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This work is focused on the automatic recognition of environmental noise sources that affect humans’
health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition
of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore,
although considering all the aforementioned noise sources, this paper especially focuses on improving
the recognition of road noise events by taking advantage of the perceived noise differences along the
road vehicle pass-by (which may be divided into different phases: approaching, passing and receding).
To that effect, a hierarchical classification scheme that considers these phases independently has been
implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%,
which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without
hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy
vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are
performed to compare the system performance with human recognition ability. The results reveal that,
although an expert human listener can achieve higher recognition accuracy than the proposed system,
the latter outperforms the non-trained listener in 10% in average.

Keywords: acoustic signature, environmental noise monitoring, Gaussian Mixture Models, hierarchical
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1. Introduction

Environmental noise might be regarded as un-
wanted sound produced by transport, industrial or
recreational activities (EU Directive, 2002). Those en-
vironmental noise sources typically encountered on
cities and urban areas affect citizens’ quality of life, be-
sides involving harmful health effects (Babisch, 2006;
Rasche, 2004). The publication and adoption of the
Green Paper on Future Noise Policy in Europe in 1996
(EU Commission, 1996) contributed to the awareness
of environmental noise as a pollutant. Six years later,
the Environmental Noise Directive (END) (EU Direc-
tive, 2002) was published with the latest goal of in-
forming the public about their exposure to noise and
drawing up appropriate action plans to prevent the
harmful effects derived from their exposition to noise.
In compliance with the END, the member states of
the European Union are required to report the noise
levels caused by the aforementioned sources by pro-
ducing strategic noise maps in their main cities, trans-

port infrastructures and industrial sites. In the same
context, the last review of the International Standard
on the Determination of Environmental Noise Levels
(ISO 1996-2:2007) states that in traffic noise assess-
ment, vehicles have to be classified within at least
two categories: light and heavy (ISO, 2007). In this
framework, measurements in complex acoustic situa-
tions (e.g., urban environments) have to be conducted,
with the presence of noise from diverse origins, such as
road traffic, railway traffic, aircrafts, industrial, etc.
Only if we are capable of developing precise descrip-
tions and measurements, the action plans designed to
reduce or prevent high levels of environmental noise
will be efficiently addressed.
In this sense, the implementation of environmen-

tal noise recognition systems may provide with an
automatic transcription of the types of noise sources
present on a certain location and their contribution
to the overall noise level measured. The application
of those systems would be of special interest for long-
term measurements (lasting from several hours up to
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several months), as a means for recreating the acous-
tical situation automatically. Typically, the environ-
mental noise recognition systems are composed of two
main blocks: the first one consists in signal process-
ing, which parameterises the sound signals by com-
puting a set of representative features, whilst the sec-
ond step performs the recognition of the environmen-
tal noise events by means of some machine learning
technique, generally following a supervised learning ap-
proach.
In this work, we consider the environmental noises

that need to be mapped according to the END, i.e.,
railway, air transport, industrial and road traffic noise.
As a first step, we address the classification of the
aforementioned noise sources, leaving their detection
and their identification among noise mixtures for fu-
ture works. It should also be noted that, in order to
enable embedding the technology into classical noise
monitoring stations (typically composed of one sound
level meter), we are interested in computationally effi-
cient solutions besides discarding approaches based on
different microphones (Mato–Méndez, Sobreira–
Seoane, 2011).
The first contribution of the paper is to extend and

update the comparison of signal features and machine
learning techniques for the problem at hand with re-
spect to (Valero, Aĺıas, 2011b) by considering up to
13 signal features and 4 machine learning techniques,
thus yielding a collection of 52 tested combinations.
Nevertheless, the main contribution of the paper re-
sides in the classification of road vehicle noise sources.
The reason to especially address this problem is two-
fold: firstly, because it is the type of environmental
noise with largest impact on the citizens’ quality of
life; and secondly, because the different vehicles (cars,
trucks and scooters) present very similar acoustic sig-
natures, which makes them the most difficult noise
sources to be distinguished, according to the results
reported in previous works (Defréville et al., 2006;
Ntalampiras et al., 2008; Valero, Aĺıas, 2011b).
Therefore, the main aim of this study is to improve
the classification of such noise sources by taking ad-
vantage of the change in the perceived sound along
the pass-by of the vehicle from the receiver position
as the basis for the discrimination among road vehicle
noise sources.
The rest of the paper is organized as follows. Sec-

tion 2 introduces the related work in environmental
noise source recognition. Section 3 reviews the back-
ground in sound signal features and machine learning
techniques. Section 4 describes the characteristics of
the road noise sources, which is the basis of the pro-
posed classification scheme. Section 5 describes the ex-
perimental evaluation and Sec. 6 details the analysis
of the obtained results. Section 7 discusses the results
and, finally, Sec. 8 draws up the conclusions and future
work.

2. Related work

Up to our knowledge, one of the first approaches
focused on recognising environmental noise events
recorded at noise monitoring stations was presented
in (Couvreur et al., 1998). The recognition system
was borrowed from the speech recognition field, in-
cluding both Linear Predictive Coefficients (LPC) and
Hidden Markov Models (HMM) so as to classify five
different types of noise sources: cars, trucks, mopeds,
aircrafts and trains. In (Rabaoui et al., 2004), sev-
eral signal features were explored: LPC, Mel Fre-
quency Cepstral Coefficients (MFCC), Perceptual Lin-
ear Predictive (PLP), Discrete Wavelet Coefficients
(DWC) and Mel Frequency Discrete Wavelet Coeffi-
cients (MFDWC). The performance of these features
was experimentally compared using HMM on a cor-
pus composed of five noise events (cars, trucks, planes,
trains and dogs). Among them, PLP and MFCC at-
tained the best classification results. A broader sig-
nal feature comparison was carried out in (Valero,
Aĺıas, 2011b), extending to 13 the number of consid-
ered signal features (including temporal domain, spec-
tral domain, linear prediction andWavelet features). In
combination with a Multilayer Neural Network, both
MPEG-7 and MFCC attained the highest averaged
recognition accuracies in a corpus containing road ve-
hicles, aircrafts, trains and industrial noises. Besides
comparing different signal features, Fisher Linear Dis-
criminant and K-Nearest Neighbor (KNN) were evalu-
ated in (Sobreira et al., 2008) for the recognition of
specifically road traffic noise sources (cars, trucks and
scooters). Experimental results showed that KNN was
the machine learning technique yielding the best per-
formance, specifically when considering feature combi-
nation (MFCC, Sub-band Energy Ratio (SBER) and
Spectral Roll-Off (SRO)).
Broadly speaking, the different aforementioned re-

search works were reduced to experiment with differ-
ent signal features and machine learning techniques
following a flat classification scheme. In contrast,
(Defréville et al., 2006) and (Ntalampiras et al.,
2008) proposed addressing the problem by means of
a hierarchical scheme. In (Defréville et al., 2006), the
classification system was composed of a first layer that
discriminated between mechanic (moped, bus, motor-
cycle and car) and non-mechanic classes (birds and
voices). The system evaluation consisted in conduct-
ing many one-against-all experiments, and no test was
carried out involving the six urban sounds altogether.
In addition, for every one-against-all experiment a dif-
ferent combination of features (from a library of 80
operators such as FFT, min, max, arcsin, etc.) was
selected. Thus, both the global performance of the
system and its generalization capability still remain
unknown. Similarly, in (Ntalampiras et al., 2008)
a hierarchical classification scheme was proposed, com-
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posed of a first Gaussian Mixture Model (GMM) that
classified the samples into mechanic and non-mechanic
categories, followed by HMM that completed the clas-
sification of the specific noise source within each cat-
egory. This work included experiments considering all
the environmental noises at the same time, thus pro-
viding information about the performance and the
most frequent class confusions of the system when try-
ing to recognize all the noise sources at the same time.
Both with MFCC and MPEG-7 features, the most
common misclassifications were observed among the
mechanic classes, especially observable in the car cat-
egory.
In this work, we make a significant step further

from previous hierarchical classifiers approaches in or-
der to specifically improve the recognition of road ve-
hicle noise sources (while also considering aircrafts,
trains and industrial noise). Hence, we put forward
an environmental noise classification scheme that takes
into account the particular acoustic signatures of road
vehicle noise sources by dividing the vehicle pass-by
into different phases (see Sec. 4).

3. Background review

In this section we briefly review the main signal
features and machine learning techniques employed in
the related literature, which are later considered in the
experiments described in Sec. 5.

3.1. Signal features

One of the main goals the sound signal features
may accomplish is that they should accurately repre-
sent the characteristics of the sound signals by a re-
duced amount of coefficients. According to the related
literature, the choice of the signal feature is partic-
ularly important for environmental noise classification
(Umapathy et al. 2005; Chu et al., 2009). In the past,
a wide variety of signal features have been employed
to describe sound signals. In this section, we briefly
describe the most frequently used. We refer the inter-
ested reader to (Kim et al. 2005; Rabiner, Juang,
1993; Eronen et al. 2006) and (Rabaoui et al. 2004)
for a more detailed description.
a) Time-domain features:

• Short Term Energy (STE): describes the time en-
velope of the signal, being calculated as:

STE =

N−1∑

n=0

|x[n]|2 =

K−1∑

k=0

|X [k]|2, (1)

where x[n] states for the sound signal in the time
domain, X [k] is its Fourier Transform, N is the
number of samples of the signal frame analysed
and K the number of FFT points.

• Zero Crossing Rate (ZCR): number of times that
the signal crosses the zero in terms of amplitude.
It is related to the periodicity of the signal.

b) Spectral domain features:
• Spectral Centroid (SC): measures the centre of
gravity of the power spectrum X [k] (2).

SC =

K−1∑
k=0

k · |X [k]|
K−1∑
k=0

|X [k]|
. (2)

• Spectral Roll-off (SRO): bandwidth in which is
concentrated most of the power spectrum ener-
gy (3). It gives information of the “skewness” of
the spectral shape.

SRO = max
m

(
m∑

k=0

|X [k]| ≤ TH ·
K−1∑

k=0

|X [k]|
)
, (3)

where TH is set between 0.88 and 0.95 (Kim
et al., 2005).

• Sub-Band Energy Ratio (SBER): energy distribu-
tion along the sub-bands Bi with respect to the
total signal spectrum energy.

SBERi =

∑
k∈Bi

|X [k]|

K−1∑
k=0

|X [k]|
. (4)

• Mel Frequency Cepstral Coefficients (MFCC):
Discrete Cosine Transform of a log power signal
spectrum on a non-linear mel frequency scale.

• MPEG-7 features: a total of 15 different low-level
descriptors are defined in the MPEG-7 standard
(ISO, 2001), considering different aspects of the
sound signal.

• Spectral Flatness (SF): deviation of the signal
power spectrum with respect to a flat spectrum
for each of the predefined spectral bands (5).

SFi =

hii−loi

√
hii∏

k=loi

X [k]

1

hii − loi

hii∑
k=loi

X [k]

, (5)

where hii and loi are respectively the upper and
lower band cut-off frequencies.

c) Linear prediction features:
• Linear Predictive Coefficients (LPC): coefficients
ai extracted from the prediction of the current
sample as the linear combination of the p previous
samples x(n).

x̃(n) =

p∑

k=1

[akx(n− k)],

LPC = {a1, a2, ... ak} .

(6)
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• Linear Prediction Cepstral Coefficients (LPCC):
Cepstrum ci obtained from LPC coefficients
ai (7), where G is the filter gain and p is the order
of the LPC coefficients.

c0 = log(G),

ci = −ai+
1

i

i−1∑

k=1

[−(i−k)akc(i−k)] 1 ≤ i ≤ p.
(7)

• Perceptual Linear Prediction (PLP): modified
version of LPC that adds critical-band spectral
resolution, equal-loudness pre-emphasis and the
intensity-loudness power law to mimic human
hearing processing.

d) Wavelet analysis:

• Discrete Wavelet Coefficients (DWC): coefficients
extracted with the time-frequency Wavelet Trans-
form.

• Mel Frequency Discrete Wavelet Coefficients
(MFDWC): modification of the MFCC that uses
the Wavelet transform rather than the Discrete
Cosine Transform to compress the signal energy.

3.2. Machine learning techniques

The mission of the machine learning technique is to
perform the classification of specific noise events, after
being parameterized with any of the aforementioned
input signal features. Following a supervised learning
approach (Jones, 2008), many different learning al-
gorithms can be employed. In the next paragraphs,
we describe some of the most typical ones in the con-
text of environmental noise classification. For a deeper
discussion, see (Bishop, 2003; Breiman et al., 1993;
Rabiner, 1989) and (Jones, 2008).

• Decision Tree (DT): performs the classification ac-
cording to a set of rules that divide the feature
space into several regions. Each rule is associated
to one node of the tree and it is based on a single
data attribute. Different rules can be applied to split
data at the node level (e.g., maximum deviance re-
duction, Gini’s diversity index, etc.). After building
the tree, a pruning process is typically performed to
avoid a too specific data fitting during the training
stage.

• K-Nearest Neighbour (KNN): performs the classi-
fication based on a majority vote of the K clos-
est neighbours to the sample being classified. The
method shows a good trade-off between simplicity
(no training process is required) and accuracy.

• Neural Network (NN): biologically-inspired compu-
tational model that provides general parameterised
non-linear mappings between a set of input and out-
put variables. The mapping is performed by means
of several weighting nodes and activation functions.
Depending on their architecture, several NN may be

built: from the simplest Perceptron to more complex
Multi-Layer NN or recursive NN.

• Gaussian Mixture Model (GMM): models the prob-
ability density function of each noise class as the
weighted sum of M simple Gaussian functions,
where each Gaussian function is represented by the
mean and the covariance matrix of the data. Then,
Expectation-Maximization algorithm is frequently
employed to identify the parameters of each class
yielding higher conditional probability.

• Hidden Markov Model (HMM): unlike the afore-
mentioned machine learning techniques, it considers
the time evolution of the noise signals by modelling
them as a finite sequence of unobservable states, be-
ing each one modelled by means of a certain proba-
bility distribution.

4. Road vehicle pass-by phases recognition

In this section, we first describe the characteris-
tics of the road vehicle noise sources that motivate the
proposed classification scheme, which is subsequently
detailed.

4.1. Characteristics of road noise sources

A road vehicle may be modelled as the combina-
tion of four noise sources with different characteristics
originated by: i) the engine, ii) the contact between the
tire and the asphalt, iii) the exhaust pipe, and iv) the
aerodynamic effect (Cevher et al., 2009). The engine
noise contains both a deterministic/harmonic compo-
nent (caused by the fuel combustion in the cylinders)
and a stochastic component (due to the turbulent air
flow in the air intake) (Amman, Das, 2001). The tire
noise is the main noise source when the speed of the
vehicle is higher than 50 km/h, and it is composed
of a vibration component (originated by the contact
between the tire and the asphalt, with an important
spectral content between 100 Hz and 1 kHz) and an air
component (originated from the air being sucked in or
forced out of the tire, with a dominant spectrum be-
tween 1 kHz and 3 kHz) (Sandberg, Ejsmont, 2002).
It should also be noted that, in the direction of the
car, the road and the tire form a geometrical structure
that amplifies the noise generated due to their interac-
tion (Cevher et al., 2009). This phenomenon is called
the horn effect, and especially amplifies the frequen-
cies in the range from 600 Hz to 2 kHz (Sandberg,
Ejsmont, 2002). The exhaust system goes from the
engine compartment to the back of the car, generating
a noise that, due to the system distribution, is more
noticeable in the rear that in the front of the vehicle
(Cevher et al., 2009). Finally, the boundary layer of
the vehicle generates an air flow which produces an
aerodynamic noise quite loud but only at very high
speeds (Peeters, Blokland, 2007).
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To sum up, the noise generated by a vehicle is char-
acterized by a complex spectral content due to the va-
riety of independent noise but also for their spatial
distribution (Peeters, Blokland, 2007), since the
independent noise sources are physically located in dif-
ferent positions of the vehicle. The engine noise might
usually be located in the front, the tire noise on the
sides and the exhaust pipe noise at the rear of the ve-
hicle. Therefore, and considering the acoustic shadow
effect caused by the vehicle itself, those three indepen-
dent noise sources will have different contribution to
the overall sound signal perceived by the receiver at
each point of the vehicle pass-by.
On the other hand, with regard to the relative posi-

tion between the moving vehicle and the receiver, the
Doppler effect must be taken into account (Cevher
et al., 2009). As it is well known, the signal frequency
increases in the vehicle approaching phase, and de-
creases in the receding phase. The frequency f per-
ceived by the receiver can be calculated as follows:

f =

(
c+ vr
c+ vs

)
f0, (8)

where c is the propagation speed of the acoustic wave,
vr is the running speed of the receiver, vs is the running
speed of the source and f0 is the original frequency of
the sound source.
Let us take as example a vehicle driven at 80 km/h.

At this speed the tire noise is the predominating
source, with a notable energy content centred at ap-
proximately 1000 Hz (Sandberg, Ejsmont, 2002).
Under those conditions, the signal frequency changes
from 1239 Hz when the vehicle is approaching, to
939 Hz when the vehicle is receding (calculated from
(1)). Hence, it results in a frequency variation of
300 Hz, which should not be neglected in the classi-
fication stage.
The multi-source representation of the vehicle (con-

sidering both its complex spectral content and its spa-
tial distribution), together with the Doppler effect as
it is moving noise source, are the two main causes of
the perceived noise change from the point of view of
the receiver. In consequence, the acoustic signature of
a vehicle pass-by can be divided into three phases, de-
pending on its position with respect to the receiver
or measurement point (microphone) when: the vehicle
is approximating (approaching), the vehicle is perpen-
dicular to the microphone (passing), and the vehicle is
moving away (receding). This effect might be observed
in the spectral representation of a scooter pass-by (see
Fig. 1), where also the higher impact of exhaust pipe
noise in the receding phase can be noticed. The differ-
ences between the approaching and the receding phase
might also be noticed in the asymmetry on the time
envelope of the road vehicle pass-by (see Fig. 2). Our
proposed approach for the automatic classification of
noise sources, which is further detailed in the next sec-

tion, has been built so as to make the most of the
spectro-temporal differences of vehicles pass-bys.

Fig. 1. Spectral differences observed in a scooter pass-by:
approaching, passing and receding phases.

Fig. 2. Signal time envelope of the pass-by of three different
road vehicles, after being normalized by its maximum.

4.2. A classification scheme adapted
to the spectro-temporal characteristics

of road vehicle pass-by

In this section, we describe the classification scheme
designed to improve the identification of road vehicle
noise sources by considering the characteristics of their
acoustic signatures.
As indicated in the introduction, other common en-

vironmental noise sources considered in this work (i.e.,
trains, aircrafts and industry) do not share the same
pass-by characteristics of road vehicles. Their acous-
tic signatures are either continuous (i.e., industry) or
present a too long pass-by to allow a short-term re-
sponse from the recognition system (i.e., an aircraft
and a train pass-by can last around 60s and 30s, re-
spectively). Hence, the road vehicles and the remaining
noise sources are modelled independently. Taking into
account these particularities, we put forward a hierar-
chical classification scheme to perform the identifica-
tion of urban noise sources (see Fig. 3).
The process starts by windowing the sound signal

and extracting the signal features from each resulting
frame. Next, the signal features from all the frames
are merged into a single feature vector. In this way, we
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Fig. 3. Block diagram of the proposed hierarchical environ-
mental noise classification scheme adapted to the spectro-

temporal characteristics of vehicles pass-by.

manage to preserve the signal time evolution (which is
especially relevant in environmental sound recognition
(Gygi, 2001)) when employing machine learning tech-
niques that do not necessarily take this evolution into
account (i.e., DT, KNN, NN and GMM). As a conse-
quence, the resulting feature vector has a large dimen-
sionality; therefore we next apply PCA to compact the
information (Kim et al., 2005). Subsequently, in a first
step, the classification scheme divides the noise sources
into road vehicle and non-road vehicle categories. In a
second step, the specific type of noise source within
each broad category is identified. Whilst non-road ve-
hicles are treated following a flat approach, the recog-
nition scheme of road vehicles divides the time pattern
of the parameterized noise sample into three parts,
corresponding to the approach, passing and receding
phases of the vehicle pass-by (see Subsec. 4.1). An in-
dependent recognition decision (i.e., class assignment)
is taken for each of these three phases and, finally, a
second decision layer applies a simple voting scheme
to come up with a unique solution (i.e., the recognised
noise source). In case of tie (i.e., all three noise sources

are labelled as a different type of vehicle), the second
decision layer selects the noise source identified at the
central passing phase (since it is the phase when the
source is closer to the receiver, and thus, we consider
it to be less contaminated by background noise).
It is worth noting that the proposed road vehicle

classification scheme involves a process to align the
centre of the pass-by with the centre of the tempo-
ral pattern (see Fig. 4). This process, which is only
applied to the road vehicle branch of the hierarchical
classification scheme, is carried out by calculating the
STE (1) all along signal temporal envelope and detect-
ing the frame with the largest STE value. The sound
signal is shifted accordingly to allow the frame with
maximum energy becoming the central frame of the
sound pattern.

Fig. 4. Example of the result of the pass-by alignment pro-
cess for four road vehicle sound samples.

5. Experimental evaluation

In this section, after describing the employed sound
database, we explain the experimental setup so as to
validate the performance of the proposed classification
scheme.

5.1. Sound database

The considered sound database was built after car-
rying out a measurement campaign to record the noise
sources in real environments. In concordance with (EU
Directive, 2002) and (ISO 1996-2:2007), we considered
the following noise source categories: light vehicles,
heavy vehicles, motorcycles, aircrafts, trains and in-
dustrial noise. The recordings were performed using
a Bruel & Kjaer 2250 sound level meter equipped with
an integrated audio recording module, obtaining high
quality recordings of 48 kHz, 16 bits and using a loss-
less coding system. In order to ensure the variability of
the data, the noise sources were recorded in at least six
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Table 1. Characteristics of the different types of noise sources recorded, where SUV stands for Sport Utility Vehicle.

Noise source Characteristics

Light vehicles Car, SUV, van.
Urban streets

and secondary roadsHeavy vehicles Light trucks, heavy trucks.

Motorcycle Scooters (50 cc), motorbikes (> 125 cc)

Aircrafts Taking off and landing operations

Trains
Commuter rail, regional rail, high speed rail, freight rail.

Straight and curved railways.

Industrial Chimneys, machinery, cooling systems, etc.,

different locations, each one presenting diverse condi-
tions of background noise, distance to the noise source,
etc. In the case of aircrafts, both landing and taking
off operations were recorded at different distances to
the flight path. Moreover, different kinds of trains were
recorded, i.e., regional, high speed, freight trains, etc.
The industrial noise samples were taken in the sur-
roundings of several factories presenting different ty-
pologies: chimneys, machinery, refrigeration systems,
etc. Finally, the road traffic vehicles were recorded in
urban streets and secondary roads, trying to obtain
clean vehicle pass-bys. Further details are provided in
Table 1.
The resulting environmental noise database con-

sists of 90 sound samples for each of the six noise source
categories considered in this work (i.e. 540 noise sam-
ples). The duration of each sound sample was set to
4 seconds in order to consider the temporal evolution
of the noise signals for their classification, as in (Chu
et al., 2009).

5.2. Experimental setup

Following the block diagram of Fig. 3, the signal
features are pre-processed with Hamming windows of
30 ms and an overlap of 15 ms, as in (Valero, Aĺıas,
2011b). Then, the thirteen signal features described in
Section 3 are computed. MPEG-7 feature is referred
to Audio Spectrum Envelope (ASE), since it is the
MPEG-7 low-level descriptor that achieved the best re-
sults in previous works (Valero, Aĺıas, 2010). In this
work, as similarly done in (Ntalampiras et al., 2008),
we conduct a post-processing on this descriptor to im-
prove its performance consisting of three steps: i) con-
version into decibel scale, ii) energy normalization by
RMS value, and iii) compaction of energy by the Dis-
crete Cosine Transform. Cepstral-based features con-
sider 13 coefficients, whereas Wavelet-based techniques
consider 7 coefficients and are implemented using the
“Daubechies” mother function, as in (Rabaoui et al.,
2004). Finally, notice that SBER is computed with four
bands, as in (Sobreira et al., 2008).
In order to select the optimal number of principal

components to compress the merged feature vectors,
experiments were run considering a sweep from 6 to 30

principal components for each pair of signal feature-
machine learning technique. The number of compo-
nents yielding the highest averaged recognition rates
(between 8 and 16, depending on the case) was selected
for the following experiments. All the machine learning
techniques described in Sec. 3 (excluding the HMM)
are asked to perform the classification of the sound pat-
terns. To that effect, their configurations were adapted
to the problem at hand, as explained in the following
paragraphs.
The DT uses the Gini index as node split crite-

rion since it works well with noisy data (Kim et al.,
2002) and has shown a good performance in similar
works (Valero. Aĺıas, 2011a). The KNN is imple-
mented computing the Euclidean distance metric and
considering K = 3 nearest neighbours, since it was the
optimal value found in (Defréville et al., 2006), be-
ing also used in (Sobreira et al., 2008). Regarding the
GMM, the related literature does not agree in a specific
number of Gaussians: 40 were used in (Defréville et
al., 2006), 16 in (Ntalampiras et al., 2008) and 4-6
in (Chu et al., 2009). Therefore we decided to empir-
ically select this value by making a sweep between 5
and 40 Gaussians (with a step of 5 Gaussians). We se-
lected 10 Gaussians since it was the value maximizing
the classification accuracy. The implemented NN is a
Multilayer Perceptron with only one hidden layer since,
according to literature on NN, it is sufficient to approx-
imate any given function (Cybenko, 1989). We keep
the same NN configuration employed in our previous
work (Valero, Aĺıas, 2011b): 100 nodes in the hid-
den layer and 6 nodes (1 per class) in the output layer.
Logarithmic sigmoid activation function is selected for
all nodes, since the input data is previously normal-
ized into [0,1]. NN weights are randomly initialised
and Resilient Backpropagation learning algorithm is
selected, given its good performance on pattern recog-
nition problems (Riedmiller, Braun, 1993).
Finally, the classification accuracies are calculated

as the percentage of correctly classified environmen-
tal noise samples, employing a 4-fold cross validation
technique, where the 75% of the data is used for train-
ing and the 25% for testing, repeating the procedure
4 times with different training and testing sets (Chu
et al., 2009).
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6. Results

In this section, we describe and discuss the results
obtained from the conducted experiments. The first
experiment evaluated the 52 possible combinations be-
tween the 13 signal features and the 4 machine learning
techniques considered, in order to find the optimal one.
The second experiment consisted in classifying noise
samples of short duration, in order to validate the ve-
hicle pass-by division into different phases. The third
experiment evaluates the performance of the proposed
classification scheme, besides comparing it to the base-
line (i.e., the flat classification scheme of the first ex-
periment). In the fourth experiment the comparison is
preformed against the HMM (which already takes into
account the signal time evolution with a flat classifi-
cation scheme). Finally, listening tests are conducted
to relate the achieved system accuracy to the human
recognition ability.

6.1. Signal feature and machine learning method
selection

First, we aim to select the most suitable combina-
tion of signal feature and machine learning technique
for the problem at hand. For simplicity, experiments
were run employing a flat classification scheme (with-
out considering the vehicle pass-by phases). Results
are shown in Fig. 5. It is worth noting that the DT
yields the poorest performance regardless of the signal
feature, as noted in (Valero et al., 2011a). The rest
of classifiers show a similar behaviour.

Fig. 5. Averaged classification accuracy obtained by the
13 signal features (plus the combination MFCC+MPEG7)
when combined with the 4 machine learning techniques.

With regard to the signal features, there is a first
group of descriptors that show very poor accuracy:
ZCR, SRO, SC and STE. By means of these features
the recognition system is able to hardly identify one
out of two presented samples, proving a low ability
to extract representative information from the noise
signals. This can be explained by the inherent simplic-
ity of these descriptors, since they all consist of a sin-
gle coefficient per signal fragment. A second group of
descriptors (SBER, SF, LPC, LPCC and MFDWC)
show a notably better performance, presenting aver-
aged classification rates close to 75%. In a third group,

we found the signal features yielding the best per-
formances: MPEG-7, MFCC, PLP and DWC. They
all show good capabilities to extract relevant informa-
tion from the noise signals at hand, attaining averaged
recognition rates close to 90%. It should also be noted
that a combination of the two best performing signal
features (MFCC and MPEG7) was tested.
The highest absolute classification rates (with no

significant differences) were attained by two differ-
ent signal feature plus machine learning combinations:
MFCC+MPEG7 plus NN; and MFCC plus GMM.
Among them, the latter was selected for the rest of
the experiments given its lower computation cost. The
averaged recognition rate achieved by the system with
that combination is 89.5%. The obtained confusion ma-
trix confirms that, as in previous works (Defréville
et al., 2006) and (Valero, Aĺıas, 2011b), the most
common misclassifications occur between road vehi-
cles (especially between heavy vehicles and both mo-
torbikes and light vehicles) (see Table 2).

Table 2. Confusion matrix obtained from the flat classifi-
cation scheme. In bold font, the most frequent confusions.
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Aircraft 96.6 0.4 4.3 0 0 0

Industry 0 94.4 0.8 0 0 0

Train 2.5 2.1 92.3 0 0.3 2.6

Light v. 0 0 0.1 86.1 0.7 8.6

Motorbike 0.3 1.8 2.1 1.6 89.2 10.2

Heavy v. 0.6 1.3 0.4 12.3 9.8 78.6

6.2. Recognition of independent vehicle
pass-by phases

The goal of the second experiment is to check the
consistency of our pass-by division hypothesis. For that
purpose, we divided each sound sample into three seg-
ments (approaching, passing and receding), consider-
ing every segment as an independent instance to be
classified. In consequence, the size of the corpus is in-
creased from 540 to 1080 samples. The recognition sys-
tem was set to recognise not only the noise source, but
also the phase of the pass-by in the case of road ve-
hicles. MFCC and GMM were employed according to
the results of the previous experiment.
As observed in the confusion matrix (see Ta-

ble 3), the four most frequent confusions are be-
tween: i) motorcycle-approaching and heavy vehicle-
approaching; ii) motorcycle-receding and heavy vehi-
cle receding; iii) motorcycle passing and motorcycle-
receding; and iv) light vehicle-passing and heavy
vehicle-passing. Therefore, three out of the four most
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Table 3. Confusion matrix (in %) obtained when considering the vehicle pass-by phases (A: Approach, P: Passing,
R: Receding). Confusion rates below 1% are not shown. The grey boxes represent the phases belonging to the same road

vehicle. In bold font, the most frequent confusions.

Aircraft Industry Train Light

v.-A

Light

v.-P

Light

v.-R
Moto.-A Moto.-P Moto.-R Heavy

v.-A

Heavy

v.-P

Heavy

v.-R

Aircraft 99.3

Industry 98.3 1.1

Train 91.1 1.2 1.0 2.1 1.7 1.2 2.4 2.4 3.3

Light v.-A 88.6 7.8

Light v.-P 85.0 6.6

Light v.-R 86.8 1.3 7.0

Mot.-A 1.3 66.4 7.3 3.8 9.4 1.0

Mot.-P 1.7 2.7 8.0 75.2 11.1 6.7

Mot.-R 3.6 3.1 3.7 8.3 67.9 1.6 15.2

Heavy v-A 8.9 17.1 1.1 71.6 3.1 0.4

Heavy v.-P 9.4 0.2 4.4 1.2 5.9 71.7 2.6

Heavy v.-R 1.1 8.2 11.8 1.6 5.9 69.4

common misclassifications are produced between sam-
ples of different vehicles at the same pass-by phase,
whereas only one is produced between different pass-
by phases of the same vehicle. These results suggest
that the pass-by phase is more discriminative than the
type of vehicle itself, thus, validating the proposed ap-
proach that considers the vehicle pass-by phases inde-
pendently for their recognition.

6.3. Performance of the proposed classification
scheme

In this experiment, the performance of the pro-
posed classification scheme is evaluated and compared
to the flat baseline classification scheme (see Sub-
sec. 6.1). The proposed scheme (see Fig. 3) uses a
GMM to discriminate between road vehicles and not,
and four independent GMM (one for the non-road
vehicles and one for each of the three vehicle pass-
by phases). The averaged classification accuracy ob-
tained is 92.5%, which is 3% higher that the accu-
racy achieved by the flat classification scheme. In or-
der to statistically validate the improvement achieved,
the pairwise Student’s t-Test is conducted. The result
(p = 2.5 · 10−6) proves the improvement achieved.
If we compare the confusion matrix obtained with

the proposed scheme (see Table 4) to the one obtained
by the baseline (see Table 2), we can firstly observe the
positive impact of the hierarchical structure on non-
vehicle noise sources: the recognition of trains attains
a relevant improvement of 5%. Secondly, the misclas-
sifications produced between light and heavy vehicles
are reduced to nearly the half (about 8%) thanks to
considering the vehicle pass-by noise characteristics.
Confusions between scooters and trucks are also signif-
icantly reduced, but in a minor degree (about 2.5%).

Those confusion reductions result into an improvement
of light and heavy vehicles classification rates, increas-
ing the averaged accuracy in a 7% and a 4%in absolute
terms, respectively.

Table 4. Confusion matrix (in %) obtained from
the proposed classification scheme considering

the vehicle pass-by phases.
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Aircraft 97.3 0.2 0.1 0 0 0

Industry 0 95.8 0 0 0 0

Train 1.8 0.9 97.4 0 0.3 2.6

Light v. 0 0 0 93 0.8 7.2

Motorbike 0.2 1.9 2.4 1.3 89.1 7.8

Heay v. 0.7 1.2 0.1 5.7 9.8 82.4

6.4. Comparison to Hidden Markov Models

We wanted to compare the performance of the
proposed classification scheme to the HMM classifier,
which is one of the state of the art techniques applied
for environmental noise recognition (Couvreur et al.,
1998;Rabaoui et al., 2004) and (Ntalampiras et al.,
2008).
To this end, six HMM’s were constructed (one per

environmental noise source). The HMM yielding the
highest log-likelihood (with respect to the unknown
input signal) indicates the system output (i.e., recog-
nised sound source). It should be noted that the HMM
observations sequence corresponded to the sequence of
feature vectors computed at every signal frame (i.e. no
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feature merging was applied since HMM already model
the time evolution of input signals). The outputs from
each HMM were modelled with a mixture of 10 Gaus-
sians (as set with the GMM in the previous exper-
iments) initialized with the K-means algorithm. The
HMM parameters (transmission and emission proba-
bilities) were estimated by using the Baum-Welch al-
gorithm, as in (Ntalampiras et al., 2008). Two HMM
topologies (i.e. fully-connected and left-to-right) with
several number of hidden states were analysed. As
shown in Fig. 6, the left-to-right typology yields better
performance than the fully-connected structure, which
suits to the characteristics of the environmental noise
events (Rabaoui et al., 2004). Specifically, the left-to-
right HMM with 3 states yields the highest averaged
classification accuracy. This configuration is in concor-
dance with the proposed scheme, which characterizes a
vehicle pass-by in 3 phases (equivalent to the 3 states)
without the possibility of backward transitions (left-
to-right).

Fig. 6. Averaged recognition rates yielded by two topologies
of HMM for different number of hidden states.

With this optimal configuration, the HMM with
a flat recognition scheme obtains an averaged classi-
fication rate of 92.9%, which is 0.4% higher than the
proposed scheme. However, this improvement is not
statistically significant according to the pairwise Stu-
dent’s t-Test (p = 0.41).

6.5. Listening tests

A set of listening tests were conducted to com-
pare the performance of the system with the human
ability to recognise these kinds of environmental noise
sources. We employed the multimedia testing platform
called TRUE (Planet et al., 2008). The test employed
120 sound samples extracted from the corpus used in
the previous experiments. A total of 30 subjects com-
pleted the test, from which 15 were experts from music,
speech or other audio-related fields and only one was
expert on environmental noise recognition tasks. The
subjects completed the tests from their home and us-
ing their own headphones. They were asked to perform
the tests in low background noise conditions and main-

taining the same reproducing volume during the whole
test.
Two different listening tests were conducted. In the

first one, 60 sound recordings of 4 seconds long were
presented to the subject in a forced-choice test (un-
known answer was not available). The sound files, 10
per noise source, were randomly selected from the cor-
pus. The averaged recognition rate attained by human
listeners is 80.3%, which is significantly lower than the
92.5% achieved by the trained system. As it may be
concluded from Fig. 7a, the responses of the evalua-
tors show a large variability: a well-trained expert lis-
tener can achieve a 100% of recognition accuracy, but
less trained or non-expert listeners may only correctly
recognise 2 out of 3 noise sources. On the contrary, the
standard deviation of the performance attained by the
automatic recognition system is notably lower.

a)

b)

Fig. 7. Boxplot of the recognition results attained by
both the human and proposed classification system for the

first (a) and second (b) listening test.

In the second listening test, the sound samples were
shorter (exactly 1.33 seconds, as considered in the ex-
periment from Subsec. 6.2). 60 sound samples com-
posed the test, ensuring an equal distribution between
noise sources and also between pass-by phases. The
test results show a dramatic decrease in the human
recognition performance with respect to the previous
experiment, attaining 62.2% of recognition accuracy
on average (see Fig. 7b). After these results, it is clear
that the time envelope of the signal is of paramount
importance for the recognition of this kind of noise
events in human beings, as noted in (Gygi, 2001). On
the contrary, the proposed recognition system does not
need that much information to perform the identifica-
tion: the accuracy in that case remains at very high
recognition rates (close to 90% in average).
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7. Discussion

After analysing the results obtained by considering
the different combinations of signal features and ma-
chine learning techniques, we can conclude that there
are mainly two sound signal features (MPEG-7 and
MFCC) and three machine learning techniques (KNN,
NN and GMM) that may yield to high classification
accuracies. However, if we aim to go a step forward in
terms of performance, a structural change in the classi-
fication scheme should be introduced. In that sense, the
proposed classification scheme takes advantage of the
spectro-temporal characteristics of the vehicles pass-
bys in combination with a hierarchical classification
structure, yielding a significant increase (+3%) from
an averaged classification rate which is already quite
high (89.5%). Furthermore, the results extracted from
experiments employing short duration samples (con-
taining only one phase of the vehicle pass-by) validate
the consistency of the initial hypothesis of consider-
ing the vehicle pass-by phases as independent classes
(since further confusions are found between samples
from different vehicles at the same pass-by phase than
between different pass-by phases of the same vehicle).
This ability will be particularly valuable when expos-
ing the system to situations where full pass-bys cannot
be clearly identified (e.g., streets or roads with greater
traffic density). In that case, it is foreseen that the
recognition system will be able to provide a robust
recognition decision (i.e., noise source) quite fast and
only based on a short fragment of the noise signal pass-
by (which could correspond to the approaching, pass-
ing or receding phase).
Moreover, in order to complete the experimental

analysis, the proposed classification scheme was com-
pared to HMM. As HMM inherently takes into ac-
count the temporal evolution of the sound events, it
yielded an equivalent performance. However, the pro-
posed classification scheme provides two advantages
with respect to HMM for the problem at hand. First,
it has a notably lower computational cost, since it only
needs three observations (corresponding to the 3 pass-
by phases) to classify the noise source, whereas the
HMM uses one sequence per signal frame (in this work,
266 sequences1). And second, the proposed scheme
contains observable states, i.e. they are not hidden
(i.e., approaching, passing-by and receding phases),
thus having further information about the vehicle po-
sition at any instant of time.
Finally, the listening tests provide a reference with

regard to the human ability to recognise noise events,
showing that an average listener is not able to per-
form as well as the proposed system if he/she is not
specifically and exhaustively trained for that purpose,

1The number of sequences is obtained as the noise sample
length (in this work, 4s) divided by the signal frame step (in
this work, 15 ms).

as the system is. In consequence, the classification sys-
tem outperforms the average human listener in a 12%.
The second part of the listening test (employing short
duration samples), stresses the robustness of the pro-
posed recognition system: while the human ability de-
creases on 18% with respect to using the long 4 s sam-
ples, the accuracy of the system only drops in 4%.
This comparison agrees with the results reported in
(Couvreur et al., 1997), where also human listeners
attained a lower recognition accuracy that the trained
recognition system.

8. Conclusions

This paper has addressed the recognition of the
environmental noise sources typically encountered in
urban areas, which may affect the citizen’s quality of
daily life. After determining the best signal feature and
machine learning technique combination for the cor-
pus at hand, we have proposed a classification scheme
that takes into account the noise signal characteris-
tics of road vehicles pass-bys. Experiments conducted
on a corpus of environmental noise samples recorded
in real environments show a significant improvement
in the classification accuracy of the proposed classi-
fication scheme when compared to a traditional flat
scheme, in particular, by decreasing the confusions be-
tween light and heavy vehicles. An 8% reduction is
obtained, which is attributed to the differences in the
pass-by phases from both noise sources.
When compared to the state of the art HMM, the

proposed classification scheme achieves an equivalent
accuracy performance but with a significant lower com-
putational cost, besides providing directly observable
information about the current state (i.e., phase) of
the vehicle pass-by. The performed listening tests have
highlighted the excellent recognition accuracy achieved
by the proposed system: an average non-trained hu-
man listener attains noise source recognition accuracy
significantly lower than the proposed system (about
10% in average for samples containing the whole vehi-
cle pass-by and about 25% for samples containing only
one particular phase of each vehicle pass-by).
Future work will be mainly focused on facing the

detection of noise events within continuous signals.
Also, the proposed classification scheme will be ex-
tended so as to study overlapped road vehicle pass-bys
by considering three subclasses for each noise source
(referred to each of the pass-by phases), which will al-
low a more flexible and fast-response system.
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