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It is assumed in the paper that the signals in the enclosure in a transient period are similar to a
noise induced by vehicles, tracks, cars, etc. passing by. The components of such signals usually points out
specific dynamic processes running during the observation or measurements. In order to choose the best
method of analysis of these phenomena, an acoustic field in a closed space with a sound source inside is
created. Acoustic modes of this space influence the sound field. Analytically, the modal analyses describe
the above mentioned phenomena. The experimental measurements were conducted in the room that
might comprise the closed space with known boundary conditions and the sound source Brüel & Kjær
Omni-directional type 4292 inside. To record sound signals before the field’s steady state was reached,
the microphone type 4349 and the 4-channel frontend 3590 had been used. The obtained signals have
been analysed by using two approaches, i.e. Fourier and the wavelet analysis, with the emphasis on their
efficiency and the capability to recognise important details of the signal. The results obtained for the
enclosure might lead to the formulation of a methodology for an extended investigation of a rail track or
vehicles dynamics.

Keywords: modal analysis, short-time Fourier transform, wavelet transform, acoustic signal processing.

Notations

f – source outflow [m3/s],
c – speed of sound in air [m/s],

Zi – acoustic impedance on the surface i [Pa·s/m],
r(x, y, z) – arbitrary point inside the enclosure described by

coordinates x, y, z,
p = p(r, t) – acoustic pressure at a point r(x, y, z) [Pa],

∆ – Laplasian, differential operator ∇2,
S – area of a boundary [m2],
V – volume of the enclosure [m3],

Tm(t) – modal time m-component,
Ψm(r) – m-eigenfunction,

λm – m-eigenvalue [1/m2],
ωm – m-eigenfrequency [Hz],
αm – coefficient describing damping (related to impe-

dance Z) of each time component Tm,
βm – m-eigen frequency for acoustic system with

damping,
fG – Gaussian pulse mean frequency [Hz],
σ – Gaussian pulse frequency dispersion [s],
ξ – relaxation time [s],

η – shear viscosity coefficient (dynamic viscosity) [Pa·s],
ηB – bulk (volume) viscosity coefficient [Pa·s],
κ – thermal conductivity coefficient [W/m·K],

Cp – heat capacity at constant pressure [J/kg·K],
Cv – heat capacity at constant volume [J/kg·K].

1. Introduction – acoustical analysis

An acoustic field in an enclosure is a specialcase of
acoustic wave propagation. After the sound source has
generated a signal, a sound wave propagates inside a
room. A loss of acoustic energy caused by absorption
is specified by the impedance appears at boundaries.
This attenuation is equalized in the short term by the
energy from the source. If the source is active, after this
transient period, the steady state behaviour dominates
in the enclosure. Here, the transient period is consid-
ered as the dynamical behaviour of the acoustic sys-
tem. In order to describe the acoustic field distribution
inside a room, one can use modal analysis formulation
under several restrictions (Morse, Ingard, 1968).
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The first factor in a modal approach states that the en-
closure can be considered as a resonator, and an acous-
tic field distribution inside is dependent on its normal
modes (eigenfunctions). It is assumed that one can use
the eigenfunctions in the case of a room with perfectly
rigid walls, i.e. Neuman’s boundary condition equals
to zero. Simultaneously, orthogonality and normaliza-
tion of eigenfunctions are required (Meissner, 2008).
The second factor indicates that the time components
describe acoustic pressure variation in time, i.e. an in-
creasing sound when a source starts and a decreas-
ing sound when a source becomes mute. On the other
hand, the acoustic field inside the room with a source
is described by a linear inhomogeneous wave equation
and the specific boundary conditions most often are
determined by the wall’s acoustic impedance. In this
paper, a modal approach is considered to be the way to
find the solution of the problem and emphasises spe-
cific features of the solution. In this case, the general
solution is the sum of the products of two components.
One of them is an eigenfunction and the other is a time
component. The time components are closely related
to certain eigenfrequencies and the enclosure absorp-
tion properties. Thus, the signal that propagates in the
enclosure should have a discrete frequency spectrum
in the range where eigenfrequencies are separated ad-
equately. The most important advantages come from
the fact that the variability of the signal received in
the enclosure is predictable in the frequency and time
domain. The experimental design and theoretical feed-
back subsequently give a possibility to test different
approaches to analysis of the signals which are char-
acteristic for dynamical behaviour of objects and sys-
tems.
Here, the enclosure is treated as “the filter” with ca-

pability to shape the acoustic signals in a specific way
in the frequency and time domain. The filter input is
the source of sound which generates the Gaussian im-
pulse. This kind of signal in the low frequency range
guarantees that sparsely distributed acoustic modes
of the enclosure are excited. Additionally, the impulse
creates the transient signal in the enclosure that can
be considered as produced by a source which moves
and drifts away from a point where it is observed or
measured. Therefore, in this paper the acoustical anal-
ysis of the enclosure with the special excitation can be
applied as the initial approach to the vibro-acoustical
analysis of the dynamic system analysis, e.g. analysis
of the signals usually generated by means of transport.

1.1. Theoretical background – the modal approach
to acoustic field description

1.1.1. Linear elastic

What should be considered, it is the acoustic field
inside an arbitrary enclosure V with a vibro-acoustical
source which is located in a determinate area (points)

and characterised by its power or outflow f . The field
is described by the well-known wave equation (Morse,
Bolt, 1994):

∆p− 1

c2
∂2p

∂t2
= f, (1)

where c is the sound velocity in air and differential op-
erator ∆ = ∇2. The Neumann’s impedance boundary
conditions on each part i of the boundary, character-
ized by the area S of the limited enclosure and by the
volume V , are in the form:

∂p

∂n
= −ρ0

1

Zi

∂p

∂t
, (2)

where Zi is the impedance on the surface i and ρ0 is the
air density. In Eqs. (1) and (2) the function p = p(r, t)
represents the values of the acoustic pressure at the
point r(x, y, z) of the enclosure in the specific time t.
In some cases, the modal analysis can be applied and
the solution would be assumed in the following form:

p(r, t) =
√
V

∞∑
m=0

Tm(t)Ψm(r), (3)

where Tm(t) are the time components describing the
variation of an acoustic pressure in a time, and Ψm(r)
are the eigenfunctions of the enclosure which satisfy
the Helmholtz equation in the general form:

∆Ψn(r) + λnΨn(r) = 0, (4)

where λn are the eigenvalues correlated with the eigen-
frequencies ωn of the enclosure by the formula ω2

n =
λnc

2. In this case, the index n means the particu-
lar eigenvalue and eigenfunction of the enclosure. Zero
Neumann boundary conditions are applied on all sur-
faces. According to Green’s theorem, if one considers
the enclosure with volume V and boundary S as a
bounded, positively-oriented domain, then both func-
tions p(r, t) in Eq. (1) and Ψn(r) in Eq. (4) should
satisfy the following equation:∫
V

(p∆Ψn − Ψn∆p) dV =

∫
S

(
p
∂Ψn

∂n
− Ψn

∂p

∂n

)
dS. (5)

The variables t in the time components and r in the
eigenfunctions are omitted in further calculations in or-
der to simplify the notation. Applying Eqs. (1) and (4)
in order to obtain the terms ∆p and ∆Ψn and intro-
ducing the boundary conditions into the right side of
Eq. (5) leads to the following equation:∫

V

(
−pλnΨn − 1

c2
∂2p

∂t2
Ψn − fΨn

)
dV

=

∫
S

(
ρ0
Z

∂p

∂t
Ψn

)
dS. (6)
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The integrand on the right-hand side of Eq. (6)
contains the boundary condition formulation for all
boundaries of the enclosure. The first and the second
order derivatives of the pressure, calculated on the ba-
sis of Eq. (3) take the form:

∂p

∂t
=

√
V

∞∑
m=0

ṪmΨm,

∂2p

∂t2
=

√
V

∞∑
m=0

T̈mΨm,

(7)

where Ṫm and T̈m mean the first and second order
derivate of time component Tm. Using Eq. (7) one can
rewrite Eq. (6) as follows:∫
V

(
−λnΨn

√
V

∞∑
m=0

TmΨm−
√
V

c2
Ψn

∞∑
m=0

T̈mΨm−fΨn

)
dV

=

∫
S

(
ρ0
√
V

Z
Ψn

∞∑
m=0

ṪmΨm

)
dS. (8)

Simultaneously, a modal analysis assumes that the
eigenfunctions should be orthogonal and normalised.
That means: ∫

V

ΨnΨm dV =

{
0
1
n 6= m,
n = m.

(9)

It enables Eq. (9) to be simplified to the form:

−λn
√
V Tn −

√
V

c2
T̈n −

∫
V

fΨn dV

= ρ0
√
V

∞∑
m=0

Ṫm

∫
S

ΨmΨn

Z
dS. (10)

Grouping factors with time components and its deriva-
tives on the left-hand side and factors including the
source term on the right, using simple algebraic oper-
ations, a formula similar to the equation of the forced
vibration with a damping can be obtained. It takes the
form:

T̈n + ω2
nTn + ρ0c

2
∞∑

m=0

Ṫm

∫
S

ΨmΨn

Z
dS

= − c2√
V

∫
V

fΨn dV. (11)

The time components Tn can be obtained by solving
the sets of Eqs. (11). However, the eigenvalue prob-
lem of the enclosure with volume V , described by
Eq. (4) and Neumann boundary condition, has to be
solved initially. Hence, the correlated eigenfunctions
and eigenfreqencies are known. Eventually, applying

Eq. (3), the values of acoustic pressure and its distri-
bution in the enclosure can be determined. Two main
problems arise from summation on the left-hand side
of Eq. (11). The first problem is related to the time
component derivatives summation and the second may
arise from the infinite summation in Eq. (3). In some
specific cases the problem described by Eq. (11) can
be solved.
The modes coupling represented by the integrals

(Eq. (11) for m 6= n) can be neglected in the case
when the impedance Z is high enough. Subsequently,
the sum can be reduced and Eq. (11) takes the form:

T̈n+ρ0c
2Ṫn

∫
S

Ψ2
n

Z
dS+ω2

nTn=− c2√
V

∫
V

fΨn dV. (12)

The above procedure allows to get the well known sec-
ond order linear differential equation with constant co-
efficients. A homogeneous form of Eq. (12) represents a
situation when one stops to emit the signal, i.e. f = 0,
inside the enclosure and this case is considered in this
paper. Because of a high value of impedance Z the
non-vanishing integral value is lower than the value of
coefficient ωn. It means that the characteristic poly-
nomial has two complex roots. The general solution in
this case is the function (Błażejewski, 2013):

Tn = eαnt[C1 sin(βnt) + C2 cos(βnt)], (13)

where αn describes damping of the time compo-
nent Tn and the eigenfrequency βn for the enclosure
with impedance boundary condition. This function de-
scribes the sound decrease in a transient period after
the source has not been active. Constants C1 and C2

are dependent on the sound source f which caused a
sound field before. It can be noticed that the waves in
the enclosed space contain specific frequencies compo-
nents which are damped with time. However, in the
case of the sound waves in the enclosure, the signal
frequencies depend on the enclosed space eigenfrequen-
cies, and the attenuation depends on its boundary ab-
sorption. Therefore, the wave has a feature similar to
the signal detected at the point located in some dis-
tance from the travelling acoustic source which alter-
nately approaches and next drifts away from the point.

1.1.2. Thermally conductive and viscous

In the case of the air absorption the modified wave
equation (instead of Eq. (1)) has to be considered in
the following form (Morse, Ingard, 1968):(

1− ξ
∂

∂t

)
∆p− 1

c2
∂2p

∂t2
= f, (14)

where quantity ξ is the relaxation time describing re-
sponse of a fluid (the air) to a sudden increase in
acoustic pressure. It is caused by the wave propagation
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throughout the considered space. Three main phenom-
ena appear in the fluid subjected to the acoustic pres-
sure that influence the relaxation time: the shear flow
of the fluid regions possessing different velocities, mea-
sured by the shear viscosity coefficient η; the mechan-
ical energy lost as the result of the fluid compression
and dilatation, measured by the bulk viscosity coeffi-
cient ηB ; and finally the thermal conduction, measured
by the fluid thermal conductivity coefficient κ, heat ca-
pacity at constant pressure and volume respectively Cp

and Cv. Eventually, one can modify the wave equation
taking into consideration the fluid absorption and in-
troducing the following formula:

ξ =
1

ρ0c2

(
4

3
η + ηB +

(χ− 1)κ

Cp

)
, (15)

where χ is the heat capacities ratio Cp/Cv. Applying
the modal approach and methodology regarding mod-
ified wave equation the formula (6) has to be modified
to the form:∫

V

(
−pλnΨn − 1

c2
∂2p

∂t2
Ψn + ξ

∂(∆p)

∂t
Ψn − fΨn

)
dV

=

∫
S

(
ρ0
Z

∂p

∂t
Ψn

)
dS. (16)

On the assumption that the high values of the acous-
tic impedance on boundaries exist, as the result the
ordinary differential equation describing each acoustic
mode of the signal and air absorption appears:

T̈n +

ω2
nξ + ρ0c

2

∫
S

Ψ2
n

Z
dS

Ṫn + ω2
nTn

= − c2√
V

∫
V

fΨn dV. (17)

Again, one can assume the general solution in the form
(13). In the case of the above equation the αn describes
damping of the time component Tn, which takes the
form:

αn = −1

2

ω2
nξ + ρ0c

2

∫
S

Ψ2
n

Z
dS

 . (18)

Here αn, in contrast to the problem without air ab-
sorption consideration (Błażejewski, 2013), together
with damping caused by boundaries impedance, ap-
pears additional damping introduced by the air. The
eigenfrequencies βn in (13) for damping system with
the air absorption are also influenced by the parame-
ter ξ and described as:

βn =

√√√√√ω2
n − 1

4

ω2
nξ + ρ0c2

∫
S

Ψ2
n

Z
dS

2

. (19)

The relaxation time ξ in gases approximately reaches
10−10s and in dry air equals 2.38 · 10−10s. It means
that in the considered problem, the air absorption and
the acoustic impedance affect an acoustic signal in the
same way. The effect of the attenuation of the air can
be neglected.

1.2. The example object applied to shape
the analysed signal

In order to identify the required parameters an ex-
ample object, which is the room shown in Fig. 1, has
been taken into consideration. The volume of the en-
closure is 45.27m3 and the total surface area S, with
varying impedance, is 84.96m2. 15 different surfaces
are considered (e.g. walls, floor, ceiling, doors). The
real acoustic impedance characterizes the walls and
other boundaries in the actual object. The model of
the object was built applying Finite Element Method
(FEM) in order to identify the eigenfrequencies, i.e.
to solve numerically Eq. (4). Because of a good sepa-
ration of acoustic modes in the low frequency range,
first 500 eigenfrequencies were found and taken into
consideration. Hence, the sound source frequency spec-
trum was chosen properly (Subsec. 1.3). Two param-
eters should be identified in order to describe the en-
closure according to the modal approach. The first one
is the damping coefficient α associated with acoustic
properties, e.g. reverberation time. The second one is
the eigenfrequency β related to the shape and dimen-
sions of the enclosure. Numerically identified eigen-
frequencies of the object shown in the Fig. 1 are or-
dered in the following sequence: {27.3, 47.8, 61.1, 64.8,
70.3, 75.2, 78.6, 80.6, 89.1, 90.6, 92.9, 99.5, 101.9,
103.1, 111.4, 113.2, 119.7, 121.8, 122.0,. . . }. One can
see that the first eigenfrequencies are well separated.
Initial intervals are equal to a few hertzs but subse-
quently tend to get smaller values while eigenfrequen-

Fig. 1. The shape and dimensions of the example object
examined.
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cies are increasing. Thus, according to the modal ap-
proach, which is described by Eq. (3) and Eq. (13), the
acoustic waves generated in the enclosed space by the
source consist of components characterised by frequen-
cies correlated with eigenferquencies. The components
should be detected in the signal measured in the en-
closure. Together with characteristic frequencies (coef-
ficient β in Eq. (13)) the components in the detected
signal are characterised by the duration (coefficient α
in Eq. (13)).

1.3. Experimental procedure

In order to verify the theory within the scope of the
characteristic frequencies detection in the signal the
experimental research was conducted. The response
of the room was examined by generating an acous-
tic Gaussian impulse in the low frequency range. The
Gaussian impulse can be described in the frequency
domain by the following formula:

H(fG) =
1√
2πσ

exp

(
− f2G
2σ2

)
, (20)

a) b)

c) d)

Fig. 2. The acoustic signal recorded in different places of the room: a) pos. 1, b) pos. 2, c) pos. 3, d) pos. 4 after the
acoustic Gaussian impulse was emitted.

where parameters fG = 200Hz and σ = 1ms were
introduced in the excitation of the loudspeaker. The
measurements were conducted as follows: the sound
source was located at the point x = 3.25m, y = 1.5m,
z = 0.9m and a microphone was consecutively placed
in separate positions (pos. 1 – x = 4.5m, y = 1.0m,
z = 1.4m; pos. 2 – x = 4.5m, y = 2.5m, z = 1.4m;
pos. 3 – x = 3.25m, y = 2.5m, z = 1.4m; pos. 4
– x = 1.5m, y = 2.5m, z = 1.4m) of the room as
shown in Fig. 1. The signals received for four different
places in the room are presented in Fig. 2. One can
see that the signals are attenuated in 2–3 seconds af-
ter initiation and only the noise remains. The original
acoustic signal recorded does not deliver any informa-
tion except the duration of the whole signal and the
variation of the pressure values. However, its feature
is comparable to noise generated by vehicles passing
by. The theory in Subsec. 1.1 states that the measure-
ment contains same characteristic components which
can be significant in different aspects. Therefore, it
needs an additional analysis in order to extract the
components.
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2. Fourier analysis

Afterwards, the recorded signals were analysed us-
ing time-dependent windowed Fourier transform. The
time-dependent Fourier transform is the discrete-time
Fourier transform computed using a sliding window.
This form of the Fourier transform is also known as
the short-time Fourier transform (STFT). A Hamming
window with the length of 1s giving 1Hz frequency res-
olution was used. In Fig. 3 the spectrograms in the fre-
quency domain show components of the received sig-
nals as the bands in the discrete frequencies and the
time when they last in the signals. The specific distri-
butions of the bands obtained after the signal analy-
sis, which can be observed in the exact frequencies in
the frequency domain and at different lengths in the
time domain of the spectrograms, indicate the charac-
ter of the signal generated by the source. The impulse
parameter fG in Eq. (20) determines the concentra-
tion of the components in this specific frequency neigh-
bourhood in the spectrograms in Fig. 3. The strength
of each received component is different and depends

a) b)

c) d)

Fig. 3. The spectrograms of the signals in different locations in the room: a) pos. 1, b) pos. 2, c) pos. 3, d) pos. 4.

on the receiver location and the source location. The
peaks in Fig. 4 are directly correlated with coefficient
β in Eq. (13) and represent only the strongest compo-
nents for each receiver-source configuration. In the case
of the examined object, where boundaries are charac-
terised by relatively high values of acoustic impedance,
those coefficients β are nearly equal to the eigenfre-
quencies.
In Fig. 4 one can observe that the frequencies

values for apparent peaks are correlated with the
eigenfrequencies values listed for the example object
in Subsec. 1.2. The STFT ability to extract the
frequencies sharply separated out of the analysed
signal is characteristic for the Fourier transform. Also,
it can be observed that, according to the theory,
different components (correlated with acoustic modes)
are attenuated in different ways. Some of them are
damped more strongly than the others. The time of
attenuation is directly connected with the coefficient
α in Eq. (13). This attenuation and the exponential
decrease are clearly seen in Fig. 5. The smooth curves
represent the time components, which initial ampli-
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a) b)

c) d)

Fig. 4. Frequency analysis (t = 0.5s) of the signals measured in different positions inside the room: a) pos. 1, b) pos. 2, c)
pos. 3, d) pos. 4.

a) b)

c) d)

Fig. 5. The attenuation of some signals’ components related to maximal values of FFT amplitudes analysed by windowed
Fourier transform (see Fig. 4): a) pos. 1, b) pos. 2, c) pos. 3, d) pos. 4.
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tudes as the peaks presented in Fig. 4. The frequen-
cies of the selected components are listed for each sig-
nal in the boxes in Fig. 5. In the case of acoustical
analysis of the enclosure, on the base of the frequen-
cies configuration and the time history of the related
components, one can infer about the shape dimensions
of the room and eventually about its frequency char-
acteristics. It gives the information which frequency
in the propagated signal is well received, on the con-
trary to the others as they are strongly damped. Gen-
erally, for dynamical systems, this kind of informa-
tion could be very useful and valuable. It allows to
take activities at the system to improve it. For exam-
ple, for a traffic noise, the oppressive components of
a signal can be identified. In the next step it could
be decided which components have to be reduced,
or even eliminated, because they induce resonances
in scrounging objects, constructions, buildings, sound
barriers etc.. The information in the time domain that
is the duration of some components in the measured
signal, which is an output of dynamic system, char-
acterises its ability to the attenuation of the specific
frequencies. For example, in the case of vibration ab-
sorbers, noise barriers, etc. these selective features are
required.

3. Wavelet analysis

A wide class of wavelet families gives the possibility
of replacing the classical Fourier bases combined with a
so-called “window” by functions more suitable for time
analysis (Malat, 1998). Whereas the time information
is spread in Fourier analysis, the appropriately chosen
wavelet bases can give detailed information on how
the analysed signal propagates in time. Signal analysis
based on the wavelet approach makes a step forward,
compared to a window Fourier transform, leading to
the detailed analysis in frequency-time domain. The
specific construction of wavelets allows building of sub-
spaces in the integrable functions’ space with arbitrar-
ily chosen dimensions. Therefore, the wavelet trans-
form can be treated as a kind of “digital zoom” allow-
ing to look inside the transformed signal as deeply as
one may wish, not only on frequency axis but also, and
above all, in time direction. This feature is particularly
useful in dynamic systems analysis where strong varia-
tions in time appear (Koziol, 2010; Koziol, Mares,
2010;Mallat, 1998). The signals analysed in this pa-
per have been transformed by using the Gabor wavelet
ψ(t) of frequency 6 with the complex wavelet func-
tion (Fig. 6). After a series of testing simulations, this
type of wavelet was chosen as the appropriate one for
analysing the measured signals, in order to analyse
the most wanted features in time-frequency domain.
The transformed signals are presented in scalograms
(Fig. 7) being equivalents to spectrograms shown in
Fig. 3.

a)

b)

Fig. 6. The real part (solid line) and the imaginary part
(dashed line) of the complex wavelet function type of Ga-

bor: a) with frequency 1, b) with frequency 6.

Strong variations of signals can be observed when
analysing the signals transformed by using Gabor
wavelets (Fig. 7). It shows that wavelets have the
possibility to recognise more detailed dynamic changes
of signals. Therefore, the wavelet analysis can be used
for the recognition of features of dynamic systems
with strong variations and, consequently, it is a more
reliable tool for such complex dynamics. Figure 8
shows attenuation of some signals’ components related
to the amplitudes observed in Fig. 4. The frequen-
cies of the selected components are listed for each
signal in the boxes in Fig. 8. The transformed signal
behaves more chaotically compared with the one
obtained via Fourier transform (Fig. 5). Real physical
features can be discussed when using the wavelet
transform by extracting appropriate components from
the transformed signal and then using the inverse
wavelet transform. This kind of processing cannot
be used in the case of Fourier analysis because the
applied window loses important details in time. This
information is spread in the transformed signal and
only frequency features can be reflected fairly enough.
Therefore, the curves presented in Fig. 4 are much
smoother and, even if they seem “very nice” looking
like associated with analytical solutions, they do
not show real behaviour of the analysed system.
Thus, by using the wavelet transform a number of
physical and geometrical properties of the enclosure
can be classified which leads to the recognition of
surrounding environment with generated impulses.
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a) b)

c) d)

Fig. 7. Scalograms of the specified signals measured at: a) pos. 1, b) pos. 2, c) pos. 3, d) pos. 4, transformed by using the
wavelet transform with introduced Gabor wavelet of frequency 6.

a) b)

c) d)

Fig. 8. The attenuation of some signals’ components related to maximal values of amplitudes (wavelet coefficients) analysed
by wavelets (Fig. 7): a) pos. 1, b) pos. 2, c) pos. 3, d) pos. 4.
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On the basis of the carried out experimental study,
one can formulate basic guidelines for acoustic signal
analysis that can be also introduced for unbounded
domain, e.g. the train track. Noise and vibrations
generated by means of transport such as vehicles or
trains have similar features, i.e. they are character-
ized by strong variations of specific frequency compo-
nents. The study carried out for sound in the enclo-
sure and published semi-analytical solutions for mov-
ing load problems, obtained with a use of the wavelet
approximation (Koziol, 2010; Koziol, Mares, 2010;
Koziol et al., 2008), allows to presume that the cre-
ation of a consistent wavelet based methodology for
analysis of dynamic effects of rail transportation on
environment is possible.

4. Conclusions

The dynamical objects, or more generally systems,
can generate vibro-acoustical signals. The subsystems
or parts of the objects build a whole signal introducing
their specific frequency components which exist in a
signal specific time. Two different approaches to the
signals and noises analysis are presented in the paper
for the purpose of underlining their main features.
These analyses were conducted for signals generated
and received inside closed space, i.e. inside the room.
The theoretical background was presented in order to
point out special attributes of these signals such as fre-
quencies components associated with eigenfrequencies
of the room and its duration. The theoretical solution
was compared with experimental measurements for a
real object. In the case of the object the eigenfunctions
were identified numerically and according to the the-
oretical solution the measured signals should contain
specific components correlated with eigenfunctions.
This kind of signal is assumed to be similar to signals,
or more generally noises, which can be generated
by means of transport. The measured signals were
analysed in the frequency and time domain using
the short-time Fourier transform (STFT) and the
wavelet transform. Both analyses gave information
regarding the signal generated by the main source, i.e.
the loudspeaker, but also allowed to identify separate
signals, additionally generated by other sources.
One should note that the recorded signals contained
the noise lasting from the beginning to the end of
the measurement. It can be observed as separate
bands in a low frequency range in Fig. 3 (Fourier anal-
ysis) and areas in Fig. 7 (wavelet analysis). It has been

shown that this kind of signals, with some frequen-
cies dominating in the frequency spectrum and dif-
ferent characteristics, i.e. duration and variation of
the frequency components, need special approach. It
is proposed to conduct the analysis in two steps: the
short-time Fourier analysis in order to identify the fre-
quencies, and after that the wavelet analysis of partic-
ular frequencies. The exemplary dynamical system –
the high-speed trains generate such signals, acoustical
and vibrational simultaneously. The analysis of sys-
tems associated with moving loads still needs new ap-
proaches, equally in analytical and experimental study,
especially when one deals with critical values appear-
ing in the case of high speeds. The method of anal-
ysis developed in this paper, assuming the use of the
short-time Fourier analysis to identify the sought fre-
quencies and the wavelet approach for time analysis of
particular frequencies attenuation, will be used for the
measurements carried out in situ for real train track
constructions, i.e. vibration and noise arising from op-
erational trains.
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