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The projecting of the quasi-plane flow into specific modes yields in a set of coupled equa-
tions accounting for all possible interactions of the basic types of motion. A particular case of
interaction considers vortices affecting the character of sound propagation. The new dynamic
equations describing the propagation of a progressive acoustic beam interacting with a vortex
background are derived and discussed. Since two acoustic branches become separated, these
equations include the first order derivative with respect to time. It is the main result of the
present paper. Illustrations on the scattered acoustic pressure referring to the different types of
vortex flow are presented.
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1. Introduction

The general hydrodynamic flow is known to consist of different types of motion: the
acoustic, vortex and entropy ones. In a flow over the uniform background, only acoustic
waves associate with the change of pressure of the fluid. The dispersion relation and
links of perturbations specific for every mode are determined by a linearized system of
basic equations of conservation of mass, momentum and energy ([1] and papers referred
there). There is a wide variety of interactions between different types of motion that have
been observed experimentally [2–5]. They are typically nonlinear since the modes may
interact due to nonlinear coupling of the correspondent terms of the dynamic equations.
The governing equations of conservation in the differential form are nonlinear due to
nonlinearity of the convective term in the momentum equation V(∇V), the nonlinear-
ity of thermodynamic equations of state, and the damping nonlinearity in the energy
balance equation. Some of these effects are related to the transfer of energy (acoustic
heating) or momentum (acoustic streaming) from acoustic into non-acoustic motions
due to attenuation.



490 A. PERELOMOVA

The interaction of the acoustic and vortex flows belongs to the most complex prob-
lems of the nonlinear hydrodynamics ([6] and papers referred there). The first point of
the problem is acoustic streaming, a phenomenon presupposing that the acoustic wave
is dominant. Vortex flow following the acoustic wave grows with time due to nonlinear
dissipation of the acoustic momentum. On the contrary, scattering of the acoustic wave
at the vortices (being a special kind of obstacles) occurs even in a non-dissipative flow.
Many applications of hydrodynamics and aerodynamics deal with generation of sound
by a turbulent flow appearing at the background of aircrafts or submarines and ships.
Since a vortex flow is highly noisy, the nonlinear mathematics is still a very difficult
lock to pick.

Scattering of sound by vortices is a common subject in the nonlinear acoustics.
The governing equation comes from the works of LIGHTHILL [7]. It is written for the
acoustic pressure without distinguishing the branches of acoustic motion and therefore
includes a second order derivative with respect to time and a spatial Laplace operator.
In other words, the governing equation is a wave equation with a nonlinear source in
the right-hand side. The advance in the nonlinear theory is a possibility to split the gov-
erning equation in separate ones for every acoustic branch. That is the main result of
the present paper. Projecting which has been worked out by the author yields in the first
order dynamic equations with respect to time for everyone of the two acoustic modes
[8–10]. This is important in problems related to quasi-plane motion, where beam dy-
namics of a chosen direction of propagation is a subject of investigation. A remarkable
achievement of the last decades is the equation of Khokhlov–Zabolotskaya–Kuznetsov
(KZK) describing the nonlinear propagation of a progressive beam [11, 12]. It accounts
for the diffraction and damping of the sound beam. The KZK equation is an immedi-
ate result of acting by a corresponding projector on the basic system of conservation
laws [9]. In a similar manner, the equations governing the scattering of acoustic beams
are the result of projecting. A subject of the present paper is to derive these equations
and to give examples of their solutions.

2. Basic modes and correspondent projectors of the quasi-plane flow

The mass, momentum and energy conservation equations for a thermoviscous flow
are:

∂ρ

∂t
+ ∇(ρv) = 0,

ρ

[
∂v

∂t
+ (v∇)v

]
= −∇p+ η∆v +

(
ς +

η

3

)
∇(∇v), (1)

ρ

[
∂e

∂t
+ (v∇)e

]
+ p∇v − χ∆T = ς (∇v)2 +

η

2

(
∂vi

∂xk
+
∂vk

∂xi
− 2

3
δik

∂vl

∂xl

)2

.

Here, v denotes the velocity of the fluid, ρ, p are the density and pressure, e, T are
internal energy per unit mass and temperature; ς , η, χ are bulk and shear viscosities
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and thermal conductivity (all supposed to be constants), xi are space coordinates. Two
thermodynamic functions e(p, ρ) and T (p, ρ) complete the system (1). Without loss
of generality, let us consider an ideal gas treated by the thermodynamic functions as
follows:

e(p, ρ) =
p

ρ(γ − 1)
, T (p, ρ) =

p

Cvρ(γ − 1)
, (2)

where Cv and γ = Cp/Cv mean the specific heat per unit mass at constant volume and
the specific heats ratio, correspondingly.

In the quasi-plane geometry characterized by a small diffraction parameter µ which
expresses the relation of the longitudinal (along the y-axis) and transverse (in the (x, z)
plane) scales of perturbation, the equivalent system in the dimensionless variables (back-
ground quantities are marked by zero, perturbations are primed):

v∗, x∗, ρ∗, p∗, t∗ : v = cv∗, p′ = c2ρ0p∗, ρ′ = ρ0ρ∗,

x = (λx∗/
√
µ, λy∗, λz∗/

√
µ), t = λt∗/c, (3)

(c =
√
γp0/ρ0 is a small-signal sound velocity, λ means a characteristic scale of longi-

tudinal perturbations), may be rewritten in the following form (asterisks for dimension-
less variables will be omitted everywhere later):

∂

∂t
ψ + Lψ = ϕ+ ϕtv, (4)

where ψ is a column of perturbations

ψ =
(
vx vy vz p ρ

)T
, (5)

and L is the linear matrix operator:

L=




−δ11µ
∂2

∂x2
− δ21∆ −δ11

√
µ

∂2

∂x∂y
−δ11µ

∂2

∂x∂z

√
µ∂/∂x 0

−δ11
√
µ

∂2

∂x∂y
−δ11

∂2

∂y2
− δ21∆ −δ11

√
µ

∂2

∂y∂z
∂/∂y 0

−δ11µ
∂2

∂x∂z
−δ11

√
µ

∂2

∂z∂y
−δ11µ

∂2

∂z2
− δ21∆

√
µ∂/∂z 0

√
µ∂/∂x ∂/∂y

√
µ∂/∂z −δ1

2∆ −δ22∆
√
µ∂/∂x ∂/∂y

√
µ∂/∂z 0 0




(6)

with the dimensionless coefficients

δ11 =
(ζ + η/3)

ρ0cλ
, δ21 =

η

ρ0cλ
, δ12 =

χ

ρ0cλCv
, δ22 = − χ

ρ0cλCp
.
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The dimensionless operators ∇, ∆ are: ∇ =
( √

µ∂/∂x ∂/∂y
√
µ∂/∂z

)
,

∆ = µ∂2/∂x2 + ∂2/∂y2 + µ∂2/∂z2, ϕ is a quadratic nonlinear column:

ϕ =




−(v∇)vx +
√
µρ∂p/∂x

−(v∇)vy + ρ∂p/∂y

−(v∇)vz +
√
µρ∂p/∂z

−γp(∇v) − (v∇)p

−ρ(∇v) − (v∇)ρ




, (7)

and ϕtv is a quadratic nonlinear column O(β) appearing in the viscous flow [10].
For a linear flow defined by the linearized version of the system (4)

∂

∂t
ψ + Lψ = 0, (8)

a solution may be found as a sum of planar waves: vx = ṽx(k) exp(iωt−ikx), ... where

k = (kx, ky, kz)

is the wave vector. In the Fourier space, −ikx means ∂/∂x, iω means ∂/∂t, and (8)
yields in the five roots of the dispersion relation representing three basic types of motion
in a compressible fluid: two acoustic beams, two vortices and an entropy mode. Only
acoustic modes are progressive, the two other ones are related to motions of imaginary
frequency close to zero.

The modes of a linear flow in k-space are determined by the relations of ampli-
tudes of planar waves ṽx(kx, ky, kz), . . . . The corresponding eigenvectors fix these
relations [10]:

ψ̃1 =




√
µkx/ky

1 − µ(k2
x + k2

z)/(2k
2
y) + iβky/2

√
µkz/ky

1 + i(δ1
2 + δ22)ky

1




ρ̃1,

(9)

ψ̃2 =




−√
µkx/ky

−1 + µ(k2
x + k2

z)/(2k
2
y) + iβky/2

−√
µkz/ky

1 − i(δ1
2 + δ22)ky

1




ρ̃2,
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ψ̃3 =




0

−iδ22ky

0

0

1



ρ̃3, ψ̃4 =




iky

−i√µkx

0

0

0



ϕ̃4, ψ̃5 =




0

−i√µkz

iky

0

0



ϕ̃5, (9)

where β = δ1
1+δ21+δ12+δ22 =

ζ + 4η/3

ρ0cλ
+

χ

ρ0cλ

(
1

Cv
− 1

Cp

)
is an overall attenuation,

and the factor (−iky)
−1 represents the operator

∫
dy in k-space. The first two eigen-

vectors are acoustic modes, the rightwards and leftwards progressive ones, the third one
is an entropy mode, and two last ones are vortex modes.

[cont.]

All calculations of the modes and projectors were undertaken with an accuracy up
to terms of the order µ1, β1. Any linear flow ψ̃ being a solution of the linearized matrix
equation (8), is a sum of independent modes. Every specific mode may be decomposed
from the overall vector of perturbations by linear matrix projectors [8–10]:

P̃1ψ̃ = ψ̃1, ..., P̃5ψ̃ = ψ̃5. (10)

They form a full set of orthogonal operators and satisfy their common properties.
Acoustic projectors calculated with the accuracy of order µ, β have the form:

P̃1,2 =




µ
k2

x

2k2
y

√
µ
kx

2ky

√
µ
kx

2ky

1

2

(
1 ± iβ

2
ky ∓ i(δ12 + δ22)ky − µ

k2
x + k2

z

2k2
y

)

µ
kxkz

2k2
y

√
µ
kz

2ky

±√
µ
kx

2ky
±1

2

(
1 − µ

k2
x + k2

z

2k2
y

)

±√
µ
kx

2ky

1

2

(
±1 − i(δ1

2 + δ22)ky ∓ µ
k2

x + k2
z

2k2
y

)

µ
kxkz

2k2
y

±√
µ
kx

2ky
0

√
µ
kz

2ky

1

2

(
±1 − iδ2

2ky − µ
k2

x + k2
z

2k2
y

)
iδ22ky

2

µ
k2

z

2k2
y

±√
µ
kz

2ky
0

±√
µ
kz

2ky

1

2
(1 ∓ iβ

2
ky ± iδ12ky) ± iδ

2
2ky

2

±√
µ
kz

2ky

1

2
(1 ∓ iβ

2
ky ∓ iδ22ky) ± iδ

2
2ky

2




. (11)
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3. Dynamic equation for the rightwards beam affected by vortices

Nonlinear dynamic equations follow from the basic nonlinear system (4) while act-
ing on it by the corresponding projector. The projecting does not need a temporal averag-
ing, so a wide variety of problems concerning the propagation of the aperiodic acoustic
wave may be solved (acoustic heating and streaming [10]). The other remarkable pos-
sibility of projecting is to yield in dynamic equations for every branch of acoustic and
vortex modes separately.

The definition of the modes in the uniform and isotropic media does not depend
on the presence of boundaries and the boundary or initial conditions. Specific for the
boundary valued or initial problems modes are the superposition of the modes (9) sat-
isfying the boundary regime or initial conditions. A flow in closed volumes supposes
the existence of two acoustic modes to support the boundary conditions on the rigid
boundaries. Standing waves of a finite spectrum in closed tubes are an example of su-
perposition. The knowledge of the initial amplitude of every mode allows to solve the
problem by a set of successful approximations basing on a dominant mode at the begin-
ning of evolution (or, alternatively, at the boundary).

Acting by the the fourth row of the projector P1 of (11) on both parts of the sys-
tem (4) and taking into account the inputs of the acoustic modes and vortices in the
right-hand nonlinear part of (4) in accordance to links (9), give a following dynamic
equation:

∂p1

∂t
+
∂p1

∂y
+
µ

2

∫
∆⊥p1 dy − β

2

∂2p1

∂y2
+
γ + 1

2
p1

∂

∂y
p1 = Q1, (12)

with a source representing mixed acoustic-vortex and quadratic vortex terms Q1:

Q1 = −1

2
∇

∫ (
(U∇)U + (V∇)U + (U∇)V

)
dy − 1

2
(U∇)(p1 + p2). (13)

In the formula (13), V = v1+v2 is a part of velocity corresponding to both the acoustic
modes, U denotes vortex velocity. The quadratic acoustic term (13) is written for the
rightwards progressive beam, the effects of scattering of sound by sound are not taken
into account. Similarly, acting by the fourth row of P2 of (11) on (4) yields in dynamic
equation for the pressure of the leftwards propagating beam:

∂p2

∂t
− ∂p2

∂y
− µ

2

∫
∆⊥p2 dy − β

2

∂2p2

∂y2
− γ + 1

2
p2

∂

∂y
p2 = Q2, (14)

with a source Q2:

Q2 =
1

2
∇

∫
((U∇)U + (V∇)U + (U∇)V) dy − 1

2
(U∇)(p1 + p2). (15)

The right-hand sides of the dynamic equations (12) and (14) are evaluated with the
accuracy O(µ, β). In fact there are the famous Khokhlov–Zabolotskaya–Kuznetsov
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equations with a source. All the cross terms in the sources (13), (15) show how the
well-known formula for the scattering of the acoustic wave follows from combining of
Eqs. (12) and (14). Acting on their sum by the operator ∂/∂t, and on their difference by
the operator ∇, and combining the equations, one comes finally in the leading order to
an equation for the acoustic pressure P = p1 + p2:

∂2P

∂t2
− ∆P =

(
∂

∂t
− ∂

∂y

)
Q1 +

(
∂

∂t
+

∂

∂y

)
Q2

= − ∂

∂t
(U∇)P + ∇

(
(U∇)U + (V∇)U + (U∇)V

)
. (16)

Furthemore, one should take into account that the vortex flow is solenoidal ∇U =
0, and the acoustic velocity is divergent ∇ × V = 0, that follows also from the links
(9), and the equalities from the vector analysis

∇(VU) = (V∇)U + (U∇)V + V × (∇ × U) + U × (∇ × V),
(17)

∇(PU) = (U∇)P + P (∇U).

Finally, the dynamic equation (16) goes to the next one:

∂2P

∂t2
− ∆P = − ∂

∂t
∇(PU) + ∇

(
(U∇)U + ∇(VU) − V × (∇ × U)

)
, (18)

which agrees to the dynamic equation by CHU, KOVASZNAY [1].
The deriving of the separate dynamic equations for the rightwards and leftwards

propagating beams (12), (14) develops the up-to-date theory. In the frames of the quasi-
plane geometry of the flow, it becomes possible not only to separate the wave equation
for the overall acoustic pressure into two specific dynamic equations, but also to sim-
plify them considerably in the leading order accounting for the specific links given by
the eigenvectors (9).

4. Influence of vortex motion on the dynamics of a progressive acoustic beam

As we can conclude from the previous section, the sources on the right-hand side of
Eqs. (12) and (14) caused by the interaction of acoustic and vortex modes appear even
effects of viscosity and thermal conductivity are not taken into account. This exhibits the
specific nonlinear interaction. The dynamic equations for the rightwards and leftwards
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progressive beams in the leading order are:

∂p1

∂t
+
∂p1

∂y
+
µ

2

∫
∆⊥p1 dy − β

2

∂2p1

∂y2
+
γ + 1

2
p1

∂

∂y
p1

= −
∫ (√

µ
∂Uy

∂x

∂Ux

∂y
+

(
∂Uy

∂y

)2
)

dy

−
(√

µUx
∂

∂x
+ Uy

∂

∂y

)
p1 −

1

2
p1
∂Uy

∂y
− 1

2

√
µ
∂

∂x

∫ (
p1
∂Ux

∂y

)
dy,

(19)
∂p2

∂t
− ∂p2

∂y
− µ

2

∫
∆⊥p2 dy − β

2

∂2p2

∂y2
− γ + 1

2
p2

∂

∂y
p2

=

∫ (√
µ
∂Uy

∂x

∂Ux

∂y
+

(
∂Uy

∂y

)2
)

dy

−
(√

µUx
∂

∂x
+ Uy

∂

∂y

)
p2 −

1

2
p2
∂Uy

∂y
− 1

2

√
µ
∂

∂x

∫ (
p2
∂Ux

∂y

)
dy.

In calculations of (19), the links of perturbations inside every mode accordingly to (9)
are accounted: vx, Uy are of order O(

√
µ), vy, Ux are of order O(1), vy,1 = p1+

O(µ, β), vy,2 = −p2 + O(µ, β). The right-hand parts are evaluated with the accuracy
O(

√
µ), and only the vortex mode in the (x, y) plane is kept for simplicity which corre-

sponds to the eigenvector ψ̃4 from the set of (9). The Eqs. (12)–(15), and, consequently,
(19) are the basic result of the present paper: they are governing equations for determin-
ing the quantities of the scattered acoustic pressure for every progressive acoustic mode
separately.

4.1. Scattering of the beam at the vortices

Let us concentrate on the first one from Eqs. (19). The further solution of the equa-
tion depends on the initial conditions. At least, the vortex mode should be enough de-
veloped with an amplitude of the fluid particles velocity of order of that in the pressure
wave. It may itself be caused by losses in the momentum of flow. For example, it may
develop at the background of an obstacle [6]. We leave here out of account the problem
of generation of sound by vortices, and therefore do not consider the quadratic vortex
term in the source Q1. An effective generation may exist in a special case of a non-
stationary vortex flow [6, 12]. In particular, it is a subject of aerodynamic researches
of the atmosphere motion caused by aircrafts. Acoustic streaming is hardly expected
to give rise to a pressure beam not only because of its comparatively small amplitude.
The correspondent wavenumbers and frequencies should be close for successive interac-
tion. The linear definition of the vortex flow gives a frequency proportional to viscosity

ω = iδ21

(
ky + µ

k2
x + k2

z

2ky

)2

which is an imagine value responsible for the damping of

the vortex flow.
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Scattering of the acoustic beam at the vortices occurs due to the cross terms on the
right-hand side of the first equation in (19). As a standard procedure, the method of
successive approximations will be used: a pressure of the acoustic rightwards beam is
sought as a sum of non-scattered quantity p(0)

1 and a scattered one p(1)
1 . The first equation

of (19) splits into two ones:

∂p
(0)
1

∂t
+
∂p

(0)
1

∂y
+
µ

2

y∫

∞

∆⊥p
(0)
1 dy − β

2

∂2p
(0)
1

∂y2
+
γ + 1

2
p
(0)
1

∂

∂y
p
(0)
1 = 0,

∂p
(1)
1

∂t
+
∂p

(1)
1

∂y
= −

(√
µUx

∂

∂x
+ Uy

∂

∂y

)
p
(0)
1 (20)

−1

2

√
µ
∂

∂x

y∫

∞

(
p
(0)
1

∂Ux

∂y

)
dy − 1

2
p
(0)
1

∂Uy

∂y
= Q(U, p

(0)
1 ) = Q(x, y, t).

The last equation may be integrated along characteristic to find p(1)
1 (x, ξ = y − t,

z, η = y):

∂p
(1)
1

∂η
= Q(x, η, z, η − ξ), p

(1)
1 =

y∫

∞

Q(x, η, z, η − ξ) dη + F (x, ξ, z), (21)

where F (x, ξ, z) is a function independent of η and it should satisfy the boundary and
initial conditions. Without loss of generality, we set it zero for all arguments. The do-
main of longitudinal integration is [y,∞] for sound vanishing at infinity.

It is well-known that the first equation of the set (20) (KZK equation) is very com-
plex for an analytic solution [12]. In order to illustrate the results, any simple approxi-
mate solution is suitable. Acoustic pressure corresponding to the non-diffracting beam
propagating in the positive direction of axis y is used as example:

p
(0)
1 = P0 exp(−βy) sin(y − t) exp(−x2). (22)

It is valid starting from some distance from the transducer and does not depend on the
amplitude at it [12]. In view of the vorticity being the independent on z, mode ψ̃4 from
the set of (9), the geometry of the problem becomes two-dimensional. The vortex flow
develops in the (x, y) plane and must satisfy the equation ∇U = 0. There is an infinitely
number of vortices of this kind. In the quasi-plane geometry, the velocity components
may be taken, among others, in the form:

Ux =
∂

∂y
F (x2/µ+ y2, t), Uy = −√

µ
∂

∂x
F (x2/µ+ y2, t), (23)

where F is any smooth function.
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To satisfy the condition on the boundary (in the plane of the transducer) y = 0:
Uy = 0, the vortex flow is taken in the following form:

Ux = U0 exp(−2y)T (x/
√
µ, t),

(24)
Uy = 0.5U0

(
exp(−2y) − 1

)√
µ∂T (x/

√
µ, t)/∂x,

where T is a smooth function. In the calculations we use two different functions corre-
sponding to different types of the vortex flow:

T1(x/
√
µ, t) = exp(−x2/µ− t2),

(25)
T2(x/

√
µ, t) = x · exp(−x2/µ− t2).

Note that the functions T1, T2 achieve a maximum at t = 0, so that the vortex flow
exists at negative t, though quickly decreases. An appropriate shift t0 may be chosen to
get the local maximum at t = t0.

The results of numerical calculations of the scattered acoustic pressure accordingly
to the formula (21) are presented in the figures below. Both sets of calculations refer to
values of µ = 0.01 and β = 0.01. The leading acoustic pressure has the form (22).

a) b)

c) d)

Fig. 1. a) Stationary streamlines of the scattering vortex flow in the plane (x, y). The direction of flow is
clockwise; b), c), d) a ratio of the scattered pressure P

(1)
1 and a product of the amplitudes of the dominant

beam pressure and vorticity P0U0 as a function of ξ at different η = y − t.
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Figure 1 demonstrates a scattered acoustic pressure for vortex flow given by (24)
with T = T1(x/

√
µ, t) from (25). The curves are related to x = X =

√
0.5µ/(µ+ 1).

The scattered pressure achieves a maximum at x = ±X . The figure shows stream-
lines of the vortex flow and ratios of the scattered pressure P (1)

1 and a product of the
amplitudes of the dominant beam pressure and vorticity P0U0 as a function of ξ for
different η.

Figure 2 relates to vortex flow with T = T2(x/
√
µ, t) from (25). Though stream-

lines are symmetric analogously to the previous case, the vertical velocity changes sign
while going from the upper to the lower half-space: the direction of flow is clockwise in
the upper half-space (x > 0), and it is counterclockwise in the lower one (x < 0). The
illustrations are related to x = 0. In both the examples, the streamlines are stationary
due to the similar dependence of the velocity components on time accordingly to (24).

a) b)

c) d)

Fig. 2. a) Stationary streamlines of the scattering vortex flow in the plane (x, y). The direction of flow
is clockwise in the upper half-space (x > 0), and it is counterclockwise in the lower one (x < 0);
b), c), d) a ratio of the scattered pressure P

(1)
1 and a product of the amplitudes of the dominant beam

pressure and vorticity P0U0 as a function of ξ at different η = y − t.

The analysis shows that while η increases, the quantity P (1)
1 /(P0U0) oscillates from

approximately −0.7 and 0.7. The numerical examples are rather demonstrative in view
of the difficulties of double integration of the governing equation (the second from (20)).
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The initial waveform p
(0)
1 must satisfy the KZK equation, that complicates the problem

essentially.

5. Conclusions

Interaction of the pressure waves with the non-acoustic types of flow, and in partic-
ular, the scattering of the acoustic waves on the vortices, belong to the most important
problems of fluid dynamics. The problem may be subdivided into specific problems:
1) the definition of the acoustic and non-acoustic motions, that may be a complex prob-
lem itself in a nonuniform, affected by external forces media; 2) the deriving of equa-
tions governing the dynamics of the progressive beam on the base on the projecting of
the overall system of conservative laws into the specific evolution equations for every
mode accounting nonlinear interactions with itself and other modes; 3) the consequent
analytical or numerical solution.

The advantage of the projecting is mostly in the deriving of governing evolution
equations including the first order derivative with respect to time instead of second or-
der equations, where the acoustic branches are not distinguished. The projecting allows
to separate the equations for every branch of acoustic or vortex modes. Equation (12)
accounts for the distortions of the rightwards progressive beam, in contrast to Eq. (16)
which is responsible for distortions of the total acoustic pressure. The approximate solu-
tion is of a great difficulty because of the presence of the vortex flow supposes the going
out of one dimension. Therefore, an equation to be solved is of the KZK type in the
quasi-plane geometry with the nonlinear right-hand side including integro-differential
operators. Calculations in accordance to formulae (20) and (21) need double integra-
tion with the proper boundary conditions. In the frames of the method, a scattered wave
induced by the vortex-sound interaction is considered. The vortex flow itself may be
a result of a loss in momentum of acoustic dominative beam. The proper vortex flow
should be evaluated in accordance with the equations governing the acoustic stream-
ing [13].

Approximate governing equations depend on the initial amplitudes of sound and the
vortex flow: it is of importance, which kinds of nonlinear terms should be kept in the
source part. In the present paper, the vortex and sound amplitudes are of the same order.
Numerical estimations show that the ratio of amplitudes of the scattered and initial
pressure waves tends approximately to 0.7 with the growth of time. In general, a vortex
flow does not satisfy the links (23) or (24), it is solenoidal but depends on the concrete
problem to be solved.
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