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Human-machine interfaces and environment simulators increasingly depend on audio in-
terfaces. Acoustic signals are used to provide warnings, feedback, information about the state
of a system, and to enhance the immersive character of virtual reality environments. In order
to decrease the mental workload of the listener, increase the speed of interaction, and mini-
mize the chances for operational error, the audio signals (auditory icons) should have a natural
character and clearly differ in their spatial, spectral, and temporal characteristics. Therefore,
the design and selection of audio signals for specific applications should be based on the
detectability and recognizability of the signals in the intended environments and on the mean-
ingful connotations of the individual sounds. The present study was conducted to assess the
detection and recognition thresholds of 30 pre-selected sounds and to determine the specific
acoustic properties that make complex natural sounds effective auditory icons. The results of
the study revealed a strong dependence of both types of threshold on the type of sound and
a relative independence of both thresholds. The sound level difference between the detection
and recognition thresholds varied from 1 to 13 dB and should be considered as an important
criterion in auditory icon selection.
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1. Introduction

Natural sounds produced by various noisemakers, such as bells and rattles, have
been the traditional signals used in hearing tests for young children. Their main disad-
vantage is that they are not frequency specific and thus have a limited diagnostic value.
In the late 1960s, RAKOWSKI and ŁĘTOWSKI [1] developed the concept of tonal au-
diometry based on octave-filtered sound effects and recorded the first such test for the
Institute for the Mother and Child in Warsaw. The authors took advantage of the formant
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structure of many natural sounds and used octave-band filtered sounds as the frequency-
specific simplified versions of natural sounds for hearing test purposes. The test had two
versions, one for children 0.5–3 years old and one for children 3–6 years old, and was
based on 24 natural sounds that were octave-filtered and centered at octave frequencies
extending from 125 Hz to 16,000 Hz. This early work was later expanded on in two
related research areas: timbre solfege training and filtered sound-effect hearing tests.

Timbre solfege training is based on using the pitch scale as a tool to teach listeners
to hear and differentiate subtle changes in sound timbre. The initial part of the training
utilizes narrow-band filtered noises and sound effects but then progresses into more and
more subtle changes in the spectral content of a sound. The original training program
was developed by RAKOWSKI, SZLIFIRSKI, and ŁĘTOWSKI [2–4] and has been taught
at the Fryderyk Chopin Academy of Music in Warsaw since the early 1970s. Versions
of this program have been implemented at various times at diverse institutions, such
as McGill University, the University of Surrey, General Motors Technical Education
Center, and the U.S. Army Research Laboratory.

The initial use of filtered sound-effects for hearing testing by ŁĘTOWSKI and
RAKOWSKI [1] resulted in several research studies at the Pennsylvania State Univer-
sity, Montclair State University, and the U.S. Army Research Laboratory, and in a CD
version of a new test available from the U.S. Army Research Laboratory [5, 6]. The CD
version of the filtered sound-effects test is based on a study conducted by MYERS, ŁĘ-
TOWSKI, ABOUCHACRA, KALB, and HAAS [5] in which a corpus of 25 octave-filtered
sound effects was evaluated to determine the most robust sound-database for use in tonal
sound effect detection and recognition tasks.

In the process of selecting sounds for the MYERS’ et al. [5] study, a large number of
natural sounds was evaluated, resulting in a starting set of 33 sounds. Further evaluation,
though, revealed three of the sounds as not being sufficiently recognizable across a vari-
ety of populations, and so they were removed. Later another five less robust sounds were
dropped to make the final study manageable. However, before the selected 25 sounds
were octave-filtered and initially evaluated, all 30 sounds were used in a preliminary
study to determine thresholds of detection and recognition for unfiltered sounds and to
evaluate the testing procedure to be used in the main study. The data were collected,
used in determining the proper filtering strategies for the final sounds, and left in an
archive as an internal reference for the main study.

Over the last 10–15 years there has been a growing interest in studying natural
sounds for various medical, communication, and military applications. It has been rec-
ognized that the human auditory system may be the best sensory system for performing
detection and recognition tasks in uncertain complex environments [7]. Therefore, the
auditory modality is becoming the primary modality for providing warning and tactical
signals in such environments. Examples of such environments include aircraft cock-
pits, hospital operation rooms, ship captain’s bridges, and nuclear power plant control
centers. All of these environments require the control and monitoring of numerous sub-
systems working in tandem for the safe and proper operation of the whole system.
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Several studies have demonstrated that natural sounds are preferable to both speech
and synthetic signals as warning and human-machine communication signals. The more
natural, easy to hear, and different from one another these signals are, the faster and
more reliable is the response of human operators [8, 9]. There is also a growing lit-
erature on the selection of natural sounds based on their connotation [10–12] and on
applying signal detection theory to signal level selection [13, 14]. In addition, the grow-
ing interest in the selection and controlled reproduction of natural sounds is a result
of the increasing role of auditory displays in virtual environments. Nonetheless, de-
spite the broad military, medical, and industrial applications of natural sounds, there is
a scarcity of data regarding the actual detection and recognition thresholds of natural
sounds in various environments. There have been some studies reported at conferences
or completed as parts of graduate work that have referred to such data, but it is very
hard to find specific data in the open literature [15–19]. Therefore, in order to partially
fill this gap, the authors decided to publish their data on the detection and recognition
of natural sounds in quiet and noisy environments; data which were collected more
than 10 years ago. The goal of the original study was to identify sounds that were easy
to recognize as soon as they are detected for the purposes of audiometric testing and
as warning and communication signals. The same applications are considered in the
present paper.

2. Methodology

2.1. Sounds

A group of 30 natural sounds was used as the target sounds. The sounds were chosen
on the basis of their common occurrence and clear association with a sound source. The
selected sounds are listed in Table 1 and their spectra are shown in Fig. 1. The sounds
were 2.0 to 4.0 seconds in duration and the duration of a sound was determined by the
natural time period needed for sound identification. For example, the sound of a dog
barking consisted of two short barks and one longer one, together making a complete
event that was identifiable as a dog bark. Such complete groups of sounds will be re-
ferred to as environmental events. The target sounds used in this study either had the
form of one long sound (sounds 1, 4, 7–8, 15, 17–20, 22, 24, 27, and 30) or consisted of
two (sounds 9–10, 16, and 23), three (sounds 2–3, 5–6, 11–14, and 28), or four (sounds
21 and 29) separate sounds forming an environmental event. Obviously, within each of
these categories the sounds differed in their internal structure (internal modulation) and
some of the multi-sound events were actually groups of several finer events (e.g., clock
chime, cricket, cuckoo). The background noise used in the study was a 20-voice mul-
titalker noise (MTN) [20] presented at 60 dB A. This noise has a relatively flat spectrum
from 200 to 1000 Hz (with a slight peak around 600 Hz) and decreases thereafter with
a 6 dB/oct slope.
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Table 1. Target sounds used in the study.

1 Airplane 11 Dial (tone) 21 Rooster

2 Baby (cry) 12 Dog 22 Siren

3 Bird 13 Drum 23 Sonar

4 Car (horn) 14 Duck 24 Thunder

5 Cat 15 Foghorn 25 Train

6 Chime (clock) 16 Frog 26 Trumpet

7 Cow 17 Glass (break) 27 Twang (harp)

8 Coyote (howl) 18 Horse (whinny) 28 Typewriter

9 Cricket 19 Phone (ring) 29 Water (drops)

10 Cuckoo (clock) 20 Rattle 30 Whistle

2.2. Listeners

A group of 20 listeners, 18 to 43 years of age (15 females and 5 males; mean age
25.3 years, SD of 7.5 years) participated in the study. All listeners had left and right ear
hearing thresholds of 20 dB HL or better, measured at octave frequencies in the 250 to
4000 Hz audiometric range. The listeners were the same subjects who participated in
the companion study by MYERS et al. [5]. Their average hearing thresholds in dB SPL
measured at octave frequencies from 250 to 8000 Hz are listed in Table 2.

Table 2. Average pure tone hearing thresholds (M) in dB SPL and their standard deviations (SD) in dB
of the group of 20 listeners participating in the study.

Frequency (kHz) 0.25 0.50 1.00 2.00 4.00 8.00

M (dB SPL) 18.8 12.6 8.9 12.9 10.8 17.2

SD (dB) 7.2 5.8 5.3 5.8 6.7 8.6

2.3. Instrumentation

All testing was conducted in an audiometric booth with ambient noise levels suit-
able for sound-field testing [21]. The sounds were presented monaurally using an ER-1
insert earphone equipped with a TIP-50 eartip. The better ear was selected for signal
delivery and the contralateral ear was occluded with an EARTM foam earplug. All target
sounds were digitized and played from a PC computer using a Tucker-Davis Technolo-
gies (TDT) System II signal control system and proprietary software. The multitalker
noise was played from a Nakamishi MR-1 cassette player and mixed together with tar-
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get sounds for earphone presentation. The noise level was 60 dB A, measured in an
Occluded Ear Simulator (Zwislocki Coupler) [22]. All the instrumentation and calibra-
tion procedures were identical to those used by MYERS et al. [5].

2.4. Procedure

Prior to data collection all the sounds were presented to the listeners at a comfort-
able listening level of 40 dB HL and identified by their names. After a short break, the
same sounds were presented in a different order and the listeners’ task was to iden-
tify the sounds. Eighteen listeners correctly identified all 30 natural sound upon one
presentation. The remaining two listeners correctly identified 28 of the sounds after
one presentation but required a second presentation to correctly identify the two other
sounds.

During the study all listeners completed two listening tasks: a detection task and a
recognition task. Both tasks were completed in two listening conditions: in quiet (Q)
and in noise (MTN).

Detection Task: Detection thresholds were measured using the “best PEST” adaptive
variant of the Yes-No procedure [23, 24]. The procedure was set to estimate the 50%
detection point on the psychometric curve. All 30 sounds were tested in random order
and a random selection of three of the sounds was retested for each listener to assess
repeatability of the data.

Recognition Task: Recognition thresholds were measured using an ascending variant
of the method of limits. At the beginning of the procedure the sound level of each target
signal was set at 6 dB level below the listener’s detection threshold for the signal, and
the level was gradually increased in 2 dB steps. At each signal presentation level the
listener’s task was to identify the presented sound by selecting one of the 30 available
responses on a computer screen. The procedure continued until the listener had correctly
identified the sound at three consecutive presentation levels. The first of these three
levels was deemed the recognition threshold for the given sound.

The detection task was always presented before the recognition task for the same
condition (Q or MTN) and both these tasks were performed in direct succession. The
order of the quiet and noise conditions was counterbalanced. The order of the sound
effects was randomized for each task, condition, and listener. Further details regarding
the testing procedure can be found in MYERS et al. [5].

3. Results and discussion

3.1. Detection thresholds

Average detection thresholds and their respective standard deviations for each of
the 30 environmental sounds used in this study are listed in Table 3. The detection
thresholds for individual sounds varied from 11.2 (sonar) to 27.8 (airplane) dB SPL
in quiet and from 34.2 (phone) to 48.9 (rattle) dB SPL in 60 dB A multi-talker noise.
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Table 3. Detection and recognition thresholds for 30 environmental sounds presented in quiet (Q) and in
the background of a 60 dB A multi-talker noise (MTN). Mean – arithmetic mean in dB SPL; SD – standard

deviation in dB.

Sound
number

Target sound
Detection threshold Recognition threshold

Quiet (Q) Noise (MTN) Quiet (Q) Noise (MTN)

Mean SD Mean SD Mean SD Mean SD

1 Airplane 27.8 5.0 46.2 8.8 36.4 7.3 52.9 7.2

2 Baby (cry) 16.6 5.0 41.6 5.4 21.9 9.7 48.9 6.8

3 Bird 16.3 8.1 45.8 8.6 20.1 10.1 49.2 6.0

4 Car (horn) 17.2 5.9 34.6 5.7 20.5 9.8 39.8 8.0

5 Cat 16.0 6.2 37.8 8.6 19.9 9.6 45.6 7.8

6 Clock (chime) 22.0 7.1 43.4 12.0 26.9 7.9 52.2 10.5

7 Cow 22.7 8.1 40.5 10.5 33.9 8.3 50.2 10.3

8 Coyote (howl) 16.4 6.7 42.1 6.0 21.6 9.4 42.2 5.6

9 Cricket 21.4 6.9 43.5 5.9 24.5 7.3 47.4 8.7

10 Cuckoo 19.0 6.3 43.3 6.3 27.3 7.8 48.8 7.8

11 Dial (tone) 14.8 7.4 47.4 5.7 24.6 10.9 48.8 10.3

12 Dog 17.3 7.5 40.5 9.9 24.3 11.2 50.6 7.8

13 Drum 21.0 5.4 37.7 5.3 35.7 7.1 46.2 6.2

14 Duck 23.7 8.6 43.1 6.3 29.2 10.7 51.5 7.7

15 Foghorn 15.1 8.1 43.3 5.0 29.9 10.3 52.6 7.1

16 Frog 15.4 4.8 40.1 6.1 28.0 7.2 51.6 7.0

17 Glass 21.1 8.8 38.8 6.7 30.2 7.2 48.3 6.3

18 Horse (whine) 13.0 5.9 41.9 5.1 16.0 8.9 47.6 9.8

19 Phone (ring) 12.0 6.9 34.2 7.6 16.7 9.6 42.0 8.7

20 Rattle 21.9 6.3 48.9 13.6 29.5 12.4 56.5 12.8

21 Rooster 17.7 7.0 39.2 7.8 23.8 8.4 45.9 7.5

22 Siren 18.3 10.7 38.0 7.4 23.5 9.9 47.7 9.8

23 Sonar 11.2 13.4 45.0 8.8 16.6 12.4 50.3 8.6

24 Thunder 25.2 9.8 47.0 4.9 35.3 11.1 57.0 7.9

25 Train 22.5 7.4 47.4 6.8 31.0 11.2 49.8 7.8

26 Trumpet 19.5 5.6 44.7 8.3 25.4 9.0 49.7 4.9

27 Twang (harp) 23.2 5.8 44.1 10.9 27.8 6.8 46.5 10.5

28 Typewriter 23.7 9.0 46.0 9.0 29.3 10.8 46.9 8.8

29 Water (drops) 26.2 5.8 41.5 4.9 37.8 8.8 50.5 7.3

30 Whistle 16.8 5.7 38.6 9.1 19.2 6.4 45.4 8.4
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The latter range is equivalent to a −25.8 to −11.1 dB range of signal-to-noise ratios
(SNR) determined as the ratio of the signal level in dB SPL to the noise level in dB
A. Mean detection thresholds calculated across the sounds were 19.5 and 42.2 dB SPL
for quiet and noise conditions, respectively. The latter value corresponds to a −17.8 dB
SNR (for the 60 dB A MTN).

The range of the detection thresholds reported in Table 3 spans 16.6 dB for quiet and
14.7 dB for noise condition. The only other study where similar data were presented was
the study by WATSON, KIDD, and GYGI [17] quoted by GYGI [19] in which he reported
a slightly narrower range of 12 dB, extending from −20 to −8 SNR for the detection
of natural sounds in white noise. However, he also reported that except for two outlying
sounds, the detection thresholds for the sounds (n = 25) used in the study were all
within 7 dB of each other. Likewise, in the present study, the detection thresholds for all
but three of the sounds fall within an 11 dB range for both the quiet and noise conditions.
These data seem to imply that that the range of variability in detecting most sounds in
a given listening condition is about 10 dB except for very low frequency sounds that
require higher thresholds. Most of the data for filtered sound effects reported by MYERS
et al. [5] also supports this observation.

Standard deviation of the mean detection thresholds ranged from 4.8 to 13.4 dB in
quiet and from 4.9 to 13.6 dB in noise. Overall, these values are relatively similar to
the standard deviations reported by MYERS et al. [5], although there are some larger
individual differences for several of the filtered sound effects and natural sounds.

The easiest sounds to detect were in general characterized by one or two strong
formants in the middle frequency range (e.g., sounds of bird, cat, coyote, frog, horse,
phone, sonar, whistle). Two other cues facilitating sound detectability were an abrupt
beginning and/or end to the sound. The relatively easy detection of some high-frequency
sounds in noise was most likely due to the relatively low level of the masking noise (60
dB A) and its lack of high-frequency energy. The sounds that were the most difficult
to detect in both quiet and noise were sounds with a dominant broad concentration of
energy in the low frequency range (e.g., airplane, thunder, train). Several high frequency
sounds were relatively easy to detect in quiet but much harder to detect in noise (e.g.,
bird, rattle).

It must also be stated that the detection thresholds for natural sounds reported in
this study and also in those by GYGI et al., [17, 19] are much lower than the detection
thresholds for natural sounds reported elsewhere in the sparse literature. For example,
OLLERHEAD [25] reported that the helicopter blade slap can be detected at a −5 dB
SNR with respect to the surrounding noise level and DOLL and HANNA [26] reported
−3 dB detection threshold for a simulated sonar signal presented in white noise. Rea-
sons for these differences are unclear.

3.2. Recognition thresholds

Average recognition thresholds and their standard deviations are listed together with
the detection thresholds in Table 3. Individual recognition thresholds vary from 16.0
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(horse whinny) to 37.8 (water drops) dB SPL and from 39.8 (car horn) to 57.0 (thunder)
dB SPL in quiet and noise, respectively. Mean recognition thresholds calculated across
all the sounds were 25.9 for quiet and 48.8 dB SPL for noise. The latter value corre-
sponds to a −11.2 dB SNR (for the 60 dB A MTN). The respective standard deviations
for sound recognition in quiet and in noise varied from 6.4 to 12.4 dB and from 5.6 to
12.8 dB. These values represent similar ranges of standard deviations to those reported
by MYERS et al. [5].

One reference point that can be used as a comparison to the recognition thresholds
for natural sounds is the speech reception threshold. It is generally assumed that speech
is understood at about 10 dB SPL (digits) to 20 dB SPL (spondees) in quiet and at−4 to
−12 dB SNR in noise [27–32]. MILLER et al. [33] and O’NEIL [34] also reported that
the recognition threshold for isolated words is about 6 to 7 dB higher than for sentences.

The overall variability of the recognition threshold measured in this study under
quiet and noise conditions was equal to 21.8 and 17.2 dB, respectively. These values
indicate the expected variability range for natural sound recognition in general to be
about 20 dB. Verbal reports by the listeners imply that the overall temporal envelope
and the dominant frequency (pitch) were important features that they relied on for sound
detection. Then, as the sound level approached the recognition level, the listeners relied
more and more on sound character (spectrum) and internal modulation.

The SNRs needed for sound recognition in noise varied from −20.2 (carhorn) to
−3.0 (thunder) dB and the low frequency sounds dominated the group of sounds that
were the hardest to recognize. The reported values represent a similar range to the range
of recognition thresholds for natural sounds in white noise reported by GYGI [17, 19],
although the range determined in his study was shifted downwards and extended from
−30 to – 8 dB.

3.3. Recognition-detection gap

The recognition thresholds of the individual sounds exceeded detection thresholds
by 1.4 to 12.6 dB, and in general, these differences had a similar range in quiet and
in noise. The sound level differences between the recognition and detection thresholds
for the individual sounds in both quiet and noise are shown in Fig. 2. Comparisons
between recognition-detection gaps in quiet and noise for most of the sounds (n = 26)
were within −2.8 to +4.5 dB of each other, with most of the sounds showing a slightly
larger gap in noise. Four sounds that had a very small recognition-detection gap in
noise produced slightly larger quiet vs. noise gap differences exceeding those listed
above. These sounds had overall spectral (e.g., dial, train) and temporal (e.g., train,
typewriter) properties that quite closely resembled those of the multi-talker noise. Some
other sounds that show small recognition-detection gap in noise (e.g., coyote) had the
main peak of their energy coinciding with the frequency of the energy peak of the multi-
talker noise spectrum. However, both larger and smaller recognition-detection gaps in
noise can result from sound-noise interactions. In sum, the obtained results support
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poor overall correlation between the detection and recognition thresholds observed in
MYERS et al. [5] and in other studies [17, 19].

Fig. 2. Recognition-detection gaps in quiet (Q) and in multi-talker noise (MTN). Sound numbers
correspond to the numbers used in Table 1.

The differences between detection and recognition thresholds obtained in this study
were twice as small as those reported by MYERS et al. [5] for filtered sound effects. This
should be expected given the greater number of potential cues that unfiltered sounds
provide to the listener, which then facilitate the task of sound recognition.

3.4. Data repeatability

The retest trials presented at the end of each test block were used to spot check
the repeatability of the listeners’ responses. A random selection of three sounds was
presented in each of the basic test conditions resulting in 60 retest trials (20 listeners
×3 sounds) under each listening condition (quiet and noise). All retest data for the
detection threshold in quiet were within −9 to +8 dB of the test data. In addition, most
of the retested thresholds (n = 39) were ±4 dB with respect to the original thresholds.
The retest data for the detection threshold in noise were within −7 to +9 dB of the test
data. Similarly to detection in quiet, more than 50% of the retest responses (n = 32)
were ±4 dB relative to the test data. Therefore, in both the above cases, the retest data
demonstrate relatively good repeatability of the obtained thresholds. This observation
supports the notion that the variability observed in the reported data is mainly due to the
differences between the sounds and the listeners and to a lesser degree due to listener
inconsistency.
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3.5. Common errors

An analysis of the errors made by listeners in the sound recognition task revealed
that the listeners tended to confuse sounds having similar acoustic properties. Sounds
that were confused in both quiet and noise typically had very similar spectra (e.g. baby-
cat-rooster, drum-thunder-airplane-foghorn, glass-horse, rattle-typewriter) or temporal
patterns (e.g. cuckoo-rooster, water-train, drum-twangs). The frequency of these errors
was similar in quiet and in noise and there were no systematic differences among the
listeners.

However, the listeners did demonstrate systematic preferences in selecting some
sounds more often than others under conditions of uncertainty. The most frequently
“guessed” sounds were airplane, cricket, typewriter, and bird, whereas “guesses” that
were relatively seldom used were frog, trumpet, dog, and cow. An analysis of the nam-
ing errors made by the listeners seems to indicate that several listeners established in-
ternal preferences (standards) for low-frequency sounds (e.g., airplane), high-frequency
sounds (e.g., cricket), slowly-changing sounds (e.g., typewriter), and fast-changing
sounds (e.g., bird) and used these standards in case of uncertainty. Such systematic
preferences also imply that high-low and slow-fast dichotomies are the main criteria in
sound recognition.

4. Conclusions

Despite the availability of extensive literature on signal detection there is a marked
scarcity of data on the detection of natural sounds. Almost all of the studies published in
open literature are limited to pure tones, narrow bands of noise, and speech signals. The
main reason for this situation is the huge variety of natural sounds and acoustic environ-
ments, which does not lend itself to the development of comprehensive psychoacoustic
measures. Yet, there is a need for a psychoacoustic database that could be used as a
guide in selecting natural sounds for specific applications.

The detection thresholds obtained in this study indicate that most natural sounds
are detectable at 10 to 20 dB SPL in quiet environments. When the same sounds are
presented in a 60 dB A multi-talker noise, they are usually detectable at a−15 dB SNR,
although some sounds can be detected at levels as low as −20 dB, while others are not
detectable until they reach about a −10 dB SNR.

Reported data show that the recognition thresholds vary among sounds more than
their detection thresholds. Sound recognition may require a signal that is more than
10 dB higher than its detection threshold (e.g., rattle, thunder), although some sounds
are recognizable almost as soon as they are detected (e.g., cricket, horse). In reported
study, most of the observed recognition-detection gaps were in the 5 to 10 dB range.
For many sounds these gaps were relatively similar in quiet and in noise. However, the
thresholds obtained in noise were undoubtedly affected by the noise selection and may
be different in other types of noise. It must be also stressed that specific sound-noise
interactions can either decrease or increase the size of the recognition-detection gap
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observed in quiet. Therefore the observed variability of the recognition-detection gap
data can be considered as experimental evidence for the absence of a simple relation
between the detection and recognition processes for natural sounds. In other words,
presented data do not provide support for the generalization of the detection-recognition
theorem [29, 30] on the whole domain of natural sounds.

Some specific sound characteristics that were reported by the listeners as helping
them in sound detection included abrupt onset and/or offset of sound, and strong for-
mants in the middle frequency range. Sound recognition was later aided by specific
temporal modulation within the sound (either in amplitude or in the frequency domain)
and specific timbral (spectral) properties of the sound.

A comparison of threshold differences between recognition and detection of natural
sounds indicate that sounds dominated by either low-frequency or high-frequency en-
ergy were harder to recognize than those dominated by middle-frequency energy and
usually resulted in large recognition-detection gaps. Therefore, such sounds are not
good candidates for warning and tactical signals in multi-signal environments. Con-
versely, it seems reasonable to postulate that the sounds having small and similar in
both quiet and noise recognition-detection gaps are good candidates for robust audi-
tory icons and informational signals that can be effectively used in a specific family of
environments.

In closing, it should be stressed that presented data are in basic agreement with
the data published by MYERS et al. [5] for a filtered subset of the same sounds. This
agreement confirms that the filtered sounds used in the MYERS et al. study preserved the
basic character of the unfiltered sounds and can be treated as faithful frequency-specific
icons representing the original natural sounds.
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[27] PLOMP R., MIMPEN A., Speech-reception threshold for sentences as a function of age and noise
level, Journal of the Acoustical Society of America, 66, 1333–1342 (1979).

[28] PUNCH J., HOWARD M., Spondee recognition threshold as a function of set size, Journal of Speech
and Hearing Disorders, 50, 120–125 (1985).

[29] NORDHOEK I., HOUTGAST T., FESTEN J., Measuring the threshold for speech reception by adap-
tive variation of the signal bandwidth. I. Normal-hearing listeners, Journal of the Acoustical Society
of America, 105, 2895–2902 (1999).

[30] NORDHOEK I., HOUTGAST T., FESTEN J., Measuring the threshold for speech reception by adap-
tive variation of the signal bandwidth. II. Hearing-impaired listeners, Journal of the Acoustical
Society of America, 107, 1685–1696 (2000).

[31] VERSFELD N., DAALDER L., FESTEN J., HOUTGAST T., Method for the selection of sentence
materials for different measurement of speech reception threshold, Journal of the Acoustical Society
of America, 107, 1671–1684 (2000).

[32] RAMKISSOON I., PROCTOR A., LANSING C., BILGER R., Digit speech recognition thresholds for
non-native speakers of English, American Journal of Audiology, 11, 1–6 (2002).

[33] MILLER G., HEISEN G., LICHTEN W., The intelligibility of speech as a function of context of the
text material, Journal of Experimental Psychology, 41, 329–335 (1951).

[34] O’NEIL J., Recognition of intelligibility test materials in context and isolation, Journal of the Speech
and Hearing Disorders, 22, 87–90 (1957).

[35] GREEN D., WEBER D., DUNCAN J., Detection and recognition of pure tones in noise, Journal of
the Acoustical Society of America, 62, 948–954 (1977).

[36] WEBER D., Detection and recognition of auditory patterns, Perception and Psychophysics, 46, 1–8
(1989).




