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A method for crack detection in beams by time-frequency analysis of flexural waves is de-
scribed. Two different time-frequency representations, namely the continuous wavelet trans-
form and the smoothed pseudo-Wigner distribution are employed. Simulated and measured
flexural waves in a cracked beam are analysed and both the location and size of the crack are
accurately determined. The location of the crack is estimated using the arrival time of reflected
waves with different group velocities. The ratio of the reflected wave energy to the incident
wave one is calculated and used as an indicator of the crack size. Wave experiments in a slen-
der brass beam are in good agreement with predictions verifying the efficiency of the method.
In view of the results obtained, the advantages and shortcomings of the time-frequency repre-
sentations employed are presented and discussed.

Keywords: cracked beams, crack detection, wave propagation, time-frequency distributions,
wavelets, Wigner distribution.

1. Introduction

Damage detection in structures is a problem of practical importance that has re-
ceived considerable amount of interest during the last decades. As a result, a variety
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of damage detection methods has been developed. Among the existing methods, wave-
based techniques gained the ground. The basic concept, in most of these techniques,
relies on the fact that a propagative wave will be reflected and partially transmitted
when it encounters a defect. Measurements of the reflected and/or transmitted waves
can provide significant information about the damage location and size. Unlike ultra-
sonic waves, middle frequency waves are not only sensitive to damage but also decay
slowly; therefore, they are suitable for global inspection of structures. In that vein, flex-
ural waves have been utilised for damage detection.

Since flexural waves are dispersive, a key issue in wave-based precise damage iden-
tification is the use of an appropriate method to analyse the measured signals and to
extract their dispersive characteristics. Time-frequency analysis of dispersive waves al-
lows the description of the time variation of each frequency component, offering several
advantages in comparison to the traditional Fourier transform techniques.

So far, the continuous wavelet transform (CWT) [1] has been adopted for the anal-
ysis of guided waves because of its local and self-adaptive time-frequency resolution
properties. ONSAY and HADDOW [2] examined the efficiency of the CWT in the anal-
ysis of impact-induced transient waves that propagate along a beam. They have demon-
strated that the CWT is capable of analysing complex wave-interference patterns, which
evolve over wide spectral ranges. INOUE et al. [3] applied the CWT to analyse the sim-
ulated flexural waves in an Euler–Bernoulli beam. They showed that the Gabor wavelet
effectively decomposed the response into its time-frequency components and that the
peaks of the time-frequency distribution indicate the arrival times of the waves. The
same research group in a subsequent paper [4] experimentally verified their method by
analysing flexural waves in a beam that resulted in the group velocity and impact site es-
timation. KIM and KIM [5] studied both analytically and experimentally the efficiency
of the CWT to analyse the dispersive waves generated by an impact in a solid circular
cylinder. They compared the performance of the CWT to that of the Short-Time Fourier
transform and they pointed out the importance of choosing the appropriate wavelet to
enhance the performance of the analysis. TIAN et al. [6] employed the CWT to anal-
yse the flexural waves in a cracked Timoshenko beam. By identifying the arrival time
of the waves with different group velocity, they were able to determine the location of
the crack. QUEK et al. [7] applied the CWT to experimental data to locate a crack in
a beam and discussed the impact of practical implementation issues, such as sampling
rate, filtering and signal length, on the accuracy of the results. Recently, LI et al. [8]
employed the CWT to identify both the location and depth of a crack in a cantilever
beam. The crack depth was estimated by the value of the reflection and transmission ra-
tios of the induced flexural waves. KIM and KIM [9] proposed a method for estimating
damage location and size in a beam by analysing flexural waves. Using the CWT ridge
analysis, the ratio of incident and reflected wave is estimated and correlated with the
damage size.

In the present work, a method for estimating both the location and size of a crack in
a beam by analysing transient flexural waves is presented. Two different time-frequency
representations, namely the CWT and the smoothed pseudo-Wigner distribution (SPWD)
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[10] for analysing the simulated and experimental signals are investigated. The objec-
tive is to compare their ability to resolve the dispersive characteristics of frexural waves.
The location of the crack is estimated by calculating the arrival times of incident and
reflected waves with different group velocities. The ratio of the reflected wave energy
to the incident wave one is used as an estimator of the crack size. Experimental results
in a brass beam have shown good agreement with predictions justifying the accuracy of
the proposed method. The advantages and shortcomings of each time-frequency repre-
sentation employed are compared and discussed.

2. Vibration model of a cracked infinite beam

A beam of infinite length along the x axis, with uniform rectangular cross-section
w×w, which has a transverse surface crack located at the origin of the x axis (Fig. 1), is
considered. The beam is excited by a force whose Fourier transform is F (ω). The force
acts at a distance L from the crack position. For the solution of the displacement along
the beam, the spectral analysis is adopted where the time dependence has the form
exp(jωt). In particular, for each frequency ω the harmonic solution of the displacement
n(x, ω) for the three regions defined along the beam is given by

R1 = {x : x ≤ −L}; n1(x, ω) = A−

1 (ω)ejkx +B−

1 (ω)ekx;

R2 = {x : − L ≤ x ≤ 0}; n2(x, ω) = A+
2 (ω)e−jkx +B+

2 (ω)e−kx

+A−

2 (ω)ejkx +B−

2 (ω)ekx;

R3 = {x : 0 ≤ x}; n3(x, ω) = A+
3 (ω)e−jkx +B+

3 (ω)e−kx.

(1)
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Fig. 1. Geometry of the cracked infinitely long beam under study.

In Eq. (1), the A and B coefficients are related to travelling and evanescent waves,
respectively. The subscripts refer to the corresponding regions along the beam, whereas
the plus and minus superscripts denote propagation along the positive and negative x
direction, respectively. Finally, the wavenumber k that appears in Eq. (1) is derived by
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the Euler–Bernoulli model and is given by

k =

[
ω2 ρS

EI

]1/4

, (2)

where ρ is the mass density, S is the cross-sectional area, E is the Young’s modulus,
and I is the moment of inertia of the beam.

The evaluation of the unknown A and B coefficients is based on the fulfilment of
boundary conditions at the locations of the impact and the crack. At the impact location
(x = −L) the continuity of displacement, gradient of displacement, moment and shear
are imposed, resulting in four equations, i.e.,

n1(−L, ω) = n2(−L, ω),

∂xn1(−L, ω) = ∂xn2(−L, ω),

∂2
xn1(−L, ω) = ∂2

xn2(−L, ω),

∂3
xn2(−L, ω) − ∂3

xn1(−L, ω) = F/(EI).

(3)

At the crack location (x = 0) the continuity of displacement, moment and shear are
imposed, resulting in three equations

n2(0, ω) = n3(0, ω), ∂2
xn2(0, ω) = ∂2

xn3(0, ω), ∂3
xn2(0, ω) = ∂3

xn3(0, ω), (4)

respectively. Furthermore, the crack can be modelled by a massless rotational spring,
whose bending stiffness KT is given by [11]

KT = 0.1871
EI

wJ(a/w)
, (5)

where a is the depth of the crack and J(a/w) is the dimensionless local compliance
function given by

J(u) = 1.98u2 − 3.277u3 + 14.43u4 − 31.26u5 + 63.56u6

− 103.36u7 + 147.52u8 − 127.69u9 + 61.5u10. (6)

Under this assumption, an additional boundary condition, which is related to the equilib-
rium between transmitted bending moment and spring rotation, is imposed at the crack
location, i.e.,

−EI∂2
xn2(0, ω) = KT [∂xn2(0, ω) − ∂xn3(0, ω)]. (7)

By solving the system of the eight Eqs. (3), (4), and (7), the A and B coefficients are
evaluated. In particular, after some manipulation, the coefficients related to the wave
travelling toward the crack (region R2) are given by

A+
2 (ω) = −j F

4EIk3
e−jkL, B+

2 (ω) = − F

4EIk3
e−kL. (8)

The coefficients associated with the wave reflected from the crack are related to the
incident wave ones through the reflection matrix R(ω), i.e.,

[
A−

2 (ω)

B−

2 (ω)

]
= R(ω)

[
A+

2 (ω)

B+
2 (ω)

]
. (9)
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The reflection matrix, which depends on the properties of the crack is given by

R(ω) = − k̃

k̃(1 − j) − 4j

[
1 −1
j −j

]
, (10)

where k̃ = EIk/KT .
Furthermore, the coefficients of the wave transmitted through the crack in region R3

are given by [
A+

3 (ω)

B+
3 (ω)

]
= (I + R(ω))

[
A+

2 (ω)

B+
2 (ω)

]
, (11)

where I is the unit matrix. The sum of the unit matrix and the reflection matrix is inter-
preted as the transmission matrix T(ω) = I + R(ω).

Finally, the coefficients of the wave travelling in region R1 are given by
[
A−

1 (ω)

B−

1 (ω)

]
=

[
e2jkL 0

0 e2kL

][
A+

2 (ω)

B+
2 (ω)

]
+

[
A−

2 (ω)

B−

2 (ω)

]
. (12)

After the evaluation of the A and B coefficients, the displacement in the time do-
main, n(x, t), can be obtained by applying the inverse Fourier transform to n(x, ω).
For example, according to Eq. (1), the displacement at any position x in region R2 is
given by

n2(x, t) =
1

2π

+∞∫

−∞

[
A+

2 (ω)e−jkx +B+
2 (ω)e−kx

+A−

2 (ω)ejkx +B−

2 (ω)ekx
]
ejωt dω, (13)

while the associated acceleration γ2(x, t) is obtained as

γ2(x, t) = − 1

2π

+∞∫

−∞

ω2n2(x, ω)ejωt dω. (14)

3. Estimation of the reflection coefficient

From the analysis presented in the previous section, it is evident that the acceleration
in the time domain at any position along the beam depends on the location and size of
the crack. In particular, if the impact is impulsive and the acceleration is evaluated at any
position in region R2, then the acceleration signal is composed of two parts; the first, in
time, corresponds to the incident wave generated by the impact, while the second one is
generated by the crack because of the reflection. In general, the reflected signal is lower
than the incident one and its relative amplitude is governed by the size of the crack.
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The characteristics of the crack, i.e. location and size, are introduced to the evalu-
ation of the acceleration through the elements of the reflection matrix (Eq. (10)). Fur-
thermore, since the evanescent waves related to the B coefficients do not significantly
contribute to the acceleration, we conclude from Eq. (9) that the (1,1) element of the
reflection matrix

R11(ω) = − k̃

k̃(1 − j) − 4j
, (15)

which is considered in the following as the reflection coefficient, can be estimated by
means of the travelling wave phasors A−

2 and A+
2 , i.e.,

R̂11(ω) = A−

2 (ω)/A+
2 (ω). (16)

Alternatively, the magnitude of the reflection coefficient can be derived from

|R̂11(ω)| =

(
Er(ω)

Ei(ω)

)1/2

, (17)

where Ei(ω) and Er(ω) are the incident and the reflected energy from the crack, re-
spectively, at frequency ω.

Clearly, the estimation of the reflection coefficient or of its magnitude requires the
identification and separation of the incident and the reflected waves travelling in re-
gion R2. This problem can be coped with by utilising time analysis of the acceleration
signals. Furthermore, due to the dispersion involved, the waveform of the incident sig-
nal is not preserved in the reflected signal. Hence, to analyse the acceleration signal, the
time-frequency analysis is utilised.

In the following, the strategy adopted for estimation of the location of the crack and
estimation of the reflection coefficient magnitude, is presented by means of a character-
istic example. Let us consider again a cracked infinite beam shown in Fig. 1, which is
impacted by a delta Dirac force. The acceleration is evaluated at a position in region R2

placed at a distance LM from the crack. A typical simulated acceleration signal is illus-
trated in Fig. 2a. The parts of the signal related to the incident and the reflected waves
are pointed in Fig. 2a by arrows. The dispersive character of the wave propagating in the
beam is evident by comparing the form and the duration of the incident and the reflected
waves. The dispersion can also be shown by means of time-frequency representation of
the signal. In particular, the CWT of the signal is presented in the time-frequency plane
in Fig. 2b, where the ridges related to the incident and the reflected waves are also
depicted by arrows.

Post-processing of the time-frequency representation could result in estimating the
reflection coefficient spectrum. For example, the estimation of the magnitude of the re-
flection coefficient at frequency ω0 is derived from the time variation of the wavelet
coefficient magnitude, |W (t, ω0)|, corresponding to frequency ω0. This variation is il-
lustrated in Fig. 2c for frequency equal to 10 kHz. From Fig. 2c, the time durations
∆Ti and ∆Tr of the incident and the reflected waves, respectively, are obtained. Hence,
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according to Eq. (17), the estimate of the reflection coefficient magnitude is given by

|R̂11(ω0)| =




∫
∆Tr

|W (t, ω0)|2 dt

∫
∆Ti

|W (t, ω0)|2 dt




1/2

. (18)

This energy-based approach for the estimation of |R11(ω0)| is adopted to compensate
for the dispersion effect, since the energy associated with each distinct frequency is
spread in time. On the contrary, if the maximum values |W (ti, ω0)| and |W (tr, ω0)|
of the incident and the reflected wave, respectively, are used in Eq. (16) to estimate
|R11(ω0)| [8, 9], i.e.,

|R̂11(ω0)| = |W (tr, ω0)|/|W (ti, ω0)|, (19)

then the estimation is less accurate, since dispersion effects are neglected. It should be
noted that Eq. (19) could be applicable in non-dispersive cases.

Determining the time instances ti(ω0) and tr(ω0) of maximum values |W (ti, ω0)|
and |W (tr, ω0)| is helpful in estimating the location of the crack. These time instances
represent the arrival times of the incident and the reflected waves, respectively. Thus,
if the group velocity cg(ω0) is known, then the estimate of the distance between the
measurement position and the crack is given by

L̂M =
tr(ω0) − ti(ω0)

2cg(ω0)
. (20)

4. Simulated results

For numerical simulations, an infinite brass beam of rectangular cross-section S =
0.016 × 0.016 m2 with modulus of elasticity E = 97.66 GPa and mass density ρ =
8500 kg/m3 is considered. A crack of varying depth is introduced and the beam is im-
pacted by a delta Dirac force at a distance L = 8 m from the crack location. The as-
sumption of an infinite beam is adopted in order to avoid multiple reflections from the
boundaries. The acceleration response of the beam is evaluated at a position LM = 7 m
from the crack, based on the theoretical model presented in Sec. 2.. Actually, the signal
presented in Fig. 2a has been obtained by the model, for the case of relative crack depth
of 40%. Following the initial occurrence of the impulse (incident wave), a period of
time (0.0055–0.02 s) is observed (see Fig. 2a), during which the wave reflected from
the crack travels back.

The signal analysis is aiming at relating the characteristics of the reflected wave
to the crack size. To this end, simulated acceleration signals are calculated for relative
crack depths of 10%–40% in steps of 10%, using a sampling frequency of 51200 Hz.
Each case is analysed using two methods, namely CWT and SPWD, in order to obtain
the time-frequency distributions. The curves of the reflection coefficient magnitude, for
all crack depths considered, are predicted in the [4–16 kHz] frequency range by using
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the formula

|R̂11(ω)| =




∫
∆Tr

P (t, ω) dt

∫
∆Ti

P (t, ω) dt




1/2

, (21)

where P is the power distribution derived by each method. The results for the methods
examined are shown in Fig. 3.
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Fig. 3. Estimated reflection coefficient magnitude vs. frequency, based on simulated signals for relative
crack depths of 10%, 20%, 30%, and 40%. Results derived by a) CWT and b) SPWD. Lines with asterisks

stand for the theoretical results derived from Eq. (15).



950 A. APOSTOLOUDIA et al.

For comparison reasons, the theoretical curves of the reflection coefficient derived
from Eq. (15) are also depicted. The reflection coefficients predicted through the CWT
analysis, shown in Fig. 3a, follow the theoretical curves consistently for all crack depths
and over the entire frequency-range involved. Figure 3b presents the results derived
by the SPWD method. The estimated reflection coefficient magnitude is in excellent
agreement with the theory.

5. Experimental results

The experimental arrangement is shown in Fig. 4. It consisted of a uniform brass
beam of cross-section S = 0.016 × 0.016 m2, a total length of L = 3 m and material
properties E = 97.66 GPa and ρ = 8500 kg/m3. The beam was suspended horizontally
by thin threads at a distance L/10 away from the ends to approximate the free-free
boundary conditions. A saw cut was introduced at xc = 1.01 m from the left end to
simulate the transverse crack. A miniature accelerometer was mounted at xa = 0.01 m
from the left free end to measure the response of the beam. The beam was excited by the
impact of a steel ball (diameter 6 mm) dropped from a constant height at the left free
end. Flexural waves generated by the impact were measured, recorded in a computer
and later analysed.
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Experiments were performed for three different relative crack depths, namely 10%,
20% and 30% and the corresponding spectra were obtained by application of the two
time-frequency methods. In this analysis, both the reflection coefficient magnitude and
the location of the crack are to be estimated.

Following the procedure described in the simulated results (Sec. 4), the reflection co-
efficients are predicted and the results are shown in Fig. 5, where the theoretical curves
are also depicted. It can be observed from Figs. 5a and 5b that both CWT and SPWD
give similar results, with the SPWD curves being slightly closer to the theoretical ones
(for relative crack depths of 20% and 30%). The predicted curves seem to deviate from
the theoretical ones, for all crack depths, mainly because of the frequency content of the
beam impact that differs from that of a pure impulse. Moreover, the theoretical reflec-
tion coefficient curves are derived, based on the Euler–Bernoulli beam theory that is an
approximation model.
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Fig. 5. Estimated reflection coefficient vs. frequency, based on experimental signals for relative crack
depths of 10%, 20%, and 30%. Results derived by a) CWT and b) SPWD. Lines with asterisks stand for

the theoretical results derived from Eq. (15).

In order to estimate the location of the crack, the frequency-dependent group ve-
locity of the specific beam is obtained experimentally by exciting a healthy beam of
the same characteristics. Through the time-frequency distribution of each method, the
arrival times associated with the impact and the first boundary reflection are identified
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as the time instances that correspond to the maximum values of the power distribution
for each frequency. The group velocity is determined as

cg(ω) =
2LB

tb(ω) − ti(ω)
, (22)

where LB is the distance between the measurement position and the boundary of the
beam, while tb and ti denote the arrival times of the reflected and the incident waves,
respectively.
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Fig. 6. Estimated crack position vs. frequency, based on experimental signals for relative crack depth of
20%. Results derived by a) CWT and b) SPWD. Dashed line represents the real crack position, LM = 1 m.
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The derived group velocity is utilised in Eq. (20) to estimate the location of the
crack, namely the distance between the accelerometer and the crack. Note that in the
experimental arrangement, the real location of the crack is LM = xc − xa = 1 m.
Figure 6 illustrates the estimated crack locations vs. the frequency for the two methods
examined, in the case of relative crack depth of 20%, while Table 1 presents the mean
and the standard deviation of the absolute error of the estimated crack location for all
crack depth cases. From these results we conclude that the SPWD performs better than
the CWT, giving accurate predictions of the crack location.

Table 1. Mean value ε̄ and standard deviation σε of the absolute error of the estimated crack location
derived by the two methods examined: Continuous Wavelet Transform (CWT) and Smoothed Pseudo-
Wigner Distribution (SPWD). Results are obtained from experimental signals and for relative crack depths

of 10%, 20%, and 30%.

Crack Depth 10% 20% 30%

ε̄ σε ε̄ σε ε̄ σε

CWT 0.0211 0.0147 0.0175 0.0127 0.0155 0.0115
SPWD 0.0069 0.0048 0.0064 0.0045 0.0063 0.0044

6. Conclusions

In this paper, two time-frequency representation methods (CWT and SPWD) were
employed for detecting the cracks in beams. The size of the crack was associated with
the reflected coefficient magnitude, which is evaluated by considering the ratio of the
energy reflected by the crack to the incident energy generated by an impact. The energies
carried by forward and backward travelling transient flexural waves were evaluated for
each excitation frequency over a wide range of frequencies. Furthermore, the location
of the crack with respect to the acceleration measurement position was estimated, based
on the difference between time arrivals of the incident and the reflected waves.

The performance of each method was investigated by means of both the simulated
and experimental data. Results indicate that the SPWD provides the best performance
in accurately estimating both the reflection coefficient magnitude and the location of
the crack. The results derived by the CWT were also reliable. However, the SPWD out-
performs the CWT, because the SPWD results in finer resolution in the time-frequency
plane giving concentrated (narrow) ridges; thus, the evaluation of both the energy and
arrival times is more accurate.

Concluding, among the methods examined, the SPWD is the most accurate and re-
liable one for crack detection based on wave propagation of transient flexural waves.
Also, the CWT performs well, while its accuracy could be further improved by appro-
priate selection of the mother wavelet used.
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