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Source/filter models have frequently been used to model sound production of the vocal apparatus and
musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission
response or filter characteristic) of a trombone while being played by expert musicians, sound pressure
signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and
then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes
plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such
recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone
mouthpiece and anechoic output signals were made that provide a more accurate measurement of the
trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency
around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely
variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972
verified the high-pass behavior, but they also showed a series of resonances whose minima correspond
to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the
two types of measurements corresponded well, but above cutoff there was a considerable difference. The
general effect is that output harmonics above cutoff are greater than would be expected from linear filter
theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this
nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes
place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative
strengths of the upper harmonics.
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1. Introduction

While publications giving measurements of in-
put impedance vs. frequency for wind instruments
have been quite numerous (e.g., Backus, 1974, 1976;
Caussé et al., 1984), there have been relatively few
that have shown output/mouthpiece pressure trans-
fer functions (also known as transmission responses).
Early exceptions were by Benade (1976) and Elliott
et al. (1982). The latter paper presented measurements
of both input impedance and transfer functions of fre-
quency for a trumpet and a trombone. They concluded
that, despite the exceedingly high pressure levels that
can occur in the trombone mouthpiece (greater than
165 dB SPL), “the magnitudes of the (nonlinear) ef-
fects are small compared to the overall, linear be-

havior of the instrument under normal playing con-
ditions”. This had already been discussed by Backus
and Hundley (1971), who had also concluded that
brass systems are linear and that harmonics are en-
tirely generated in the mouthpiece due to a nonlinear
variation of the slit resistance of the vibrating lips.
However, the measurements I made with real players
were indicating otherwise (Beauchamp, 1969, 1980,
1988, 1996).
In the 1990s a few papers began to appear confirm-

ing that harmonic pressure amplitudes at the output of
a trombone are not strictly caused by linear filtering of
a mouthpiece input signal. Hirschberg et al. (1996)
showed that waveforms in the trombone become pro-
gressively more steepened as they move down the trom-
bone’s cylindrical tubing, and this effect becomes more
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pronounced as the acoustic pressure in the mouthpiece
increases. Msallem et al. (1997, 2000) constructed
a model for the trombone which included viscother-
mal losses and effects of nonlinear propagation and
could be used for sound synthesis. Thompson and
Strong (2001) showed that, given a measured mouth-
piece pressure spectrum, a distributed finite-element
method of simulation based on a trombone bore profile
could be used to predict the trombone’s output spec-
trum at both low and high amplitudes. 152 cylinders
were used to approximate the trombone bore. Using
the acoustical properties of a generalized cylinder and
boundary conditions at the mouthpiece and bell, the
output of each cylinder was computed for both the lin-
ear and nonlinear cases and accumulated to calculate
the entire transfer response. While the difference be-
tween linear and nonlinear predictions was modest for
a soft tone, it was dramatic for a loud tone of the same
pitch. Moreover, the error between measured and pre-
dicted output spectra was much smaller for the non-
linear case over a range of pitches and intensities.

2. Early measurements

2.1. Transfer function measurement under
performance conditions

In general, the transfer function T (f) of a wind
instrument, treated as a linear two-port system, is a
frequency-domain measurement of the ratio between
the instrument’s acoustic pressure output Pout(f) and
its mouthpiece pressure input Pin(f), given by

T (f) = Pout(f)/Pin(f). (1)

In decibels this would be written as

TdB(f) = 20 log10(Pout(f)/Pin(f))

= 20 log10(Pout(f))− 20 log10(Pin(f)). (2)

In 1968 as part of a project to determine a sour-
ce/filter model for a trombone (Beauchamp, 1969),
I attempted to measure the pressure transfer func-
tion under performance conditions using four differ-
ent student trombonists playing a Bach Model 36
Stradivarius trombone with a 61/2-AL mouthpiece in
an anechoic chamber at the University of Illinois at
Urbana-Champaign (UIUC). Compared to other meth-
ods, measuring the transfer function in this way was
actually very convenient because it only required two
microphones, one in the mouthpiece and one at the
output, and no other special equipment. The trom-
bone was mounted on a fixed stand in the cham-
ber. The mouthpiece pressure was monitored us-
ing a B & K 4136 1/4′′ (0.635 cm) condenser micro-
phone mounted flush with the inside of the mouth-
piece backbore. The output pressure was measured by
a B & K 1613 sound level meter with a 1′′ (2.54 cm)

omnidirectional capsule 2 m on axis from the trom-
bone bell, making it easy to calibrate the output sound
pressure level. Mouthpiece and output pressure sig-
nals for tones performed at a series of closed-position
pitches (Bb

2, F3, Bb
3,D4, and F4) and dynamics (pp, mf,

and ff ) were recorded on separate tracks of a stereo
analog tape. Then, the transfer functions were esti-
mated by taking ratios between the amplitudes of the
corresponding harmonics of the output and input, as
measured by a computer program. Thus, for each har-
monic h and fundamental frequency f1, the equation

T (hf1) = Pout(hf1)/Pin(hf1) (3)

gave a discrete point on the continuous transfer func-
tion T (f) at frequency hf 1. Assuming a linear system
and constant f1, T (f) should have been independent of
dynamic level. However, measurements demonstrated
a dependence of the transfer function on dynamic, i.e.,
the intensity of the tones. Figure 1 shows curves similar
to those published in (Beauchamp, 1980) for Bb

2 tones
performed at pp,mf, and ff. Further details on the mea-
surement method are given in (Beauchamp, 1988).

Fig. 1. Trombone transfer functions made under perfor-
mance conditions for Bb

2 (f1 ≈ 117 Hz) tones played at
dynamics pp (dotted curve), mf (dash-dot curve), and ff
(solid curve). Curves are discontinued when input harmonic

falls below a noise floor.

2.2. Swept sine measurements

In 1972 I made swept-sine measurements of T (f) on
a Holten tenor trombone in the UIUC anechoic cham-
ber with an output microphone positioned 2 m from
the bell, using a setup similar to that used in 1968, ex-
cept that a University Sound 75 w driver supplied the
input pressure. The transfer-function results in terms
of decibels vs. linear frequency are shown in Fig. 2.
The basic decibel level-vs.-frequency curve is a high-
pass type with approximately uniform-spaced maxima
and minima superimposed on it. The degree of differ-
ence between the maxima and minima decreases with
frequency until roughly fcut = 1000 Hz, the approxi-
mate bell cutoff frequency. For frequencies above fcut
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Fig. 2. Tenor trombone pressure transfer function (closed position). Four different cases for trombone
output pressure: A – on-axis; B – on-axis with output microphone rotated 45◦; C – positioned 45◦

off-axis; D – positioned 90◦ off-axis. Output microphone positioned 2 m from bell.

the response is close to flat when the microphone is on
axis but decreases gradually when the microphone is
off axis by 45◦ or 90◦. The minima frequencies corre-
spond closely to the playing frequencies of the trom-
bone. The behavior for frequencies below cutoff can be
explained as follows: At low frequencies the open end
appears to be approximately closed and thus there are
strong standing waves, reinforcing large fluctuations
in pressure and velocity at the mouthpiece end, which
also acts as a closed end. In this case, both the input
impedance and transfer function vary widely with re-
spect to frequency, and only a small amount of energy
is radiated. However, this situation changes gradually
as frequency rises. At the bell the reflection coefficient
gets smaller and smaller, allowing more energy to be
radiated, causing the transfer function to rise. This ac-
counts for the high pass characteristic for f < fcut.

Fig. 3. Simultaneous measurement of the transfer function (upper curve) and the input impedance magni-
tude (lower curve) for a Bb cornet (open valves). Output microphone positioned at the bell opening.

In 1973 I visited Professor Arthur Benade at Case
Western Reserve University in Cleveland, Ohio, and
together we performed a simultaneous measurement of
the transfer and the input impedance functions for a
Conn 80ABb cornet, using a swept-sine/chart recorder
method. In this case, the microphone was positioned at
the bell opening, and the entire assembly was enclosed
in a box with absorbing material lining it. The graphs
shown in Fig. 3 clearly demonstrate that the local min-
ima of the transfer function curve correspond to the
local maxima of the input impedance curve (given by
Zin(f) = Pin(f)/Uin(f), where Uin is the mouthpiece
particle velocity). It is well known that the perfor-
mance fundamental frequencies of a wind instrument
correspond to the local maxima of the input impedance
magnitude, and therefore these frequencies also corre-
spond to the local minima of the transfer function.
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2.3. Theoretical relationship between T(f) and Zin(f)

That the peaks and valleys of the transfer function
and the input impedance are interlaced can be seen by
assuming a lossless system and equating input power
and output power. For the input in the frequency do-
main we have

Win(f) = Re {Pin(f)Uin(f)} = Re
{
P 2
in(f)/Zin(f)

}

= P 2
in(f)Re {1/Zin(f)} , (4)

where Uin(f) is the input particle velocity in the fre-
quency domain. Note that without loss of generality,
under the assumption that Pin(f) is real, we can move
the real part inside the brackets in the last term to
affect only the 1/Zin(f) term.
The output power is the average output intensity

Iave on a sphere of radius r at which this intensity is
measured. Thus, the total output power is

Wout(f) = 4πr2Iave(f) = 4πr2
P 2
out(f)

D(f)Zo
, (5)

where D(f) is a frequency-dependent directivity in-
dex, Zo is the characteristic impedance of air (415
rayls), and Pout is the on-axis acoustic pressure output.
Equating the input and output powers and solving for
T (f) = Pout/Pin leads to

T (f) =

∣∣∣∣
Pout(f)

Pin(f)

∣∣∣∣ =
√
ZoD(f)Re{1/Zin(f)}

4πr2

.
=

5.75

r

√
D(f)Re{1/Zin(f)}, (6)

which demonstrates an important aspect of Fig. 3,
namely that local maxima and minima of the trans-
fer function and the input impedance function are in-
terchanged. This is most important for frequencies be-
low cutoff, i.e., f < fcut, where fcut ≈ 200/d and d
is the bell diameter (Fletcher, Rossing, 1991). For
a trombone, the bell diameter is approximately 0.2 m,
resulting in a cutoff frequency of about 1000 Hz. We
don’t have to be concerned about D(f) for f < fcut
because it is approximately unity (Kinsler et al.,
1982). Above cutoff, however, assuming a plane circu-
lar piston model, D increases proportional to f2 (ac-
tually, D ∼= ((π/c)df)2 = (.0916df)2). Meanwhile, if
Re{1/Zin(f)} converges to a relatively constant 1/Zo

for f ≫ fcut, from Eq. (6) we would expect

T (f)
.
= 0.0026

d

r
f, f ≫ fcut. (7)

However, Eqs. (6) and (7) ignore frequency-dependent
thermoviscous losses which occur at the interior
boundary walls of the trombone. Losses can be ac-
counted for by defining power efficiency (Elliott
et al., 1982) as the ratio of output power to input
power:

E(f) =
Wout(f)

Win(f)
=

4πr2

D(f)Zo

T 2(f)

Re{1/Zin(f)}
, (8)

leading to

T (f) =

√
E(f)ZoD(f)Re{1/Zin(f)}

4πr2
. (9)

Note that Eq. (9) is the same as Eq. (6) except for
the multiplication by

√
E(f). By measurement, El-

liott et al. showed E(f) to be a high-pass func-
tion which reaches an approximately constant value
for f > 700 Hz. This, unfortunately, does not help re-
solve the discrepancy between the on-axis swept-sine
measurement (Fig. 2) and the prediction of Eq. (7) for
frequencies above cutoff.

3. Recent performance-condition transfer

function measurements

Comparisons of the early swept-sine and the
performance-condition transfer function results based
on the 1968 and 1972 measurements were presented at
two talks (Beauchamp, 1988, 1996). However, there
was always some doubt about the accuracy of the
performance-condition data because analog tape has
a limited signal-to-noise ratio (approx. 55 dB) as well
as significant distortion, so that accurate calculation
of the FFT ratio between output and input when the
upper harmonics of the input are weak (especially for
the pp case) could have been compromised.
Therefore, in 2000 I made new direct-to-digital

stereo recordings of the mouthpiece and output pres-
sure of a trombone played by Jay Bulen (professor of
trombone at Truman State University, Missouri) in the
University of Iowa anechoic chamber (the UIUC cham-
ber was unfortunately decommissioned in the early
1980s). This allowed much more accurate calculations
of performance-condition transfer functions. Figure 4
shows a block diagram of the measurement system.

Fig. 4. System for measurement of trombone transfer func-
tions under performance conditions. A stereo file is stored
on the computer with the mouthpiece pressure signal pin(t)
as the left channel and output signal pout(t) as the right

channel.
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The Endevco 8510B-2 piezoelectric microphone was
accurate to 190 dB SPL and was much sturdier than
the B & K condenser microphone used in 1968, so it
was possible to position the mouthpiece microphone
directly in the mouthpiece cup, flush with the inside
surface. The output microphone, an omni-directional
Neumann KM83, was positioned on axis at 1.9 m from
the bell. The microphone outputs were recorded on
digital audio tape (DAT) and subsequently transferred
as stereo files to a computer for spectral analysis.

3.1. Calculation of T(f) under performance
conditions

The trombone mouthpiece (input) and on-axis
far-field (output) signals were then copied to sepa-
rate monaural files, and a “phase vocoder” program
(Beauchamp, 2007) was used to perform harmonic
analysis on the signals. Using a different program,
the amplitudes of pin(fh) and pout(fh), where fh =
hf1 is the harmonic frequency and f1 = fundamen-
tal frequency, were averaged over the durations of the
sounds before computing the transfer function ratios
TdB(fh) = 20 log10(pout(fh)/pin(fh)).
Figures 5–7 show graphs of pin(fh), pout(fh) (in

decibels) vs. frequency, where f1 = 58 Hz for the case
pitch Bb

1, for dynamics pp, mf, and ff, respectively.

Fig. 5. Trombone mouthpiece spectrum (top) and out-
put spectrum (bottom) for pitch Bb

1 and dynamic pp.

Fig. 6. Trombone mouthpiece spectrum (top) and output
spectrum (bottom) for pitch Bb

1 and dynamic mf.

Fig. 7. Trombone mouthpiece spectrum (top) and out-
put spectrum (bottom) for pitch Bb

1 and dynamic ff.
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Figures 8–10 show a comparison of computed trans-
fer functions for the pp, mf, and ff cases for pitches
Bb

1, B
b
2, F3, Bb

3, D4, and F4 (corresponding approxi-
mately to f1 = 58.3, 116.5, 174.6, 233.1, 293.7, and
349.2 Hz). The maximum frequency for each graph
is limited by excluding points where the mouthpiece
spectra fall below 0 dB, which was judged to be the
level of the noise floor. (Note that although the T (f)
curves are shown continuous, this does not imply any-
thing about the response characteristics between the
harmonics, which are only revealed by the swept-
sine measurements.) Two things are obvious from the
graphs: First, the transfer functions are nearly identi-
cal for f < 1000 Hz. The average standard deviation of
the curves over this range is about 0.6 dB for the seven
natural closed-position tones between Bb

1 and B
b
4. Sec-

ond, for f > 1000 Hz the curves are quite different.
In general, T (f) becomes greater as the dynamic level
increases. Figures 9 and 10 show that at f = 5000 Hz
the separation between the mf and ff cases is greater
than 20 dB. At 2500 Hz the mf transfer functions are
more than 15 dB greater than the pp versions.

Fig. 8. Trombone transfer functions compared: pp (dot-
ted lower), mf (dash-dot middle), ff (solid upper) for

Bb
1 (top), B

b
2 (bottom).

The invariances of the transfer functions with re-
spect to dynamic for f < 1000 Hz seem to indicate
that the wave steepening effect is small for Fourier
components with frequencies below cutoff. It is be-

Fig. 9. Trombone transfer functions compared: pp (dot-
ted lower), mf (dash-dot middle), ff (solid upper) for

F3 (top), B
b
3 (bottom).

Fig. 10. Trombone transfer functions compared: pp (dot-
ted lower), mf (dash-dot middle), ff (solid upper) for D4

(top), F4 (bottom).
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Table 1. For each harmonic of a Bb
1 (58 Hz) mf tone, decibel amplitudes (on a relative scale) for input pressure, output

pressure, and output-minus-input (in dB) corresponding to Figs. 6 and 8 (top), as well as values sampled at the harmonic
frequencies from Fig. 2 (upper curve) with 3 added, are given. The average magnitude error is 2.4 dB.

Harmonic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Frequency [Hz] 58 116 174 232 290 348 406 464 522 580 638 696 754 812 870 928

pin perf. cond. [dB] 61 60 58 57 56 54 53 51 49 48 45 44 42 39 38 35

pout perf. cond. [dB] 31 31 37 38 35 36 43 46 43 45 41 46 42 45 45 40

T (f) perf. conf. [dB] −30 −29 −21 −19 −21 −18 −10 −5 −6 −3 −4 2 0 6 7 5

T (f)+ 3 swept sine [dB] – −25 −22 −18 −14 −14 −7 −4 −5 −4 −3 −3 0 4 4 5

Error – −4 +1 −1 −7 −3 2 5 −1 1 −1 5 0 2 3 0

lieved that most wave steepening occurs within the
cylindrical portions of trombones, which are typically
2 m long (Hirschberg et al., 1996; Smyth, Scott,
2011). Peak-to-peak mouthpiece waveform amplitudes
(∆pm) can be as much as 2 × 104 Pa for fortissimo
tones (Hirschberg et al., 1996;Thompson, Strong,
2001). It can be shown (Cooper, Abel, 2010) that
the difference between peak and trough time dilations
caused by finite-amplitude plane waves in a cylindrical
tube is given by

∆t =
2L

c0

{
β∆pm/(2P0)

1− (β∆pm/(2P0))
2

}
, (10)

where in our case L = 2 m, c0 = 343 m/s (speed of
sound), β = 1.2 (coefficient of nonlinearity), ∆pm =
2 × 104 Pa, and P0 = 105 (atmospheric pressure).
This gives ∆t = .00142 s. While this time difference is
significantly greater than the period corresponding to
1000 Hz, it is considerably smaller than the fundamen-
tal periods of trombone tones. Moreover, mouthpiece
waveforms are heavily dominated by the lower harmon-
ics, which are most important for time dilation. These
observations constitute a clue for why the transfer
functions behave in a linear fashion for f < 1000 Hz,
but they lack the rigor needed for a proof of the reason
for this effect.

3.2. Agreement between swept-sine
and performance-condition measurements

for f < 1000 Hz

The question arises: If we take transfer function val-
ues calculated from performance-condition measure-
ments for the trombone and compare them to val-
ues taken from the swept-sine data, how well do
they agree? Since the pp, mf, and ff performance-
condition transfer functions agree for f < 1000 Hz,
it seems that the propagation system behaves in a lin-
ear fashion for that frequency region and that therefore
the performance-condition and swept-sine-wave results
should coincide. Table 1 shows a data alignment be-
tween the Bb

1 mf tone’s performance-condition mea-
surements of Figs. 6 and 8 (top) and the swept-sine

measurement of Fig. 2 for harmonics below 1000 Hz.
The results are surprisingly close considering that the
trombones were different – a Holton TR602 tenor
trombone with a 61/2 AL mouthpiece was used for
the swept-sine measurement, whereas a Bach 42 B0
tenor trombone with a Stork 5S mouthpiece was used
for the most recent performance-condition measure-
ment.

4. Conclusions

Swept-sine measurements of trombone (and cor-
net) pressure transfer functions show high-pass char-
acteristics with superimposed resonance minima corre-
sponding to harmonic performance frequencies. While
transfer function measurements under performance
conditions for harmonics below the trombone cut-
off frequency (approx. 1000 Hz) show very little de-
pendence on performance dynamic and closely follow
a swept-sine measurement sampled at harmonic fre-
quencies, they deviate strongly above cutoff. For ex-
ample, performance-condition transfer functions for
harmonics above cutoff are typically 20 dB stronger
for tones played ff than for tones played mf. As-
suming a lossless linear system, a theoretical deriva-
tion based on power conservation indicates that
the transfer function should be proportional to the
square root of the real part of the inverted input
impedance function. Below cutoff, this relationship
has been qualitatively verified by swept-sine mea-
surement. However, the detailed relationship depends
on the exact nature of the losses and the radia-
tion directivity index, which have not yet been deter-
mined.
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