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In this article, an example of the application of acoustic measurements to condition as-
sessment of electric machines is presented. Quality control of new components is considered
in this case study. The first symptoms of unserviceability are disclose in the acoustic domain
and then, in later exploitation, they develop into a form that is detectable during vibration
measurements. The assessment is based on acoustical wave spectrum normalized with respect
to rotational speed. An adequately prepared neural network of the Kohonen’s type was used
as assessing tool. Its performance was compared to results of the minimum distance method
based on averaged spectrum patterns.
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1. Introduction

Acoustical signals are less often used in diagnostics than vibration signals. This
stems from the fact that they are more sensitive to external disturbances. However, their
information capacity is comparable to that of vibration signals or even larger.

The easiness of energy transfer paths identification and elimination of undesirable
external influences are considered to be the main advantage of vibration measurements.
However in some applications it is not possible to place a sensor in the source of vi-
brations. Also in the case of standard components quality control, time required for the
sensor assembly and disassembly seems to be too expensive. Due to the lack of above
inconveniences, measurements of acoustical waves generated by machines seem to be a
promising solution.

The realization of this solution is difficult, but the development of signal processing
and analyzing methods makes it possible. Modeling of a real acoustical field (complex
restricting surface shapes, unknown sound absorption ratios and propagation conditions)
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is particularly complicated when obtaining of a real time model is required [5]. There-
fore the application of artificial intelligence methods – neural networks is proposed by
the authors. These methods can be used even when the model structure remains un-
known. It is important that these methods are able to approximate arbitrary nonlinear
functions [1].

In this article, an example of the application of the proposed methods to the electric
condition assessment of machines on the basis of acoustical signals analysis is pre-
sented. The case study considered a new components quality control. In such a case,
the first symptoms of unserviceability disclose in the acoustical domain and then, in the
later exploitation, they develop into a form detectable during vibration measurements.
Therefore the authors concentrated on acoustical signals as carriers of the machine state
information. Due to the structural (commutator) and functional (flow of sucked air)
properties, the machines of interest generate acoustical signals in a broad frequency
band, which additionally complicates the classification process.

2. Experiment description

During the experiment, digital measurements were carried out and the acoustical
pressure accompanying the work of AC low power commutator electrical motors was
recorded. For the sake of the motors utilitarian function, they are equipped with an
integrated centrifugal fan that can be treated as an additional aerodynamical noise source
with a continuous spectrum. The motors belonged to the same production series and
were classified as faulty with a specified basic defect (vibrations caused by rotor, rotor
clearance, faulty bearing, increased loudness). The measurements were carried out in
an anechoic chamber of the Department Mechanics and Mechatronics at AGH, which
allowed to eliminate the influence of external disturbances, reflections and resonances
of the research room. Apart from the noise characteristics, the rectangular characteristic
of the rotational frequency of the tested motor was also registered. The characteristic of
the rotational frequency can be used for the purpose of the acoustical spectrum scaling
and spectral synchronous analysis. Two series of tests were realized, one for a free
and another one for a loaded run (flow chocking at the suction side). Since during the
preliminary, auditory tests a distinct relationship between spectrum and the rotational
velocity of same motors was stated, the registration was started after 30 seconds of run
for stationary rotational velocities.

The research was carried out in the measurement stand shown in Fig. 1.
The motors under test were fixed in a specially shaped bearing made of a vibration-

damping material. The bearing admitted also the sucked air. The measurement micro-
phone G.R.A.S. with a pre-amplifier 6 AK was placed at a tripod in 0.5 [m] distance
above the tested motor at the commutator side. The rotational velocity was measured us-
ing a digital optical waveguide switch E3X-DA-N (OMRON), which cooperated with an
element fixed to the tested motor axis that reflected the light stream. A two-channelled
DF-1 TEAC analyzer was used for the data registration. This analyzer cooperated with
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Fig. 1. Scheme of the measurement stand.

the DF-S3 TEAC software run at the PC computer that served as a superior control
system registering the data flow [4].

During the experiment, the averaged signal power spectra were also registered for
the purposes of preliminary assessment of the considered process. These spectra are
complex: on the background of the continuous spectrum of a relatively high level, a
certain number of harmonic components of the distribution characteristic for individual
defects can be noticed.

3. Analysis of the data obtained

The acoustical pressure time series for all the tested machines are similar. The char-
acteristic estimates have also similar values. Therefore it was decided to carry out the
further data analysis in the frequency domain. In the spectral analysis, a window of size
equal to the number of samples registered during 1 second was assumed. An example
of the spectrum is shown in Fig. 2.

It was stated during the analysis that the tested machines have different working
speeds. In order to create objective circumstances of the analysis, a spectrum normalisa-
tion was performed making use of the measured rotational velocities. It is also possible
to determine the basic harmonic on the basis of the spectrum plot. The normalised spec-
trum contained components for multiples of a basic harmonic with the precision 1/100
of its value. An example of the spectra is presented in Fig. 3.

The spectra obtained are of big sizes – 16 385 elements, which complicates the
creating symptom – state relations on the basis of the classical classification methods.
Even in the case of specified spectral standards for certain machine defects, a currently
analysed spectrum can be classified incorrectly. Such a situation results from the fact
that a given spectrum differs from other standards only in a few points; in the case of
such a long tested vector, the differences can be insignificant. Therefore a non-distant
method of finding similarities between the tested spectra was proposed.
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Fig. 2. Acoustical wave spectrum.

Fig. 3. Relationship between the spectrum and rotational velocity.
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Since the state of the machine for which the acoustical pressure was measured is
known, supervised neural networks can be applied. Those networks have the ability
of mapping approximating by the use of provided examples. In such a case, a set of
example spectrum – machine state pairs is accessible. The gradient methods used in the
learning processes of such neural networks require large memory resources depending
on the size of the input vector and the number of examples. In discussed case, this
size exceeds the computer capacity. Therefore a reduction of the input vector size is
necessary.

Unsupervised neural networks can also be used. Such networks are able to process
vast amounts of input data. They can be used only when it is possible to normalize the
input vector and specify the predicted number of data groups that can be distinguished.
In consequence, 1 is returned at the output of one neuron and 0s at the outputs of the
remaining neurons [3]. On the basis of the network response for the examples described
above, it is identified for which neurons value 1 signifies a given machine state [2].
Taking into consideration the above assumptions, neural networks with 7 neurons (for 4
defected and normal states) were trained. Even though the learning process was carried
out repeatedly, the obtained neural network was capable of recognizing 2 states only:
free and loaded machine runs. This shows that in the spectrum there appear more ele-
ments characteristic for work conditions than for defects. For the purposes of the further
analysis only measurements for a free run were considered.

The learning set containing 60 elements for the machine maximum velocity and
15 test elements was created. As the result of the learning process, a neural network
with 10 neurons working properly was obtained. The number of neurons was gradually
reduced in the repeated learning processes. At last a neural network with 5 neurons was
obtained. This neural network generates correct responses for a learning set as well as
for a testing set.

4. Results

During the learning process, weights of individual neurons form an input vector
standard characteristic of a given machine state. In Fig. 4, there are presented standards
identified by a neural network. For the purposes of comparison, in the next figure aver-
aged spectra for different machine states are shown.

A comparison of the figures presented above shows that in this case the classifica-
tion task is not trivial, because the obtained spectrum standards are different. Both the
spectrum standards were used for the state assessment and components testing. As the
result of neural network testing, a number of active neurons was obtained. For an aver-
aged spectrum standard the number of standards which is closest to the tested spectrum
vector was identified.

The testing set consists of 20 components – 4 for each machine state. The perfor-
mance of the neural network is correct for all the 20 tested components, the averaged
spectrum method generates sometimes false assessments – 15 correct assessments for 20
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Fig. 4. Neural spectrum standard.

Fig. 5. Averaged acoustical signal spectrum.
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tested components. The results are shown in Table 1. False assessments of the machine
state are marked in bold.

Table 1.

Assessment of machine state

Correct 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2

Neural network 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2

Averaged spectrum 1 4 3 4 2 1 4 5 4 2 1 4 5 4 2 1 4 5 4 2

The spectrum normalization with respect to the rotational speed should enable a
correct machine state assessment also in case of components working with speeds dif-
fering from the nominal ones. So the methods presented above were tested with a speed
equal to 75% of the nominal speed. The same set of components as above one was used
for testing. The neural network gives correct assessments for 15 tested components, the
averaged spectrum method generates correct assessments 9 times for 20 the tested com-
ponents. The results are shown in Table 2. False assessments of the machine states are
marked in bold.

Table 2.

Assessment of machine state

Correct 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2 1 4 5 3 2

Neural network 1 4 2 3 2 1 4 5 3 5 1 4 2 3 1 1 4 5 3 5

Averaged spectrum 1 4 5 1 1 1 4 2 4 1 1 3 2 4 1 1 4 5 1 1

The application of the averaged spectrum generates false state assessments. The
neural network assesses correctly components of types 1, 3 and 4. It results from the
neural network ability of generalization achieved in the learning process. One can also
state that these types of components are easier to distinguish. Components of type 2 and
5 are assessed wrongly. The neural network performance can be improved by adding
examples of the spectrum characteristic for components working with different speeds
to the learning set. The next test concerned the quality assessment of components under
the payload. Since in this case the spectrum of the measured acoustic signal is much
different from those in the previous case, both methods gave false results.

5. Conclusions

In this article, an example of the condition assessment of electric machines is pre-
sented. The case study concerned new components of quality control. The acoustical
wave spectrum is the basis of the assessment. Due to various parameters of the assessed
machines, the spectra have to be normalized with respect to rotational speed. The large
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size of the spectrum amplitude vector makes the application of distance methods and
supervised neural networks difficult. The adequately prepared neural network of Ko-
honen’s type (unsupervised) correctly assesses the quality of new components on the
production line. The assessment is made on the basis of the acoustical wave spectrum
generated by the tested component without the payload working with a nominal speed.
The neural network obtained works correctly for three out of five cases, for components
working with speeds different from the nominal ones. In the case of components under
payload, the neural network generates wrong assessments. It may result from the fact
that the structure of analyzed spectrum differs from the spectrum obtained in the pay-
load free mode. The results generated by the neural network described above proved to
be better than those of the minimum distance method basing on the averaged spectrum
standards.
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