer bandwidths.

The width of the compressed signals, as mentioned before, is widening as the frac-
tional bandwidth is narrowing. For the full bandwidth, the pulse width on the –20 dB
level for a signal at the nominal frequency of 1 MHz is equal to 147 ns that corresponds
to the resolution 0.2 mm. For the 90% fractional bandwidth, the pulse width is widening
and is equal to 708 ns (1.090 mm). Respectively, for the examined cases of 75%, 50%,
and 25% fractional transducer bandwidths, the pulse widths are equal to 713 ns (1.098
mm), 1.25 µs (1.9 mm), and 2.38 µs (3.67 mm), respectively. Obviously, the resolu-
tion is proportional to the nominal frequency of the burst signal and is improving with
increasing frequency.

Analysing the results obtained, the difference in the compressed signals with frac-
tional bandwidths of 90% and 75% is not noticeable and transducers with similar frac-
tional bandwidths are often used in practice. However, this difference is evident when
the fractional bandwidth is narrowing to 50% or 25%. In this case, the resolution drops
even by 18 times in relation to the ideal case and transducers with such fractional are
not acceptable in ultrasonography.

5. Experimental verification

The validity of the computer simulation was verified experimentally. To this end, the
transducers with different fractional bandwidths of 70% and 35% and nominal frequen-



INFLUENCE OF THE TRANSDUCER BANDWIDTH . . . 913

cies of 4.8 MHz and 6 MHz, respectively, were used. The plexiglass plate of a thickness
of 1.3 mm located in a water tank oriented normally to the ultrasonic beam was used as
a reflector.

Figure 7 shows the computer simulation and compressed echo signal when the trans-
ducer with fractional bandwidth of 70% at a nominal centre frequency of 4.8 MHz was
used.

Fig. 7. Computer simulation of the compressed echo from the perfect reflector (left) and compressed
echo signal reflected from the plexiglass plate of thickness of 1.3 mm (right) using a transducer at nominal
frequency of 4.8 MHz and fractional bandwidth of 70%. The experimental data present two adjacent echoes

from the anterior and posterior surfaces of the plexiglas plate.

Figure 8 shows the computer simulation and compressed echo signal when the trans-
ducer with fractional bandwidth 35% at nominal centre frequency 6 MHz was used.

Fig. 8. Computer simulation of the compressed echo from the perfect reflector (left) and compressed
echo signal reflected from the plexiglas plate of thickness of 1.3 mm (right) using a transducer at nominal

frequency of 6 MHz and fractional bandwidth of 35%.

The difference in the amplitudes between the compressed signals obtained by com-
puter simulation and those obtained from the experiments shown in Fig. 7 and Fig. 8
is caused by a different sensitivity of the ultrasonic transducers and amplifying coeffi-
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cients of the transmitting-receiving path. All these factors lead to a certain inaccuracy
of the obtained results.

The pulse widths of the compressed echoes at the –20 dB level for both the computer
simulations and experiments are very close. It seems that the pulse width, and thereby
the resolution, should be better in the case of transducer with the nominal frequency of
6 MHz than for the transducer of 4.8 MHz. However, the fractional bandwidth of the
transducer has a decisive influence on the resolution of the ultrasonic system. For the
transducer of 4.8 MHz and 70% fractional bandwidth the resolution was equal to 75 ns
(0.11 mm) (see. Fig. 7), i.e. it was 1.3 times shorter than for the 6 MHz, 35% fractional
bandwidth transducer, for which the resolution was equal to 98 ns (0.15 mm) (Fig. 8).

6. Discussion and conclusion

This work is addressed to the problem of transmitting coded signals through a trans-
ducer and its influence on the filtered/compressed echoes. To solve this problem the
computer simulation was performed using the Matlab R© software for different fractional
transducer bandwidths. The 16-bits Golay complementary sequences at nominal fre-
quency of 1 MHz were used as the burst signal.

The analysis performed with the help of computer simulation entirely represents
the behaviour of the burst coded signals in a real case when the noise influence is not
considerable.

The results of this work illustrate how the width of the compressed signal and the
resulting axial resolution depend on the ultrasonic transducer with a fractional band-
width narrower than the bandwidth of the burst signal. This dependence is proportional
to the ultrasonic transducer bandwidth. Also, it has been noted that the amplitude of
the filtered signal depends on the bandwidth of the transducer. It is very important in
case of phase modulated coded signals, in our case 16-bits Golay sequences, since the
one-cycle bit length has a wider fractional bandwidth and the energy of this signal is
often attenuated by the ultrasonic transducer. As the result, the broad signal can lead to
a wrong visualization of the examined organs in ultrasonography. Also, the decreasing
signal amplitude limits in turn the deep penetration in the abdominal organs/tissue. This
suggests that a transducer with a narrow fractional bandwidth limits the penetration in
the abdominal organs/tissue that is very important in ultrasound diagnostic.
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