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Hearing impairment is one of the fastest growing diseases of modern society. Therefore
it is very important to develop new methods for diagnosis and therapy of hearing disorders.
Some of them were introduced to practice as a result of a co-operation between institutions
mentioned in the header. The system for mass-scale hearing screening is one of multimedia
programs for testing communication senses introduced by the authors. The further develop-
ments include among others an application of dithering theory to practical solutions for tinni-
tus patients and a method of fitting hearing aids employing soft computing. The implemented
hearing diagnostic & therapy applications and systems with their underlying concepts are re-
viewed in this paper.
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1. Introduction

The epidemiological studies, conducted systematically in Poland since 1999 by the
Institute of Physiology and Pathology of Hearing have shown, that one child out of five,
in the age group 6-19 years, has hearing problems. Hearing disturbances have a very
distinct influence on the child’s learning progress, emotional and intellectual develop-
ment. As early detection of hearing disorders may result in better treatment effects, it
is highly important to detect these problems in early age of children. Being aware of
these facts, an Internet-based system was devised to provide a popular, cheap and easy
method for screening testing of hearing, mainly intended for schoolchildren.

Advances in teleinformatics as well as its mass employment in the recent years
opened new possibilities of conducting mass screening of hearing, tinnitus (ear noises),
speech and vision. Diagnostic and recovery systems associated with the interactive med-
ical portal Telezdrowie (www.telezdrowie.com) designed by the institutions mentioned
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in the header of this paper serve as an example, how relatively simple diagnostic meth-
ods employed in screening tests can be mass-deployed thanks to teleinformatics, defin-
ing new quality of widespread diagnostic tests of communication senses [3, 6].

Moreover, on the basis of digital signal processing we proposed a theoretical ex-
plaining to the method of eliminating tinnitus originating from threshold quantisation,
basing on the dithering technique. This technique involves supplementing low-level use-
ful signals with noise of certain level, which has the effect of stopping the process of
spontaneous noise generation in the human auditory system resulting from the thresh-
old characteristics. The findings also formed a base for some multimedia applications
developed to assist tinnitus patients [7, 8, 11].

Furthermore, the paper presents a general principle of operation of the designed
system for fitting hearing aids as well as the results of experiments utilizing implemen-
tations of this system [4, 6, 14].

Thus, this paper provides a short survey of some selected topics from our common
research & implementation works devoted to multimedia services for those who may
have hearing problems. We choose these topics because we believe that they are related
in many aspects to Professor’s Andrzej Rakowski research interest whose 50 years of
research activity is celebrated with this special issue of Archives of Acoustics. In this
connection, his broad research interests include among others problems related to psy-
choacoustics and hearing impairments.

2. Hearing screening employing personal computers

Awareness of hearing problems in society is not common. Therefore, we conceived
a system intended to provide easy access to information about hearing problems, ways
of treatment and specialist’s contact information. It is important in this context to state
that “I can hear...” system (www.telezdrowie.pl) launched by our institutions some
years ago is not just another Internet application. Several medical consultation centres
were also started in Poland which were prepared to receive “Internet patients” and take
care of them. This relatively simple concept pioneered telemedicine in Poland and as
indicate numerous international prizes awarded to above solutions, it was considered
innovative not only in our country.

The elaboration of “I Can Hear...” system was also motivated by scientific goals.
Since this system is based on the Internet, it can be used in a straightforward way for
statistical data acquisition by gathering information about hearing problems within a
tested population. These data make an excellent source of information for scientific
research purposes, giving a better insight into statistical distribution of hearing problems
among children and youth. Obtained results may be exploited in health care prevention
programs design.

Signal generating, analyzing and processing play a crucial role in diagnosing and
treating hearing losses. This fact is associated, besides other factors, with the method-
ology of audiometric measurements and with supporting hearing with hearing aids and
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cochlear implants. The main advantage of speech audiometry is that, unlike tonal au-
diometry, it allows for measuring not only receptive or conductive hearing, but also for
assessment of the whole complex hearing-perception mechanism. That is why speech
audiometry was utilised in screening children and teenagers in schools. Two main types
of thresholds are associated with speech audiometry. The first one is Speech Detection
Threshold — SDT. 1t is defined as the lowest signal level, for which speech is heard
over 50% of the time. The second threshold type is Speech Reception Threshold — SRT,
defined as the lowest signal level, for which speech is understood during 50% of the
time.

When speech audiometry tests are performed using noise masking the investigated
ear, we speak about so called speech-in-noise audiometry. The masking noise makes
speech understanding harder, in this case on purpose. This effect can be seen on audio-
grams in the shape of classical noiseless speech audiograms being “shifted” right by
a value equal to the masking noise level (Fig. 1). Widely used measurement methods
are based only on three-tone tonal audiometry. Within the presented project a relatively
new method, based on additional use of speech-in-noise audiometry, was used exten-
sively. Besides simple tones this method employs speech signal mixed with noise in
appropriate proportions. This method in combination with the three-tone test and with
a set of electronic questionnaires forms a basis for a system of mass hearing screening,
which has so far been used to test above 500,000 of school pupils. These results were
published also earlier, e. g. [3, 6].
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Fig. 1. Speech audiogram shifted due to influence of masking noise AL.

3. Digital technology in diagnosing and treating tinnitus

Tinnitus (ear noises) often appears in cases of elevated hearing threshold associated
with hearing loss due to inner ear diseases. Such condition may be caused by degener-
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ation of external hair cells, causing neurons to be activated by signals of levels higher
than normal. In such a case a threshold system of elevated activation threshold is present.
However, before such elevated threshold appeared for the given patient e.g. due to suf-
fered disease or development of otosclerosis, signals were received and interpreted as
hearing stimuli at higher levels of the hearing track.

According to our findings this fact results in introduction of an additional mecha-
nism of threshold quantisation of weak acoustic stimuli, which in turn results from the
elevation of activation threshold of nerve cells. The existing theories in audiology at-
tempting to explain this phenomenon do not directly take into account the mechanisms
of signal quantisation occurring due to presence of threshold characteristics in the trans-
mission system. Such interpretation becomes possible only after using the knowledge
of electric signal processing developed in other fields of science, e.g. in digital signal
processing. Using this approach, we proposed a new interpretation of the phenomenon
of tinnitus generation on the basis of the theory of audio signal quantisation [2, 3, 9].
Moreover, on the basis of digital signal processing we proposed a theoretical explaining
to the method of eliminating tinnitus originating from threshold quantisation, basing
on the dithering technique. Generally speaking, this technique involves supplementing
low-level useful signals with noise of certain level, which has the effect of stopping the
process of spontaneous noise generation in the hearing track resulting from the threshold
characteristics. One can easily notice that a corresponding approach is used to reduce
tinnitus in audiology practice, where masking noise generated by special masker de-
vices is utilised. The widely known effectiveness of such techniques of reducing both
ear noises (in audiology) and quantisation noises generated spontaneously in electronic
circuits (in digital signal processing) indicates that ear noises are justified to be inter-
preted as a direct consequence of quantisation of weak signals in threshold systems.
It may be useful at this point to present several aspects of analysis of quantisation phe-
nomena. They will be further used to show, how the interpretation of the phenomenon of
noise generation in quantising systems and its elimination with additional, “masking”
dither noise may be useful for explaining the phenomena observed in the case of ear
noises [6, 7, 9].

As is widely known, typical transition functions of a quantizer are described by the
following formulae:

Q) = A [z + ;} (M
or
A
f@) =25+ 5 @

where x — value of the sample before quantisation (at input), A — height of quantisation
step, [ ] — operator returning the integer nearest to the given real number.

In the case of complex input signals of high amplitudes successive errors are un-
correlated and therefore the power density spectrum is similar in character to that of
white noise. Error signal is also uncorrelated with the input signal. Distribution of error
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probability density for a quantizer of transition function described by formula (6) is a
rectangular window function:

1 A
A for |z| < 5
0 for |z|>—

For complex input signals the maximum error is equal to the least significant byte
(LSB) and, provided that approximation is good, samples of quantisation error J,, can
be considered independent of the input signal. For input signal of such type uniform
quantisation can be easily modelled by adding white noise to the input signal. However,
for input signals of low level the model of additive white noise is no longer valid. In
such a case the error becomes significantly dependent on the input signal. Signals from
the range (—A /2, A/2) are ascribed zero value by the converter and therefore are not
conducted along the track; this effect is known as “digital deafness”. In such case there is
no signal at the output and the error is equal to the input signal, but has the opposite sign.
This type of error is noticeable by ear and therefore is a disadvantageous phenomenon
associated with quantisation.

The dither technique is aimed at modifying statistical values of total error. In quan-
tising systems which do not use the dither technique the instantaneous error is a defined
function of the input signal. If the input signal is simple and comparable in altitude
to the quantisation step, the error is strongly dependent on the input signal and intro-
duces audible distortion and modulation noise. Use of the dither signal of appropriately
shaped statistical properties may cause the audible distortions to be similar in character
to stationary white noise.

Today’s digital audio tracks use the dither technique utilising noise of triangular
function of probability density and peak-to-peak value of 2 LSB. The dither noise is
therefore an additive noise introduced into the signal, usually before the quantiser. The
averaged response obtained at the conversion system output is the following function of
input signal:

o0
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where p,,(v) is the probability distribution density of the noise, in the case of noise of
rectangular distribution defined as:

1/¢, f <¢/2,
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where £ is the peak-to-peak amplitude of the dither noise.
Figure 2 illustrates the fundamental phenomena taking place, when a signal of am-
plitude comparable to quantisation threshold is fed onto the A/C converter input.
Figure 3a shows the result of quantisation of a sinusoidal signal obtained without
introducing the dither noise, while Fig. 3b shows the result of quantisation of the same
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Fig. 2. Effects associated with quantisation of small amplitudes and the influence of the dither noise: (a)
“digital deafness”; (b) “binary quantisation”; (c) dither removes the insensitiveness range of the converter;
(d) “response blurring” in the case of binary quantisation.
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Fig. 3. Effects of quantisation of waveform of amplitude corresponding to quantisation step: (a) harmonic
signal directly after quantisation; (b) quantisation using the dither noise; (c) signal from the previous plot
averaged over 32 periods; (d) result of averaging over 960 periods.
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signal in presence of the dither signal. The same figure (parts ¢ and d) proves that av-
eraging the representation (b) can lead to almost perfect reproduction of the original
waveform that was subject to quantisation. One shall note that, as the sense of hearing
possesses noticeable integrating properties, similar processes can certainly take place
in the hearing track. It is important to observe that the case depicted in Fig. 3b may
correspond to the case of spontaneous emission of signals in result of occasional cross-
ing the quantisation threshold level by random acoustical signal (e.g. background noise

components).
Noise power at output for static input signal can be defined as:
o0
Piw) = [ e+ v) = 5@ Pp (), ©
—00

In the case of the dither noise of Gaussian distribution defined as:
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Introducing the “masking” dither noise at a proper power level lets us obtain the
desired results of eliminating the low-level signals quantisation effects and minimising
distortions occurring for very low amplitudes of the signal being quantised. Audibility
of the introduced noise can be decreased by preliminary shaping its spectrum, so that
noise energy rises towards higher frequencies. The same principles remain valid for
masking tinnitus, due to visible similarity of phenomena occurring in electronic and
biological signal-transmission systems.

Possibilities resulting from the above statements were employed practically in the
process of creating a Web-based application for people suffering from ear noises, which
is accessible at www.telezdrowie.pl (or www.telewelfare.com). This application includes
a system of electronic questionnaires and a database of signals useful for masking ear
noises. It allows a patient to diagnose his own ear noises using a computer. Next, after
consulting a doctor, the patient can download a masking noise appropriate for him and
store it in a portable mp3 player, which allows for an effective treatment by tinnitus
masking. Recently, we extended this concept to the range of ultrasound frequencies [7].
It enabled us to propose and to design the ultrasound tinnitus masker device.

An application of the ultrasound transducer in this device (see Fig. 4) enables to
obtain advantageous characteristics of the masker because [5]:

1. Itis possible to employ bone conduction for the transmission of masking noise.

2. It is possible to increase the noise level without making it audible and invoking

hearing tiredness.

3. A ultrasound converter of small dimensions makes a further significant miniatur-

ization possible.



498 A. CZYZEWSKI, H. SKARZYNSKI

The experimental results obtained employing above methods were presented in
some of our recent papers [7, 8].

b)
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i

o
|

Fig. 4. (a) Piezoelectric transducers utilized in various versions of ultrasound bone stimulator; (b) highly
miniaturized signal processors used to generate dither noise at 30 kHz frequency (b).

4. Method of computer-aided adjustment of hearing aids

Widely-used systems of adjusting hearing aids allow for setting parameters of a
hearing aid, which usually does not mean however that the optimum characteristics of
speech perception in hearing impaired is obtained. As in a general case the problem of
adjusting a hearing aid can be approximately brought down to the problem of adjusting
the wide dynamics of speech to the narrowed dynamics of impaired hearing, we and our
Ph. D. student [14] focused mainly on the problem of determining the characteristics of
impaired hearing and then on deriving the dynamics of the sought hearing aid that would
compensate for the damage. This is certain simplification, because in a real hearing aid
the quality of hearing loss correction is also influenced by other factors, such as: noise
reduction algorithms, equalizing of the processed signal or acoustic elements of the
hearing aid [1, 12, 13].

Properties of hearing dynamics can be determined on the basis of results of a loud-
ness scaling test. The designed system includes an implementation of the loudness scal-
ing test based on an algorithm for evaluating sensation of Loudness Growth in half-
Octave Bands (LGOB) [10]. The test utilizes signals in the form of white noise samples
filtered in half-octave bands of central frequencies of 0.5 kHz, 1 kHz, 2 kHz and 4 kHz.
A person being diagnosed during the test is exposed to randomly presented test signals
of various sound levels. The person being diagnosed evaluates the loudness sensation
using a seven-degree scale of categories of loudness sensation represented by descrip-
tive labels (from “nothing is heard” to “very loud”). This is a standard procedure serving
as an initial step to further processing of results obtained in this way, because the de-
veloped system utilizes a special module for converting results of loudness scaling to
hearing dynamics representation. This module utilizes fuzzy processing to map the re-
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sults of scaling from categories of loudness sensation evaluation into the objective scale
of input sound level expressed in dB. The category scale is represented by 7 fuzzy sets
described by membership functions. These membership functions were derived from
statistical analysis of loudness scaling for 20 regular-hearing persons. The output of the
fuzzy logic system is described by 13 membership functions representing the difference
between the given result of scaling and the results for regular hearing [5].

As there are four frequency bands of centre frequencies of 500 Hz, 1000 Hz, 2000 Hz
and 4000 Hz tested in the LGOB test, four sets of membership functions are required.
For determining such membership functions it was needed to perform the LGOB test on
several dozens of regular-hearing persons. At the stage of method designing we prepared
the required membership functions on the basis of generally accepted approximation of
LGOB test results for regular hearing.

One of the basic methods of approximation that come to mind after analyzing typical
fuzzy logic systems and the set of theoretical membership functions (as in Fig. 5) is
approximation of result-containing boundary of the set with triangle-shaped functions. It
can be performed e.g. on the basis of mean-square approximation. One should determine
the equations of two straight lines approximating the triangle sides in the mean-square
sense for this purpose. The algorithm used by the authors to determine the triangular
membership functions involves the following steps [5]:

e Finding the value of the first element belonging to the given fuzzy set (value of
the first argument, for which the factual membership function takes a non-zero
value).

e For determining the position of the first arm of the triangle one considers all the
elements of the membership function MF fulfilling equation:

T <xv (MF (z;) — MF (2;-1)) > 0> , (10)

where ¢ — subsequent indices of arguments of membership functions MF fulfilling con-
dition (10).
e Calculating coefficients a; and by of the straight line equation y = ajx + by
e For determining the position of the second arm of the triangle one considers all
the elements of the factual membership function MF fulfilling equation:

(¥ (P (49) = MF (5-1)) <=0, (a1
where 7 — subsequent indices of arguments of membership functions MF fulfilling con-
dition (11).

e Calculating coefficients az and by of the straight line equation y = asx + bo.

e Calculating the point of intersection of the straight lines y = a1z + by and y =

asx + bo.

e Calculating zeros of both lines.

An example of a set of membership functions for the frequency band of 500 Hz
obtained by approximating the real values is illustrated in Fig. 6.
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Fig. 5. Set of membership functions describing loudness sensation for regular hearing, derived on the basis
of theoretical data.
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Fig. 6. Approximation of values of membership functions with triangles performed on the basis of real
data.

The next step of the described method involves defining the system output. As the
aim of the designed method is determining the dynamics of impaired hearing, the de-
signed system should compute the difference among the given loudness sensation eval-
uation and the correct loudness sensation evaluation corresponding to the given test
signal. This difference should be expressed in dB.

An analysis of a typical plot of LGOB test results reveals that between seven cate-
gories of loudness sensation evaluation one can define six differences pointing to hear-
ing loss (area below the LGOB curve for regular hearing) and six differences pointing
to hypersensitivity (area above the LGOB curve for regular hearing). No difference is
a special case of difference. The above analysis leads to a conclusion that the output of
the described fuzzy system can be described by a set of thirteen membership functions
(Fig. 7) expressing the difference between the factual loudness sensation evaluation and
the evaluation for regular hearing. Fuzzy sets obtained in this manner can be described
with the following labels (describing the difference size): none, very small, very small+-,
small, small+, medium, medium+-, big, big+, very big, very big+, total, total+. Labels
marked with “+” sign denote positive difference (hypersensitivity).
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A fuzzy processing depends on properly defined rule basis. Fuzzy logic rules have
the following shape:

If <premisel> AND <premise2>. .. AND <premise_n> THEN decision.

nTutaI Big Small Hone Small+ Big+ Total+

‘l."elj.l big Medlum Ver}l small \I"eu,l small+ Medlum+ \»"eul big+
l] 1 7 dB S5PL
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Fig. 7. Initial membership functions describing the difference between regular and abnormal loudness
scaling.

In the discussed case there are two premises. The first one is associated with infor-
mation on regular loudness scaling. The other premise is associated with the investigated
results of LGOB test. Since both premises apply to the results of the LGOB test, they
both use the same categories describing loudness sensations. In order to differentiate the
fuzzy sets associated with individual premises, labels of fuzzy sets associated with the
first premise use lower case letters while those of fuzzy sets associated with the second
premise utilize upper case letters.

Generally the rule base is designed on the basis of audiologists’ expertise. In this
case such expertise can be derived from the analysis of the LGOB test. The analysis of
LGORB test results for regular-hearing persons shows that the loudness scaling is linear
in character, however the factor of proportionality rises from 1:1 to 2:1 (the loudness
sensation rises twice faster) for test signals of level exceeding 100 dB SPL. On the basis
of above information a rule base was prepared. It is presented in Table 1. Categories as-
sociated with regular hearing are marked with lower case (e.g. “loud”), while categories
marked with upper case (e.g. “LOUD”) are associated with hearing impairment.

The last stage of the system’s operation is defuzzyfying, i.e. conversion of the ob-
tained categories to a numerical value. After performing this process (using the centre
of gravity method) one obtains the characteristics relating the sound levels expressed
in dB to the expected subjective assessment of loudness sensation for the given patient;
this is the sought characteristics of hearing dynamics.

In order to determine the whole dynamics characteristics of investigated hearing we
had to create an algorithm which would calculate the desired hearing dynamics charac-
teristics on the basis of LGOB test results using the designed method of determining the
difference between regular and impaired loudness scaling.

A fundamental advantage of the designed method is the mechanism of automated
mapping from the category scale to the scale of sound levels expressed in dB. Moreover,
the designed method of determining the hearing dynamics utilizes full information on
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Table 1. Rule base for the fuzzy system (the decision attribute is the difference between regular perception
and perception taking place in cases of hearing impairment.

IESES VERY SOFT| SOFT | MCL | LOUD |VERY LOUD | TOO LOUD

I don’t hear | None V.small+ Small+ | Medium+ | Big+ V.Big+ Total+

very soft V.small | None V.small+ | Small+ Medium+ | Big+ V.Big+

soft Small V.small None V.Small+ | Small+ Medium+ Big+

mcl Medium | Small V.Small | None V.small+ | Small+ Medium+
loud Big Medium Small V.small None V.small+ Small+

very loud | V.Big Big Medium | Small V.small None V.small+
too loud Total V.big Big Medium | Small V.small None

regular loudness scaling in LGOB test, while the standard methods of adjusting hearing
aids utilise averaged data only. In the course of the standard determination of loud-
ness scaling (LGOB test) the diagnosed person is presented multiple times with filtered
noise samples and the obtained results are subsequently processed statistically, while
the designed method requires only presenting the diagnosed person with filtered noise
samples corresponding to seven loudness levels in four frequency ranges. The resulting
difference in test-related effort and duration is of fundamental importance for audiology
practice.

Figure 8 presents an example plot of loudness scaling results with the LGOB test,
which were obtained for test signals from the frequency band centered around the fre-
quency of 500 Hz.

0 20 40 60 &0 100 120
dB SPL

Fig. 8. Sample results of LGOB test (category scale on Y -axis).

The derived dynamics characteristics of impaired hearing can be additionally used
by the presented system for approximate simulation of the hearing loss. In order to
derive the sought dynamics characteristics of hearing aid, the system compensates the
dynamics characteristics of impaired hearing. This compensation is based on flipping
the hearing dynamics characteristics by the y = x straight line (Fig. 9).
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Fig. 9. Compensating the dynamics characteristics of impaired hearing (sound level on Y -axis).

Obtained degrees of speech understanding for individual listening tests are presented
in Table 2 [14]. The degree of speech understanding is expressed in percent. The first
value denotes the degree of speech understanding without dynamics processing, while
the second (after the arrow) denotes the degree of speech understanding after dynamics
processing based on the obtained dynamics characteristics of hearing aid.

Table 2. Averaged degrees of speech understanding for patients suffering
from severe hearing deficiency [14].

Patient Logatom test | Word test + CCITT noise Sent.e nee test +
cocktail-party noise
Patients 1-10 55% > 66% 11% > 33% 55% > 17%

values (without compression) mapped (>) to values (with adjusted compression).

5. Conclusions

We reviewed in this paper three examples of our common research devoted to appli-
cations of multimedia technology to hearing impaired people.

Results of over 500,000 tests performed so far show that multimedia computers
running appropriate software are effective tools for performing hearing screening tests.
In this approach it is important to use tests adapted for individual age groups and use
speech in noise as test material.

Computers can be used effectively also in tinnitus diagnosing and digital ultrasound
devices are applicable to the therapy process. Moreover, the approach aimed at exploit-
ing the analogies between nature and technology helped to search for tinnitus origins
and to formulate hypotheses concerning the process of its generation.

Fitting hearing aids according to patients’ needs and hearing characteristics is yet
another problem, which so far has not been finally solved. As we demonstrated this
process may utilise soft computing (fuzzy reasoning) in the course of optimising com-
pression settings in hearing aids.
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