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The problems of convergence and stability of adaptive active noise control systems with
the Filtered-Reference LMS algorithm are discussed. First, the assumptions required to derive
convergence conditions are collected and addressed. Then, it is demonstrated that feedback
systems are subject to convergence conditions different than those used for feedforward sys-
tems. Moreover, the problems of convergence of the adaptation algorithm and stability of the
structural feedback loop are coupled. Theoretical considerations are supported by simulations
experiments.
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1. Introduction

In active noise control secondary sound sources are used to reduce acoustic noise
from the original primary noise. If a reference signal is measure-available and causality
condition is satisfied, feedforward control is preferred — see Fig. 1. Then, a feedback
loop is avoided and the control action can be undertaken in advance allowing success-
fully controlling broadband noise. However, if such signal is not available or the control
system is mobile, feedback control is the interim solution — see Fig. 2. It is commonly
used by many practitioners. Adaptive algorithms, usually analogous to those used for
feedforward control are applied. Similar properties of the overall systems are then ex-
pected. However, adaptive feedback systems need to be differently analysed compared
to their feedforward counterparts. This paper presents a review of the current knowl-
edge in this field supported by additional analysis and experiments. The most popular
in active control Filtered-Reference LMS (FXLMS) algorithm is used as the adaptation
algorithm. It updates control filter parameters in the direction of the negative gradient
of the squared output signal sample (the instantaneous value is taken instead of the
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ensemble averaging) [2]:

w(i+1) = yw(i) — pr(i)y(i), )
S )

(i) = $'x(i)

In this equation p is greater than zero “step size”, and w(z) and s are vectors of the
control filter, W, and the plant model, S, respectively, assumed to be of FIR structure.
The « parameter is equal to one for the FXLMS algorithm and is less than one for its
robust version known as the Leaky FXLMS algorithm.

Fig. 1. Adaptive feedforward system with the Fig. 2. Adaptive classical feedback system with the
FXLMS algorithm. FXLMS algorithm.

2. Theoretical analysis

The problem of convergence of the FXLMS algorithm bas been addressed in many
publications. Below, all the convergence types and important assumptions used to derive
convergence conditions are arranged in a coherent way. In stochastic systems conver-
gence of two random variables can be defined in various ways [1, 5]:

e Convergence “with probability one” or “almost surely — a.s.”.

e Convergence “in probability”.

e “Weak” convergence.

e Convergence “in the mean-square sense”.

e Convergence “in the mean”.

e Convergence “of the mean”.

Among the above definitions, convergence “with probability one” is the strongest,
whereas convergence “of the mean” is the weakest. The assumptions are:

A.1. The step size is very small or tends to zero (frozen trajectories).

A.2. The control filter structure is known.

A.3. The control filter parameters are bounded.

A.4. The control filter input is exciting.

A.5. The control filter input and variations of the control filter parameters are statisti-
cally independent.

The most frequently used upper bound for the step size in (1) is:

p< , (2)



ON CONVERGENCE AND STABILITY OF ADAPTIVE ACTIVE NOISE CONTROL SYSTEMS ~ 531

where Apay is the maximum eigenvalue of the correlation matrix E{T(i)¥" (i)}. How-
ever, this condition has been derived for feedforward systems only and is valid provided
the assumptions A.1-A.5 are satisfied and the plant is perfectly modelled. Moreover, it
is exclusively a sufficient condition for convergence “of the mean” [5]. This guarantees
only that the control filter parameters are unbiased estimates of the optimal filter pa-
rameters, and it does not refer to their variance. Hence, in practice, the step size should
be chosen significantly lower. Imperfect plant modelling sets further limitations to this
condition.

A reliable convergence analysis of the FXLMS algorithm has been performed in
[9] using the Ljung’s Ordinary Differential Equations method. Under assumptions A.1—
A5, the sufficient but not necessary condition for convergence “with probability one” of
the FXLMS algorithm is that the so-called “phase error” between the control-to-output
path and its estimate (the plant and the model, respectively, for feedforward control in
Fig. 1) must not exceed +/2 at all frequencies [9], i.e.:

v 2SI} = £{5(e )| < 5 3)
wTyg 2

where /{.} stands for the phase of {.}. If the assumption concerning the step size
tending to zero is not satisfied the control filter parameters converge “in probability” [9].
The above condition is usually considered as a rule of thumb for any control structure.
However, it is extremely important to bear all the made assumptions in mind. For the
classical feedback structure as presented in Fig. 2 two assumptions required for (3) to
be valid can be violated.

Assumption A.4 requires the reference signal being the control filter input to be ex-
citing. Fortunately, it is a much milder assumption than persistent excitation of respec-
tive degree required for the RLS algorithm. Nevertheless, particularly for narrowband
signals, high suppression of the system output may make the reference signal insuf-
ficiently rich for the FXLMS algorithm to correctly update the controller parameters.
This, in turn, may result in temporary divergence of the algorithm and may generate
local bursts of the output signal as illustrated in Fig. 3. There are different ways, not
considered in the paper, to mitigate this problem, including injecting low-level exciting
noise or the adaptive dual control strategy.

Assumption A.5 concerning independence of the control filter input on the control
filter parameters is also not satisfied for the classical feedback structure. The conver-
gence analysis can be then approximately tackled after performing linearization of the
path from the control filter input to the system output. Then, the sufficient condition for
convergence “with probability one” is [7]:

{8} — £{S} — 2{1 - SW}| < g . @)

It differs from (3) by presence of the phase of the characteristic polynomial 1 — SW,
which sets also the condition for stability of the structural feedback loop. Thus, condi-
tion (4) binds the problem of stability of the feedback system and convergence of the
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adaptation algorithm. This condition is usually more severe than that for feedforward
system. However, it can be shown that due to presence of the adaptive filter such condi-
tion can be self-correcting during adaptation and decrease the phase error [7]. Moreover,
it can even be less conservative than in case of feedforward systems (3).
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Fig. 3. Time sequence of the output signal for the  Fig. 4. Adaptive Internal Model Control system
adaptive classical feedback system. with the FXLMS algorithm.

The problem of signal excitation can be mitigated in the Internal Model Control
(IMC) system structure presented in Fig. 4. In this structure the reference signal is an es-
timate of the output disturbance, the better the more exact the plant model is. Moreover,
for perfect modelling the feedback system degrades to a feedforward system, which is
stable provided the control filter is stable since the acousto-electric plant is stable. How-
ever, assumption A.5 is also violated for this structure. Using the linearization technique
as mentioned above the following sufficient condition for convergence “with probability
one” has been derived [8]:

7r
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As for the classical feedback structure limitation of the control filter gain may also
reduce the phase error and protect against divergence of the FXLMS algorithm [6].
Such limitation is also advantageous for stability of the feedback loop (the characteristic
polynomial is 1 + W(§ — S), and additionally 1 + SW should be stable for internal
stability).

The problem of convergence of the adaptive IMC system has also been addressed in
the literature using different approaches. However, strong and unfeasible assumptions,
like perfect plant modelling or its minimum phase character, are made there. It is be-
lieved that more reliable analysis can be approached using, e.g. the tool presented in [1]
based on conditional expectations and particularly on the martingale method.

Another methodology to overcome the problems due to imperfect plant modelling
is to update the model simultaneously with adaptation of the control filter. Several algo-
rithms have been proposed for the on-line adaptation of the plant model. They usually
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require injecting to the system additional wideband noise uncorrelated with the dis-
turbance (see e.g., [4]). There are also some trials to identify the plant model without
the additional noise but the result is generally not unique. Usefulness of such algo-
rithms is usually comparable to the Leaky FXLMS in terms of the convergence itself.
They can, however, improve the convergence rate. Some of them are particularly ap-
preciated in feedback internal model-based structures. Then, in addition to updating the
control filter parameters the plant model constitutes a part of the overall feedback con-
troller. If changes of the plant are large enough stability of the feedback loop may be
impaired.

It has been assumed in A.1 for the convergence analysis that the step size is very
small or tends to zero. On the other hand, the adaptive system is also responsible for
responding to time-variations of the plant or non-stationarity of the disturbance. How-
ever, since for the IMC structure the model of the plant is required to adapt the con-
troller as well as estimate the reference signal variations of the plant are more crucial.
In case of too small step size the so-called “lag effect” may appear, which can degrade
the performance, even if the system remains stable [5]. In turn, too large step size in-
creases the excess mean-square error or can even lead to divergence as the upper bounds
demonstrate. It has been shown in [5] that the optimal step size is related to so-called
“non-stationarity degree” introduced to describe time variations, and the LMS-based
algorithm behaves much better in terms of the tracking capability when facing random
time-variations than a deterministic trend.

3. Simulation analysis

A further insight into the stability related problems can be gained and behaviour of
the adaptive algorithm can be examined with simulation analysis. However, it should be
emphasised at the very beginning that stability, similarly to convergence, is an asymp-
totic property of a system. Therefore, any analysis performed over a short time horizon
can rather refer to a tendency towards instability (or divergence) and the conclusions
cannot be straightforwardly generalised.

The step size, has great impact on the convergence itself and the convergence time
(rate). This dependence has been verified by means of simulations for the IMC system.
The data come from a real-world active headrest system aimed at attenuating noise at
ears of a person occupying the chair (label “original” in Fig. 5). Additionally, in the sec-
ond experiment, the plant gain has been multiplied by two (“doubled”), and in the third
experiment the original plant impulse response has been delayed by one sample (“de-
layed”). In these investigations the convergence time has been defined as the number of
samples required for an examined tone of 250 Hz to be attenuated by 20 dB. It has been
observed that for a small step size increase of its value decreases convergence time and
the dependence is reciprocal,

to ~ /1/717 (6)

regardless of plant modelling error, what coincides with the observations made in [8].
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Fig. 5. Convergence time vs. normalised step size ~ Fig. 6. Phase error for feedforward (dashed, grey),
for the nominal plant, with additional one-sample  and IMC (solid) systems; the dotted lines represent
delay, and with doubled gain; N — filter length. phase error of +7/2 and —7 /2.

For small values of p the plant dynamics has little effect and only the plant gain and
control filter length, N, influence the scaling in (6). Then, there exists an optimal value
of 1 in terms of the smallest convergence time (highest convergence rate). Minimum
value of ¢t depends both on the plant gain and delay for a given p. However, the op-
timum value of p and the range of its values are mainly limited by the delay. This
has been confirmed in analysis performed in [3] for a simplified case of a feedforward
system with the plant being a pure delay and a tonal reference signal. It has been ex-
perimentally found there that the optimal p is inversely proportional to the overall path
delay expressed in samples. Continuing the simulation analysis, further increase of the
step size increases the convergence time due to fluctuations of the residual signal (or
excess mean-square error). Finally, after crossing the critical value, the adaptive system
suddenly diverges.

Figure 6 presents the phase error evaluated according to the condition for feedfor-
ward system (dashed, see (3)) and according to the condition for the IMC system (solid,
see (5)). They have been obtained after convergence of the adaptive filter controlling a
broadband noise for a plant significantly different in phase and gain compared to the
assumed model. It is seen that the first condition is violated at low and high frequen-
cies and adaptive feedforward system would diverge. However, the second condition is
satisfied and the adaptive IMC system works stably provided it is updated slowly.

4. Conclusions

In this paper the problems of convergence and stability of adaptive active noise con-
trol systems have been discussed. Adaptive feedback systems, in contrary to feedfor-
ward systems, are very difficult to be fairly analysed. They operate with non-stationary
signals due to the adaptation loop, have structural feedback loop and are generally em-
ployed to face time variations of the plant and non-stationarity of the disturbance. There-
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fore, their analysis is usually subject to a variety of constraints that often significantly
limit practical application of found conditions. The theoretical considerations have been
supported by simulation experiments. Summarising the entire analysis it is suggested to
support additionally the adaptive algorithm with a heuristic supervisory loop. This loop
can be used to monitor the convergence and performance, and reset the algorithm or
change some settings, if necessary. This is particularly important for the acousto-electric
applications to avoid any unpleasant and annoying sound effects.
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