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It is commonly accepted that the existence of entropy imposes restrictions on the constutive
functions in the Navier–Stokes–Fourier equations. In the paper: S. Piekarski, “On the Navier–
Stokes equation for water” (Archives of Acoustics, 31, 2, 265–271, 2006) it has been shown
that if the energy per unit mass is a function of the temperature T only, then the pressure p is
an arbitrary function of the density ρ multiplied by the temperature T .

Now the general form of the relations between the energy density and the pressure is given
(both quantities are understood as functions of the mass density and the temperature).

These relations can be approximated in different ways and different approximations suggest
different classifications of dense fluids (some of them are similar to the virial expansions).
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1. Introduction

For acoustics, the Navier–Stokes–Fourier equations are of a crucial importance. In
turn, in order to write these equations explicitly, one has to define such functions like,
for example, the energy density (per unit volume) as a function of the mass density ρ and
the temperature T and the pressure as a function of ρ and T . It is commonly accepted
that these functions are related by the restrictions, imposed by the existence of entropy.
Therefore, the explicit form of these restrictions is interesting and in [1] it has been
shown that if the energy per unit mass is a function of the temperature T only, then the
pressure p is an arbitrary function of the density ρ (which can be denoted p0(ρ)), mul-
tiplied by the temperature T . In this paper, the general case of these relations is solved.
The form of the solution seems to suggest some scheme of approximate description of
the dense fluids, which is similar to the “standard” virial expansions [2].

Explicit calculations are given in the second section. Final results and conclusions
are in the last section.
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2. The basic equations

The restriction, imposed on the energy density E (ρ, T ) per unit mass and the pres-
sure p (ρ, T ) by the existence of the entropy S (ρ, T ), is

∂

∂T

[
T−1∂E (ρ, T )

∂ρ
− p (ρ, T )

Tρ2

]
=

∂

∂ρ

[
T−1∂E (ρ, T )

∂T

]
. (1)

In [1], this relation has been obtained directly from the Navier–Stokes–Fourier equa-
tions; the alternative approach is to obtain it directly from the Gibbs identity. The re-
lations of the Gibbs identity and the Navier–Stokes–Fourier equations can be inves-
tigated also by means of the Lagrange–Liu multipliers (see detailed calculations of
WILMAŃSKI [3]).

In order to discuss (1), let us write it in the form

∂

∂T

[
T−1∂E (ρ, T )

∂ρ

]
+

∂

∂T

[
−p (ρ, T )

Tρ2

]
= T−1∂

2E (ρ, T )

∂ρ∂T
, (2)

which is equivalent to

T−1∂
2E (ρ, T )

∂T∂ρ
+
∂E (ρ, T )

∂ρ

∂

∂T

[
T−1

]
+

∂

∂T

[
−p (ρ, T )

Tρ2

]
= T−1∂

2E (ρ, T )

∂ρ∂T
. (3)

It can be seen that the first term on the l.h.s. of (3) cancels out the term on the r.h.s. of
(3). Therefore one arrives at

∂E (ρ, T )

∂ρ

∂

∂T

[
T−1

]
+

∂

∂T

[
−p (ρ, T )

Tρ2

]
= 0, (4)

that is,

− 1

T 2

∂E (ρ, T )

∂ρ
+

∂

∂T

[
−p (ρ, T )

Tρ2

]
= 0. (5)

After multiplying (5) by the temperature T one obtains

− 1

T

∂E (ρ, T )

∂ρ
+ T

∂

∂T

[
−p (ρ, T )

Tρ2

]
= 0. (6)

After multiplying (6) by the mass density ρ, the result can be written in the following
form:

ρ
∂

∂ρ

[
E (ρ, T )

T

]
+ T

∂

∂T

[
p (ρ, T )

Tρ

]
= 0. (7)

In order to get a deeper insight into the nature of this equation, let us define the following
symbols:

Ê (ρ, T ) =
E (ρ, T )

T
, (8)

p̂ (ρ, T ) =
p (ρ, T )

Tρ
. (9)
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After taking into account (8) and (9), the Eq. (7) can be written in the form

ρ
∂

∂ρ
Ê (ρ, T ) + T

∂

∂T
p̂ (ρ, T ) = 0. (10)

It can bee seen that a particular solution of (10) is

Ê (ρ, T ) = Ê (T ) , (11)

p̂ (ρ, T ) = p̂ (ρ) . (12)

In order to interpret (11), (12) in “standard variables”, let us invert (8) and (9)

E (ρ, T ) = Ê (ρ, T )T, (13)

p (ρ, T ) = p̂ (ρ, T )Tρ, (14)

and after inserting (11) and (12) into (13) and (14), we arrive at:

E (ρ, T ) = Ê (T )T, (15)

p (ρ, T ) = p̂ (ρ)Tρ. (16)

This solution has been obtained in [1] in a different way. Its important property is that
the energy density per unit mass does not depend on the mass density and that the
expression for the pressure is a product of the arbitrary function of the mass density and
the linear function of temperature. This solution describes some generalisation of the
ideal gas and therefore, the corresponding medium shall be called “a generalized ideal
gas”. In turn, by the “dense fluid” we shall mean a medium with the energy density (per
unit mass) depending not only on the temperature but also on the mass density.

In general, if Ê (ρ, T ) and p̂ (ρ, T ) satisfies (10), then the other solution is

Ê′ (ρ, T ) = Ê (ρ, T ) + ϕ (T ) , (17)

p̂′ (ρ, T ) = p̂ (ρ, T ) + γ (ρ) . (18)

This property can be checked easily:

ρ
∂

∂ρ
Ê′ (ρ, T ) + T

∂

∂T
p̂′ (ρ, T )

= ρ
∂

∂ρ

[
Ê (ρ, T ) + ϕ (T )

]
+ T

∂

∂T
[p̂ (ρ, T ) + γ (ρ)]

= ρ
∂

∂ρ
Ê (ρ, T ) + ρ

∂

∂ρ
ϕ (T ) + T

∂

∂T
p̂ (ρ, T ) + T

∂

∂T
γ (ρ)

= ρ
∂

∂ρ
Ê (ρ, T ) + T

∂

∂T
p̂ (ρ, T ) . (19)

The above property means that the solutions of (10) can be divided into the equivalence
classes; any two solutions are equivalent if and only if their difference is a solution for
the “generalized ideal gas”. Since (10) is linear, the set of its solutions forms a vector
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space, and the above property means the existence of the corresponding quotient space
in the space of solutions of (10).

In order to get some explicit knowledge about the solutions of (10), let us investigate
∂

∂ρ
Ê (ρ, T ) = −T

ρ

∂

∂T
p̂ (ρ, T ) (20)

and
∂

∂T
p̂ (ρ, T ) = − ρ

T

∂

∂ρ
Ê (ρ, T ) . (21)

After integrating (20) and (21) with respect to the mass density and the temperature,
correspondingly, one obtains

ρ∫

ρ0

∂

∂ρ′
Ê
(
ρ′, T

)
dρ′ = Ê (ρ, T ) − Ê (ρ0, T ) = −T ∂

∂T

ρ∫

ρ0

p̂ (ρ′, T )

ρ′
dρ′ (22)

and
T∫

T0

∂

∂T ′
p̂
(
ρ, T ′

)
dT ′ = p̂ (ρ, T ) − p̂ (ρ, T0) = −ρ ∂

∂ρ

T∫

T0

Ê (ρ, T ′)

T ′
dT ′. (23)

Now, (22) implies that

Ê (ρ, T ) = Ê (ρ0, T ) − T
∂

∂T

ρ∫

ρ0

p̂ (ρ′, T )

ρ′
dρ′ (24)

and (23) implies that

p̂ (ρ, T ) = p̂ (ρ, T0) − ρ
∂

∂ρ

T∫

T0

Ê (ρ, T ′)

T ′
dT ′. (25)

From (24) and (25) one can see the general form of the solutions of (10); if p̂ (ρ, T )

is arbitrary, then Ê (ρ, T ) must be of the form

Ê (ρ, T ) = Ẽ (T ) − T
∂

∂T
Πρ

(
p̂ (ρ, T )

ρ

)
, (26)

where Ẽ (T ) is an arbitrary function of the temperature T , and Πρ is the indefinite
integral with respect to the variable ρ (with the variable T being a parameter).

In turn, if Ê (ρ, T ) is arbitrary, then p̂ (ρ, T ) must be of the form

p̂ (ρ, T ) = p̃ (ρ) − ρ
∂

∂ρ
ΠT

(
Ê (ρ, T )

T

)
, (27)

where p̃ (ρ) is the arbitrary function of the mass density ρ, and ΠT is the indefinite
integral with respect to the variable T (with the variable ρ being a parameter).
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Obviously, the symbols Πρ and ΠT in (26) and (27) satisfy the relations

∂

∂ρ

{
Πρ

(
p̂ (ρ, T )

ρ

)}
=
p̂ (ρ, T )

ρ
(28)

and
∂

∂T

{
ΠT

(
Ê (ρ, T )

T

)}
=
Ê (ρ, T )

T
. (29)

It is worth to mention that the indefinite integrals are defined up to the additive con-
stants, but the expressions (26) and (27) contain the arbitrary functions of T and ρ,
correspondingly. Therefore, the resulting expressions are defined uniquely.

By direct inspection, one can check that (26) is a solution of (10):

ρ
∂

∂ρ
Ê (ρ, T ) = ρ

∂

∂ρ

[
Ẽ (T ) − T

∂

∂T
Πρ

(
p̂ (ρ, T )

ρ

)]

= ρ
∂

∂ρ

[
Ẽ (T )

]
− ρ

∂

∂ρ

[
T
∂

∂T
Πρ

(
p̂ (ρ, T )

ρ

)]

= −ρ ∂
∂ρ
T
∂

∂T
Πρ

(
p̂ (ρ, T )

ρ

)
= −ρT ∂

∂T

∂

∂ρ
Πρ

(
p̂ (ρ, T )

ρ

)

= −ρT ∂

∂T

p̂ (ρ, T )

ρ
= −T ∂

∂T
p̂ (ρ, T ) . (30)

Similarly, one can check that (27) is a solution of (10)

T
∂

∂T
p̂ (ρ, T ) = T

∂

∂T

[
p̃ (ρ) − ρ

∂

∂ρ
ΠT

(
Ê (ρ, T )

T

)]

= T
∂

∂T
[p̃ (ρ)] − T

∂

∂T

[
ρ
∂

∂ρ
ΠT

(
Ê (ρ, T )

T

)]

= −T ∂

∂T

[
ρ
∂

∂ρ
ΠT

(
Ê (ρ, T )

T

)]
= −Tρ ∂

∂ρ

∂

∂T
ΠT

(
Ê (ρ, T )

T

)

= −Tρ ∂
∂ρ

Ê (ρ, T )

T
= −ρ ∂

∂ρ
Ê (ρ, T ) . (31)

It is well-known that the energy, the pressure and the entropy can be expressed in terms
of the free energy (see, for example, [3]):

E (ρ, T ) = F (ρ, T ) − T
∂F (ρ, T )

∂T
, (32)

where F (ρ, T ) is the free energy per unit mass,

S (ρ, T ) = −∂F (ρ, T )

∂T
(33)
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is the entropy per unit mass, and the pressure is

p (ρ, T ) = ρ2∂F (ρ, T )

∂ρ
. (34)

Our solutions of (10) are defined in terms of the variables Ê (ρ, T ) and p̂ (ρ, T ) given
by (8) and (9); therefore, in order to check whether (32) and (34) satisfy (10), one has
to write (32) and (34) in the form

Ê (ρ, T ) =
F (ρ, T )

T
− ∂F (ρ, T )

∂T
, (35)

p̂ (ρ, T ) =
ρ

T

∂F (ρ, T )

∂ρ
. (36)

It can be checked easily that (35) and (36) satisfy the equation (10); however, our aim
here is to investigate explicit relations between the energy and the pressure and therefore
expressions formulated in terms of the free energy are not useful for our purposes.

Our results can be approximated in many ways and some of them seem to be related
to the virial coefficients [2].

Generally speaking, since the equation (10) is linear, one can choose different bases
in the space of its solutions. In order to interpret the integral operators Πρ and ΠT

explicitly, it is convenient to use the functions that are products of functions of single
variables. For example, one can assume that Ê (ρ, T ) is

Ê (ρ, T ) = Ê0 (T ) + Ê1 (T ) ρ+ Ê2 (T ) ρ2 + . . . + Ên (T ) ρn, (37)

and insert (37) into (25):

p̂ (ρ, T ) = p̂ (ρ, T0)

− ρ
∂

∂ρ

T∫

T0

[
Ê0 (T ′) + Ê1 (T ′) ρ+ Ê2 (T ′) ρ2 + . . .+ Ên (T ′) ρn

]

T ′
dT ′

= p̂ (ρ, T0) − ρ
∂

∂ρ

T∫

T0

Ê1 (T ′) ρ

T ′
dT ′ + . . .+ ρ

∂

∂ρ

T∫

T0

Ên (T ′) ρn

T ′
dT ′

= p̂ (ρ, T0) − ρ
∂

∂ρ
ρ

T∫

T0

Ê1 (T ′)

T ′
dT ′ + . . .+ ρ

∂

∂ρ
ρn

T∫

T0

Ên (T ′)

T ′
dT ′

= p̂ (ρ, T0) − ρ

T∫

T0

Ê1 (T ′)

T ′
dT ′ + . . . + nρn

T∫

T0

Ên (T ′)

T ′
dT ′. (38)

In turn, one can assume that

p̂ (ρ, T ) = p̂0 (ρ) + p̂1 (ρ)T + p̂2 (ρ)T 2 + . . .+ p̂n (ρ)T n (39)
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and insert (39) into (24):

Ê (ρ, T ) = Ê (ρ0, T )

− T
∂

∂T

ρ∫

ρ0

[
p̂0 (ρ′) + p̂1 (ρ′)T + p̂2 (ρ′)T 2 + . . .+ p̂n (ρ′)Tn

]

ρ′
dρ′

= Ê (ρ0, T ) − T
∂

∂T

ρ∫

ρ0

p̂1 (ρ′)T

ρ′
dρ′ − . . .− T

∂

∂T

ρ∫

ρ0

p̂n (ρ′)Tn

ρ′
dρ′

= Ê (ρ0, T ) − T
∂

∂T
T

ρ∫

ρ0

p̂1 (ρ′)

ρ′
dρ′ − . . .− T

∂

∂T
Tn

ρ∫

ρ0

p̂n (ρ′)

ρ′
dρ′

= Ê (ρ0, T ) − T

ρ∫

ρ0

p̂1 (ρ′)

ρ′
dρ′ − . . . − nT n

ρ∫

ρ0

p̂n (ρ′)

ρ′
dρ′. (40)

These expressions can be used for an approximate classification of the “dense fluids”.
As it has been already mentioned, by a dense fluid we mean here any medium, in which
the energy density per unit mass is a function not only of the temperature T but also
of the mass density ρ. In particular, (37) can be interpreted as a perturbational scheme
with the “generalized ideal gas” as a background. Obviously, one can discuss similar
approximations with the “dense fluid” taken as a background.

3. Final remarks and conclusions

The aim of this text is to describe a general approach, which could be potentially
useful for numerical experiments and for classifications of dense fluids. In [1] it has
been shown that if the energy per unit mass is a function of the temperature T only, then
the pressure p is an arbitrary function of the density ρ multiplied by the temperature T .
In the present paper, the general form of the relations between the energy density and
the pressure is given. It can be observed that the results of [1] can be derived directly
from the Gibbs identity in an elementary way and this derivation is as follows:

• the Gibbs identity reads

TdS = dE + pd

[
1

ρ

]
= dE − p

ρ2
dρ, (41)

and if E and p are considered as functions of ρ and T , one can see that (41) is equiva-
lent to

dS = dE + pd

[
1

ρ

]
=

1

T
dE (ρ, T ) − p (ρ, T )

Tρ2
dρ. (42)
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From the form of (42) it can be seen that for E = E (T ) and p (ρ, T ) = p0 (ρ)T , the
above expresssion simplifies to

dS =
1

T
dE (T ) − p0 (ρ)T

Tρ2
dρ =

1

T

∂E (T )

∂T
dT − p0 (ρ)

ρ2
dρ. (43)

From (43), the explicit expression for the entropy per unit mass can be integrated:

S (ρ, T ) =

T∫

T0

1

T ′

∂E (T ′)

∂T ′
dT ′ −

ρ∫

ρ0

p0 (ρ′)

ρ′2
dρ′. (44)

Therefore, the entropy of a “generalized ideal gas” can be written as a sum of a term de-
pending only on T and a term depending only on ρ. The above “derivation” is very sim-
ple but it should be stressed that in [1] the restrictions for the allowed form of E(ρ, T )
and p(ρ, T ) have been derived from the field equations and not from the Gibbs identity.

We hope to make a more detailed discussion later.
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