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Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite
baffles arranged perpendicularly to one another. The Neumann boundary value problem has been inves-
tigated in the case when both sources are embedded in the same baffle. The analyzed processes are time
harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions
and different phases have been applied to the sound sources’ surfaces. The influence of the radiated
acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources
system has been calculated by using a complete eigenfunctions system.
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1. Introduction

Sound surface sources are very common acoustic
radiators. Therefore, an analysis of their sound radi-
ation is essential from the practical point of view. It
enables predicting acoustic properties of systems con-
taining such sources. Moreover, this knowledge can
be used for active noise control. There are many
studies devoted to the sound radiation of surface
sources embedded in a single flat baffle (Lee, Singh,
1994; Li, Li, 2008; Takahagi et al., 1995; Zagrai,
Donskoy, 2005; Zhang, Li, 2010; Zou, Crocker,
2009b). Noise control has also been analyzed for these
radiators (Brański, Szela, 2011; Huang, Hung,
2011; Kozień, Kołtowski, 2011; Kozupa, Wiciak,
2010; 2011; Leniowska, 2009; Mazur, Pawełczyk,
2011; Trojanowski, Wiciak, 2010; Zou, Crocker,
2009a). However, surface sources very often radiate
acoustic waves into spatial regions bounded by more
than one flat baffle. This causes an appearance of
acoustic waves reflected from baffles located near the
sound source. The additional waves modify the distri-
bution of the acoustic pressure into the region. More-
over, interacting with the vibrating surface of the
plates and membranes they can also influence their
vibrations’ velocity and, consequently, change their
acoustic properties. The problem of sound radiation

into the region bounded by flat baffles can be solved
by introducing some simplifying assumptions. In many
practical cases baffles can be considered as perfectly
rigid. It can also be assumed for simplicity that baffles
are infinite, which is valid for high frequencies.
The sound radiation of a single source has been

analyzed for the regions of a two-wall and three-wall
corners. These regions are bounded by three and two
baffles arranged perpendicularly to one another. The
acoustic radiation of the piston source has been ex-
amined for the regions of two-wall and three-wall cor-
ners (Rdzanek et al., 2006b; 2007). It has been as-
sumed that the piston is located at one of the baffles
bounding the considered regions. The acoustic pres-
sure distribution and the acoustic power have been an-
alyzed in the case of the vibrating circular membrane
located at the boundary of the two-wall corner region
(Rdzanek et al., 2009; 2011). The acoustic power of
the vibrating circular plate has been presented for the
three-wall corner region (Szemela et al., 2011). In the
paper (Hasheminejad, Azarpeyvand, 2004), the ra-
diation of the vibrating sphere into quarter-space has
been analyzed.
In many practical cases, the sound waves are radi-

ated by an acoustic system containing more than one
source. The analysis of the sound radiation of such
systems requires additionally including interactions of
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mutual sources. The sound radiation has been analyzed
for different sources’ systems embedded in a flat baffle
(Arase, 1964; Pritchard, 1960;Witkowski, 1997;
Zawieska, Rdzanek, 2007). The analysis of sound
radiation by sources’ system located near transverse
baffles is more complicated. The solution to this prob-
lem has to include interactions among mutual sources,
as well as interactions between sources and waves re-
flected from baffles. The acoustic power of two pistons
located at different baffles of a three-wall corner region
has been analyzed (Rdzanek, Szemela, 2007). So far,
the sound radiation by the vibroacoustic system con-
taining sources of deformable surfaces has not been an-
alyzed for regions bounded by more than one flat baffle.
In this paper, the sound radiation by two circu-

lar vibrating membranes has been investigated for the
three-wall corner region. It has been assumed that both
sources are located at the same baffle. The formulas de-
scribing the acoustic power have been obtained for the
considered vibroacoustic system. They include the in-
fluence of radiated acoustic waves on the vibrations of
both membranes. The influence of acoustic waves re-
flected from the transverse baffles have been included
by using an appropriate form of the Green function.

2. Analysis assumptions

The vibroacoustic system consists of two mem-
branes of radii a1 and a2. They are made of
homogeneous and isotropic materials. It has been
assumed that the membrane of radius a1 is the
first source and the membrane of radius a2 is
treated as the second source. The membranes radiate
acoustic waves into the three-wall corner region
Ω = {0 ≤ x <∞, 0 ≤ y <∞, 0 ≤ z <∞} bounded
by three baffles that are arranged perpendicularly
to one another (Fig. 1). These baffles are perfectly
rigid and infinite. Additionally, it has been assumed
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that both membranes are located at the same baffle.
The considered region is filled with a homogeneous,
lossless, gaseous medium of the rest density ρ0. The
propagation velocity in the medium is equal to c. The
amplitude of radiated acoustic waves is small enough
to apply the linear theory of the acoustic field. More-
over, all the analyzed processes are time harmonic
with time dependence described by the following func-
tion: exp(−iω t), where ω is the vibrations’ circular
frequency. The membranes’ vibrations are asymmet-
ric. External factors derived from outside of Ω region
do not influence vibrations of the sound sources. The
field point location in the global Cartesian coordi-
nates system is determined by the leading vector
r = (x, y, z). The vectors r(1)s = (x

(1)
s , y

(1)
s , 0) and
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s , 0) indicate the points located at the

surface of the first and the second membrane, respec-
tively. The location of the membranes’ central points
in the global Cartesian coordinates system is defined
by the vectors l(1) = (l
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(Fig. 2). Additionally, to describe the locations of the
sources’ points, two local polar coordinates systems
(r

(1)
0 , ϕ

(1)
0 ) and (r(2)0 , ϕ

(2)
0 ) have been introduced. The

origins of the local coordinates systems are related to
the membranes’ central points, and their radial axes
are parallel to the x axis (Fig. 2). The surfaces of both
membranes are forced to vibrations by external asym-
metric excitations. Generally, the excitations’ distribu-
tions, as well as excitations’ phases, can be different.
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Fig. 2. Locations of the membranes on the horizontal baf-
fle of the three-wall corner region: vectors describing the
locations of sources’ central points l(1), l(2), local polar co-
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The equations of motion for the excited membranes
(cf. Rdzanek et al., 2009;Witkowski, 1997) can be
formulated as
(
k
(i)
T −2∇2 + 1

)
Wi

(
r
(i)
0 , ϕ

(i)
0

)
= − 1

ω2σi

·
[
fi

(
r
(i)
0 , ϕ

(i)
0

)
+p1

(
r
(i)
0 , ϕ

(i)
0

)
+p2

(
r
(i)
0 , ϕ

(i)
0

)]
(1)

for i ∈ {1, 2}, where the case of i = 1 is related
to the first membrane, the case of i = 2 is related
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to the second membrane, Wi(r
(i)
0 , ϕ

(i)
0 ) are the ampli-

tudes of transverse deflections for both sources, k(i)T =√
σi/Tiω, σi denote the surface densities of the mem-
branes, Ti are the uniform tensions applied along the
membranes’ edges, fi(r

(i)
0 , ϕ

(i)
0 ) are the functions de-

scribing the distributions of external excitations. The
components p1(r

(1)
0 , ϕ

(1)
0 ) and p2(r

(1)
0 , ϕ

(1)
0 ) that ap-

pear in Eqs. (1) for i = 1 present the acoustic pressures
on the surface of the first membrane resulting from the
sound radiation by the first and second sources, respec-
tively. Analogously, the components p2(r

(2)
0 , ϕ

(2)
0 ) and

p1(r
(2)
0 , ϕ
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0 ) appearing in Eqs. (1) for i = 2 present

the acoustic pressures on the surface of the second
source resulting from the sound radiation of the second
and first source, respectively. The solutions of Eqs. (1)
can be written in the form of an eigenfunctions series
(Meirovitch, 1967; Rdzanek et al., 2009):
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coefficients which have to be calculated. The eigen-
functions can be expressed as (cf. McLachlan, 1955;
Rdzanek et al., 2009)
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following frequency equation: Jm(βm,n) = 0, εm = 1
form = 0, εm = 2 form ≥ 1. Based on Eqs. (2), the vi-
bration velocity amplitudes of both sound sources can
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are the modal coefficients related to the vibration ve-
locity amplitudes. The calculation of constants c(c, i)m,n ,
c
(s, i)
m,n appearing in Eq. (2) is necessary to solve the
equations of motion of both membranes. These con-
stants can be calculated from the equations system
which will be presented later.

3. Acoustic pressure – modal quantities

The acoustic pressure amplitude for the analyzed
Neumann boundary value problem can be formulated
in the form of (Morse, Ingard, 1968):

p(r) = −ik0ρ0c
∫

S

v(rs)G(r | rs)dS, (6)

where k0 = 2π/λ is the acoustic wavenumber, λ is
the acoustic wavelength, v(rs) is the vibration veloc-
ity of the sources’ points, S = S1 ∪ S2, S1, S2 are the
surfaces of the first and second source, respectively,
rs = (xs, ys, zs) is the vector describing the locations
of sources’ points in the global Cartesian coordinates
system, G(r|rs) is the Green function of the Neu-
mann boundary value problem. The Green function
for analyzed problem can be written as (Rdzanek,
Rdzanek, 2006a)
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where γ2 = k20 − ξ2 − η2. The vibration velocity of the
sources’ points can be presented in the form of
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Inserting Eq. (8) into Eq. (6) leads to

p(r) = p1(r) + p2(r), (9)

where
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The quantities p1(r) and p2(r) are the components of
the acoustic pressure resulting from the sound radia-
tion by the first and second membrane, respectively.
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After making use of Eqs. (4), these components can be
written as follows (cf. Rdzanek et al., 2009; Szemela
et al., 2011):
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are the modal coefficients of the acoustic pressure. The
global coordinates of the sources’ points can be ex-
pressed by means of their local polar counterparts:
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Taking into account Eqs. (7), (12), and (13), the modal
coefficients of the acoustic pressure can be presented
as
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Using the following coordinates transformation
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Finally, inserting Eq. (18) into Eq. (15) and carrying
out integration over the radial variable results in
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After changing variable according to Eqs. (17) the
modal quantities from Eqs. (14) can be expressed as
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Based on Eqs. (9), (11) and (21), the distribution of the
acoustic pressure amplitude can be determined for the
analyzed vibroacoustic system. The obtained formulas
describing the modal quantities of the sound pressure
will be used to calculate the acoustic power radiated
by the membranes’ system.

4. Acoustic power – modal quantities

The acoustic power of the considered vibroacous-
tic system can be calculated based on the following
formula:
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tively, v∗(rs) is the conjugate value of the vibration
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velocity amplitude of the sources’ points (Morse, In-
gard, 1968). Applying Eqs. (8) and (9), the acoustic
power can be written as (cf. Witkowski, 1997)

Π = Π1, 1 +Π2, 2 +Π1, 2 +Π2, 1, (23)
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The components Π1, 1 and Π2, 2 can be interpreted as
the self acoustic powers resulting from interactions be-
tween the vibrating source surface and acoustic waves
radiated by this source. The components Π1, 2 and
Π2, 1 present the mutual acoustic powers related to
the interactions between the vibrating source surface
and acoustic waves radiated by the other source. Using
Eqs. (4) and (11) gives Eqs. (24) in the form of
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,

i, j ∈ {1, 2} . (27)

Then, applying Eqs. (19) gives the modal components
of the acoustic power as follows:


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,

i, j ∈ {1, 2} , (28)

where
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dα (29)

are the factors resulting form the existence of acoustic
waves reflected from the transverse baffles. It is obvious
that

ζ
(s,i,s,j)
0,n,k,l = ζ

(s,i,s,j)
m,n,0,l = 0 and ζ

(c,i,s,j)
m,n,0,l = ζ

(s,i,c,j)
0,n,k,l = 0.

Moreover, based on Eqs. (28) and (29) it can be noticed
that

ζ
(s,i,c,j)
m,n,k,l = ζ
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k,l,m,n , ζ

(c,i,c,j)
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ζ
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(s,j,s,i)
k,l,m,n , i ∈ {1, 2} .

(30)

The above relations can be used to reduce the compu-
tational complexity of the acoustic power calculations.
Changing the variables according to Eqs. (17) and ap-
plying the following series (Morse, Feshbach, 1953):

cos

(
z

{
cos γ
sin γ

})
=

∞∑

k=0

εk(∓1)kJ2k(z) cos(2kγ),

sin

(
z

{
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})
= 2
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k=0

(∓1)
k
J2k+1(z)

·
{
cos [(2k + 1)γ]
sin [(2k + 1)γ]

}
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enables us to perform the integration in Eqs. (29). Fi-
nally, the factors from Eqs. (29) can be written as

φ
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(
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·
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(31)

where
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and

L(+)
x =

(
L(1)
x + L(2)

x

)
/2, L(−)

x =
(
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x − L(2)

x

)
/2,

L(+)
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)
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(
L(1)
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y

)
/2,

L(i)
x = l(i)x /a1, L(i)

y = l(i)y /a1.

The modal components of the acoustic power have
been expressed by the formulas containing only the sin-
gle integrals, which simplifies numerical calculations.

5. Solution of the equations of motion

for the excited membranes

The eigenfunctions series given by Eqs. (2) present
the solutions of the equations of motion for the con-
sidered vibroacoustic system. These series contain the
constants c(c, i)m,n , c

(s, i)
m,n which must be calculated. Insert-

ing Eqs. (2) into Eqs. (1) and using the orthogonal-
ity property of the eigenfunctions yields (cf. Rdzanek
et al., 2009;Witkowski, 1997)
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(33)

where
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Taking into account Eqs. (11) and (26), the coefficients
described by Eq. (35) can be formulated as an infinite
series of the modal quantities of the acoustic power.
Then, Eqs. (33) can be rewritten in the form of
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(36)

where ε1 = ρ0c/
(
ω
(1)
0,1σ1

)
, ε2 = ρ0c/

(
ω
(2)
0,1σ2

)
are

the dimensionless coefficients describing the influence
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of the acoustic attenuation. After finding all the con-
stants c(c, i)m,n , c

(s, i)
m,n based on Eqs. (36), the acoustic

power of the analyzed vibroacoustic system can be cal-
culated based on Eqs. (23) and (25).

6. Numerical analysis

It has been assumed that the surfaces of both mem-
branes are excited by the point excitations of the fol-
lowing surface distributions:

fi

(
r
(i)
0 , ϕ

(i)
0

)
=
Fi exp (θi)

r
(i)
0

δ
(
r
(i)
0 − r

(i)
0

)

δ
(
ϕ
(i)
0 − ϕ

(i)
0

)
, i ∈ {1, 2} , (37)

where δ(·) is the Dirac delta, Fi are the amplitudes of
the exciting forces, θi denote the excitations’ phases,(
r
(i)
0 , ϕ

(i)
0

)
are the local polar coordinates of the ex-

cited membranes’ points. Making use of Eqs. (37), the
coefficients given by Eqs. (34) can be written as

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
 exp (iθi) ,

i ∈ {1, 2} . (38)

The excitation phase of the first sound source has been
assumed as equal to zero and the difference between ex-
citations’ phases has been denoted by ∆θ. The numer-
ical calculations have been performed for some sam-
ple values of the parameters describing the analyzed
vibroacoustic system. These parameters’ values have
been presented in Table 1. It has been assumed that
the medium is air. The acoustic power has been cal-
culated based on Eqs. (23) and (25). For the practical
reasons, the acoustic power calculations can be per-
formed by including only a finite number of vibrating
modes. An appropriate accuracy of obtained results
can be achieved by including in Eq. (25) all the modes
of the circular eigenfrequencies smaller than the circu-
lar frequency of the excitations. Using the successive
modes of the higher eigenfrequencies increases the ac-
curacy. However, this causes an increase in the compu-
tational complexity and consequently limits the range
of analyzed circular frequencies, as well as the number
of performed analysis. The acoustic power has been
calculated for the circular frequencies ω < 500 rad/s.
The following vibrating modes of both membranes:
(0, 1), (0, 2), (1, 1), (2, 1), (3, 1) have been included in
the numerical calculations. The values of the circular
eigenfrequencies ω(1)

m,n, ω
(2)
m,n have been presented in Ta-

ble 2 for the included modes. The formula describing
the acoustic power contains 256 modal components for
the assumed number of included vibrating modes. The
modal components are given by the integral formulas.
However, using Eqs. (30) limits the number of modal

components to 136, which causes almost a twofold de-
crease in the computational complexity.

Table 1. Parameters values of the analyzed vibroacoustic
system. It has been assumed that the medium is air.

Parameter Value

membranes’ radii a1 = 0.15m,
a2 = 0.1m

sound velocity in the medium c = 340m/s

amplitudes of the exciting forces F1 = 1N,
F2 = 1N

relative location of the first mem-
brane central point

L
(1)
x = 1.5,

L
(1)
y = 1.5

relative location of the second mem-
brane central point

L
(2)
x = 2,

L
(2)
y = 3.5

polar coordinates of the excited point
of the first membrane

r
(1)
0 = 0.5 a1,

ϕ
(1)
0 = π/4

polar coordinates of the excited point
of the second membrane

r
(2)
0 = 0.5 a2,

ϕ
(2)
0 = π/4

tensions uniformly distributed along
the membranes’ edges

T1 = 340N/m,
T2 = 300N/m

difference between the excitations’
phases

∆θ = 0

surface densities of the membranes σ1 = 2 kg/m2,
σ2 = 3 kg/m2

medium density ρ0 = 1.293 kg/m3

Table 2. Circular eigenfrequencies of both membranes re-
lated to the modes included in the numerical calculations.
The quantities have been expressed in rad/s. The parame-
ters values of the vibroacoustic system have been assumed

based on Table 1.

(m,n) (0, 1) (0, 2) (1, 1) (2, 1) (3, 1)

ω
(1)
m,n 209 479.8 333 446.4 554.6

ω
(2)
m,n 240.5 552 383.2 513.6 638

It is essential to examine the influence of the pa-
rameters r(1)0 , r

(2)
0 on the acoustic power. The normal-

ized modulus and phase cosine of the acoustic power
have been presented in Fig. 3 as functions of the cir-
cular frequency. Some sample values of the parameters
r
(1)
0 , r

(2)
0 have been discussed. It has been assumed

that the normalized value of the acoustic power modu-
lus is equal toΠ0 = cρ0F

2
1 /
(
ω
(1)2

0,1 σ
2
1S1

)
. Additionally,

changes in the acoustic power modulus have been pre-
sented in Fig. 3b within a narrow range of the circular
frequency containing the lowest maximum associated
with the asymmetric vibrating mode. It allows to vi-
sualize the influence of the analyzed parameters in the
vicinity of the maxima. Figure 3a shows that the pa-
rameters r(1)0 , r

(2)
0 significantly influence the value of

the acoustic power modulus. The quantity for the cir-
cular frequencies smaller than the circular frequency
related to the first maximum and in the vicinity of
the maxima associated with the symmetric vibrating
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a)

b)

c)

Fig. 3. Normalized acoustic power: (a), (b) modulus, (c)

phase cosine. Lines: solid – r
(1)
0 = 0, r

(2)
0 = 0, dashed –

r
(1)
0 = 0.5 a1, r

(2)
0 = 0.5 a2, dashed-dotted – r

(1)
0 = 0.75 a1,

r
(2)
0 = 0.75 a2, dotted – r

(1)
0 = 0.9 a1, r

(2)
0 = 0.9 a2. The

values of the other parameters of the vibroacoustic system
have been assumed based on Table 1.

modes reaches the largest values for the symmetric
excitations. This fact results from a significant exci-
tation of the symmetric modes for those frequencies.
The maxima of the acoustic power modulus associ-
ated with the asymmetric vibrating modes also ap-
pear in the case of both symmetric excitations. They
cover a narrow frequency range and their values are
low (Fig. 3b). These maxima result from the sound
radiation by a neighboring source and from the exis-
tence of acoustic waves reflected from the transverse
baffles. The asymmetric modes are excited only by vi-
brating medium particles. This fact can explain the
low values of the acoustic power modulus observed for
the maxima associated with asymmetric modes, as well
as a narrow circular frequency range covered by these
maxima (Fig. 3a, 3b). The analysis of Fig. 3a allows to
conclude that the acoustic power modulus decreases

with an increase in the parameters r(1)0 , r
(2)
0 for the

asymmetric excitations and within the low frequency
range. Moreover, the parameters do not influence the
locations of the maxima of the acoustic power modu-
lus in the circular frequency scale. The acoustic power
phase essentially depends on the parameters r(1)0 , r

(2)
0

only for the circular frequencies larger than the circular
frequency related to the first maximum of the acoustic
power modulus (Fig. 3c). The greatest differences are
observed between the acoustic power phase radiated
for the symmetric and asymmetric excitations. They
result from significant excitations of the asymmetric
modes for the high frequencies.
The influence of the parameter on the acoustic

power can be investigated based on an analysis of the
relative changes defined as

E|Π| =

∣∣|Π | −
∣∣Π(ref)

∣∣∣∣
∣∣Π(ref)

∣∣ ,

EϕΠ =

∣∣∣ϕΠ − ϕ
(ref)
Π

∣∣∣
∣∣∣ϕ(ref)Π

∣∣∣
,

(39)

where
∣∣Π(ref)

∣∣ and ϕ(ref)Π are the modulus and phase of
the reference acoustic power, respectively. It has been
assumed that the reference acoustic power is radiated
by the vibroacoustic system described by the values of
parameters presented in Table 1.
The quantities given by Eqs. (39) have been pre-

sented in Fig. 4 as functions of the circular frequency.
Some sample values of the parameters ϕ(1)

0 , ϕ
(2)
0 have

been analyzed. It can be concluded that the changes in
the parameters ϕ(1)

0 , ϕ
(2)
0 cause the relative changes in

the acoustic power modulus E|Π| smaller than 0.1 for
almost all the analyzed frequencies (Fig. 4a). The only
exceptions are the narrow circular frequency ranges
containing the circular frequencies related to the max-
ima of the acoustic power modulus. Within these fre-
quency ranges, the quantity E|Π| reaches very large

values exceeding even unity. The angles ϕ(1)
0 , ϕ

(2)
0

weakly influence the acoustic power phase. The rel-
ative changes EϕΠ are much smaller than 0.01 for all
the analyzed cases (Fig. 4b).
The influence of the difference between excitations’

phases ∆θ on the acoustic power has been analyzed.
The relative changes in the modulus E|Π| and phase
EϕΠ of the acoustic power have been shown in Fig. 5 as
functions of the circular frequency. The different val-
ues of the parameter ∆θ have been discussed. Figure 5
shows that the difference between excitations’ phases
significantly influences the value of the acoustic power
modulus (Fig. 5a). The relative changes E|Π| are great-
est within the circular frequency range containing the
first two maxima of the acoustic power modulus. They
can reach even 50%. The influence of the parameter
∆θ on the acoustic power modulus is weakest for the
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a)

b)

Fig. 4. Relative changes in: a) the acoustic power mod-
ulus, b) the acoustic power phase, obtained according to

Eqs. (39). Lines: solid – ϕ
(1)
0 = ϕ

(2)
0 = 0, dashed –

ϕ
(1)
0 = ϕ

(2)
0 = π/2, dashed-dotted – ϕ

(1)
0 = ϕ

(2)
0 = 5π/4,

dotted – ϕ
(1)
0 = ϕ

(2)
0 = 7π/4. The values of the other pa-

rameters of the vibroacoustic system have been assumed
based on Table 1.

a)

b)

Fig. 5. Relative changes in: a) the acoustic power mod-
ulus, b) the acoustic power phase, obtained according to
Eqs. (39). Lines: solid – ∆θ = π/4, dashed – ∆θ = 3π/4,
dashed-dotted – ∆θ = 5π/4, dotted – ∆θ = 7π/4. The
values of the other parameters of the vibroacoustic system

have been assumed based on Table 1.

circular frequencies ω < 80 rad/s, where E|Π| < 0.01.
The difference between excitations’ phases does not
significantly influence the acoustic power phase. Fig-
ure 5b shows that the quantity EϕΠ is much smaller
than 0.01 for all the analyzed cases. Moreover, the rel-
ative changes EϕΠ are much smaller than 0.001 for
the circular frequencies ω < 200 rad/s. This means
that the influence of the parameter ∆θ on the acoustic
power phase can be neglected for low circular frequen-
cies.
The acoustic attenuation influences significantly

the value of the modulus and phase of the acous-
tic power. Moreover, this factor changes the loca-
tions of maxima of the acoustic power modulus in
the circular frequency scale. It has been assumed that
T1 = C

(1)2

M σ1, T2 = C
(2)2

M σ2, where C
(1)
M = 170 m/s,

C
(2)
M = 100m/s. This assumption means that the mem-
branes’ eigenfrequencies are fixed. Their values are
shown in Table 2. Changing the surface densities of the
membranes influences only the values of the parame-
ters ε1, ε2 describing the acoustic attenuation. It allows
to determine the changes in locations of the maxima of
the acoustic power modulus caused only by the acous-
tic attenuation. The normalized modulus and phase
cosine of the acoustic power have been presented in
Fig. 6 as functions of the circular frequency.

a)

b)

Fig. 6. Normalized acoustic power: a) the modulus, b) the
phase cosine. Lines: solid – σ1 = σ2 = 0.2 kg/m2, dashed –
σ1 = σ2 = 0.5 kg/m2, dashed-dotted – σ1 = σ2 = 1 kg/m2,
dotted – σ1 = σ2 = 2 kg/m2. It has been assumed that

T1 = C
(1)2

M σ1, T2 = C
(2)2

M σ2 where C
(1)
M = 170 m/s,

C
(2)
M = 100 m/s. The values of the other parameters of the
vibroacoustic system have been assumed based on Table 1.
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The different surface densities of membranes σ1 =
σ2 have been analyzed. The normalized value of
the acoustic power modulus has been assumed as
Π1 = cρ0F

2
1 /
(
ω
(1)2

0,1 σ
2
0S1

)
∼= 142.3 mW, where σ0 =

1 kg/m2. It enables a comparison of the values of the
acoustic power modulus obtained for a different sur-
face density σ1. Based on Fig. 6a, it can be concluded
that the maxima of the acoustic power modulus shift
towards the high frequency when the acoustic atten-
uation grows. The parameters ε1, ε2 significantly in-
fluence the acoustic power phase only for the circular
frequencies ω > 100 rad/s (Fig. 6b).

7. Conclusions

The performed numerical analysis of the consid-
ered problem allows to conclude that the distance be-
tween the excited source point and its central point
in the case of both membranes influences significantly
the value of the acoustic power modulus. The acoustic
power phase depends noticeably on this distance only
for high frequencies. The radiated acoustic wave di-
rectly by the sound sources and the waves reflected
from the transverse baffles cause excitation of the
asymmetric vibrating modes of both membranes. It
is particularly evident when both external excitations
are symmetric. Angular locations of excited points in-
fluence weakly the acoustic power. The presented nu-
merical analysis also shows that the difference between
excitations phases has a significant influence on the
value of the acoustic power modulus. The influence is
greatest within the circular frequency range containing
two lowest maxima of the acoustic power modulus. It
has been concluded that the maxima of the acoustic
power modulus shift towards the high frequency when
the acoustic attenuation increases.
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