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The equation of motion of a flat simply supported rectangular plate has been solved. The
plate has been excited by a surface force. The influence of the acoustic pressure radiated by
the plate on its vibrations has been included. The corresponding sound pressure distributions
have been presented as their backward Fourier transforms. The acoustic active and reactive
sound power has been computed including the influence of the sound pressure radiated by the
piston. The acoustic mutual sound power of both sources has also been presented.

Keywords: acoustic pressure, radiation, rectangular acoustic sources, radiation efficiency,
sound power.

1. Introduction

The modal and intermodal radiation efficiency values are useful for some further
theoretical analyzes of the sound power radiated. The modal radiation efficiency values
have been considered purely analytically and reported in a few papers [1–8]. The mutual
impedance of the two rectangular pistons located in a flat infinite baffle has been pre-
sented in [9, 10]. Arase and Wyrzykowska have considered the influence of the pistons
on the sound field generated including the effect of the shift in phase of their vibrations.
However, the piston-piston sound source idealization is not always enough for some
real-life systems. For example the cover of the power transformer casings should be
modeled by a plate rather than by a piston. Therefore, some purely theoretical consider-
ations of the total sound power radiated by a rectangular plate-piston system would be
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essentially important. So far, there is no such an analysis presented in the literature and
this paper presents a solutions to the problem.

2. Governing equations

The two flat rectangular acoustic sources are embedded into a flat rigid infinite baffle
for z = 0. One of the sources is a thin simply supported plate of sizes a1 × b1 and
the other one is a flat piston of sizes a2 × b2 (cf. Fig. 1). The distance between the
central points of the two sources amounts to l0. Their appropriate edges are in pairs
parallel while their areas are S1 = a1b1 and S2 = a2b2, respectively. The plate is a
component of a power transformer casing and is excited by the surface force f(x, y, t) =
f(x, y) exp(−iωt). It is assumed that the distribution of the amplitude f(x, y) and the
excitation frequency ω are given or measured and that they are independent of any
available control systems. As a result the plate become a source of noise.

The normal component of the piston vibration velocity is

v(2)(x, y, t) = v(2)ei(δ−ωt) = −iωW (2)ei(δ−ωt), (1)

where v(2) is the vibration velocity amplitude, δ is the initial shift in phase at the vi-
bration frequency ω, W (2) is the piston transverse deflection amplitude. Since Eq. (1)
describes harmonic vibrations it can be expressed in its amplitude form v (2)(x, y) =
v(2)eiδ = −iωW (2)eiδ . It is assumed that the acoustic power control system can control
the plate-piston interaction system via such quantities as W (2) and δ. Additionally, the
vibration frequency of the piston should be identical as the excitation frequency ω. The
control system should this way select the quantities W (2) and δ so that the total acoustic
power radiated is minimal for steady state vibrations. It is the amplitude-phase control
system of the acoustic power where the piston is acting as the antisource (cf. Fig. 2).

Fig. 1. Location of the flat plate and the flat piston both embedded into a flat infinite baffle for z = 0.
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Fig. 2. The acoustic power computation and control scheme. Key: is the conjugate value, is the

integration over the surface S1 (time-averaged), is the integration over the surface S1 (time-averaged),

is the summation.

Analyzing the acoustic power control system scheme it is worth noticing that the
acoustic pressure p(1) radiated by the vibrating plate does not influence the piston vi-
bration velocity v(2). However both pressure p(1) and pressure p(2) influence the plate
vibration velocity v(1). The influence is particularly essential for the excitation frequen-
cies ω being close to the plate eigenfrequencies and represents the aeroacoustic damp-
ing. In the case of the excitation frequencies being far from the eigenfrequencies the
aeroacoustic damping can be neglected. The computational scheme presented in Fig. 2
can turn out to be difficult or impossible for the practical accomplishment on account of
a large number of data and six-times integrating over the surfaces of vibrating sources.
For this reason farther theoretical and numerical analysis of these quantities has been
carried out through calculating the acoustic power at set values of f(ω), ω, W (2) and δ.
The very control algorithm has not been investigated, since in the state of the steady state
vibrations, at established excitation f(ω), ω, once selected values W (2) and δ would not
be changing, and the acoustic power radiated will remain minimal.

The governing equation of the excited plate presented in [11] can be rearranged and
formulated in its amplitude form

{

k−4
D ∇4 − (1 + iβ/ω)

}

W (1)(x, y)

=
1

ω2ρh

{

f(x, y) − p(1)(x, y) − p(2)(x, y)
}

, (2)
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where k4
D = ω2ρh/D, D = DE {1 − i(η + ζω)}, DE = Eh3/12 (1 − ν2), E, h, ρ, ν

are the Young modulus, thickness, density and the Poisson ratio of the plate, respec-
tively, β, η, ζ are the internal damping factors associated with the Maxwell model, the
hysteretic curve and the deformation velocity of the plate, f(x, y), p(1)(x, y), p(2)(x, y)
are the amplitudes of the surface excitation force, the plate acoustic pressure and the pis-
ton acoustic pressure, respectively, ∇4 = ∇2∇2, ∇2 = ∂2/∂x2 + ∂2/∂y2, W (1)(x, y)
is the plate’s transverse deflection amplitude. The solution of Eq. (2) can be formulated
as the eigenfunction series

W (1)(x, y, t) = e−iωt
∞
∑

m,n=1

cmnWmn(x, y), (3)

where cmn are the unknown coefficients,

Wmn(x, y) = Amn sin
mπ

a1

(

x +
a1

2

)

sin
nπ

b1

(

y +
b1

2

)

(4)

is the eigenfunction of the plate’s vibration mode (m,n), the coefficient Amn = 2 has
been determined in virtue of the orthogonality condition

1

S1

∫

S1

Wmn(x, y) Wpq(x, y) dS1 = δmpδnq (5)

and W (1)(x, y, t) = W (1)(x, y) exp(−iωt).
The homogeneous governing equation of the plate with the real coefficients (for

β, η, ζ = 0) in its form of (k−4
D ∇4 − 1)W (1)(x, y, t) = 0, where W (1)(x, y, t) =

∞
∑

m,n=1
exp(−iωmnt)cmnWmn(x, y), can be rearranged and expressed in its amplitude

form by using Eq. (5)

(k−4
mn∇4 − 1)Wmn(x, y) = 0, (6)

where k4
mn = ω2

mnρh/DE = {(mπ/a1)
2 +(nπ/b1)

2}2 and ωmn is the eigenfrequency
of the mode (m,n).

The solution (3) has been multiplied by the term exp(iωt), inserted into Eq. (2)
(Eq. (6) has been used), multiplied by the eigenfunction Wpq(x, y), integrated over the
plate’s surface S1 (Eq. (5) has been used), and resulted in the following equations system

cmn

{

k−4
D k4

mn − (1 + i
β

ω
)

}

=
1

ω2ρh

{

fmn − p(1)
mn − p(2)

mn

}

, (7)
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where the following modal factors have been denoted as

fmn =
1

S1

∫

S1

f(x, y)Wmn(x, y)dS1,

p(1)
mn =

1

S1

∫

S1

p(1)(x, y)Wmn(x, y)dS1,

p(2)
mn =

1

S1

∫

S1

p(2)(x, y)Wmn(x, y)dS1.

(8)

Solving the equations system (7) and finding the coefficients cmn first requires com-
puting the acoustic pressure values, and then computing the modal coefficients fmn,
p
(1)
mn and p

(2)
mn. The computations should be performed for a finite number of modes,

i.e. for m = 0, 1, 2, . . . ,M + 1 and n = 0, 1, 2, . . . , N + 1. The mode numbers M, N
should be chosen in such a way so that the following condition is satisfied kmax ≤ kMN ,
where kmax is the upper bound of the acoustic wavenumber band k ∈ (0, kmax), where
the approximation is precise enough.

3. Acoustic pressure of the vibrating piston and plate

The distribution of the vibrating piston acoustic pressure exerted on a flat rectangular
plate can be described by the Rayleigh formula [12]

p(2)(r) = − i

2π
ρ0ck

∫

S2

v(2)(r0)
eik|r−r0|

|r− r0|
dS2, (9)

where r = (x, y, z), r0 = (x0, y0, z0) are the leading vectors of the sound field point
and the source point, respectively, ρ0, c are the air density and the speed of sound in the
air. The following formula is valid within the zone z ≥ 0 for z0 = 0

eik|r−r0|

|r− r0|
=

i

2π

+∞
∫

−∞

+∞
∫

−∞

exp {i [kx(x − x0) + ky(y − y0) + kzz]} dkxdky

kz
, (10)

where k = (kx, ky, kz) is the wavevector and k2
z = k2 − k2

x − k2
y . Further apply-

ing the following wavevector coordinates transformations kx = k sinϑ cosϕ, ky =
k sinϑ sinϕ and kz = k cosϑ, where ϕ ∈ [0, 2π], ϑ ∈ [0, π/2 − i∞) and using the
following Jacobian dkxdky = k2 sinϑ cosϑdϑdϕ make it possible to formulate the
vibrating piston acoustic pressure as (cf. Fig. 3)
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Fig. 3. The integration contour in Eq. (11) for ϑ = ϑ′ + iϑ′′.

p(2)(x, y) = ρ0c

(

k

2π

)2

S2

2π
∫

0

π/2−i∞
∫

0

M (2)(ϑ, ϕ)

exp(ik · l0) exp {i(kxx + kyy)} sinϑdϑdϕ, (11)

where the scalar product k · l0 = kxlx + kyly = kl0 sinϑ cos(ϕ − α0), the following
function has been introduced

M (2)(ϑ, ϕ) =
1

S2

∫

S2

v(2)(x, y) exp {−i(kxx + kyy)} dS2

= −iωW (2)eiδ · sin(α(2)/2)

α(2)/2
· sin(β(2)/2)

β(2)/2
(12)

and it has been denoted α(2) = ka2 sinϑ cosϕ, β(2) = kb2 sinϑ sinϕ. Further, the
acoustic pressure (11) has been inserted into Eq. (8) which resulted in the modal coeffi-
cient

p(2)
mn = − i

ωmn
ρ0c

(

k

2π

)2

S2

2π
∫

0

π/2−i∞
∫

0

M (2)(ϑ, ϕ)M (1)∗
mn (ϑ, ϕ)

exp(ik · l0) sinϑdϑdϕ, (13)

where M
(1)∗
mn (ϑ, ϕ) is the conjugate value for
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M (1)
mn(ϑ, ϕ) =

1

S1

∫

S1

vmn(x, y) exp {−i(kxx + kyy)} dS1

=
−iωmn

S1

∫

S1

Wmn(x, y) exp {−i(kxx + kyy)} dS1

= −i
2ωmn

π2mn
· [1 − (−1)m] cos(α(1)

/

2) + i [1 + (−1)m] sin(α(1)
/

2)

1 − (α(1)
/

mπ)2

· [1 − (−1)n] cos(β(1)
/

2) + i [1 + (−1)n] sin(β(1)
/

2)

1 − (β(1)
/

nπ)2
(14)

but the conjugate value does not concern the variable ϑ within the whole analysis, and
it has been denoted α(1) = ka1 sinϑ cos ϕ, β(1) = kb1 sinϑ sinϕ.

The normal component of the plate’s vibration velocity amplitude has been formu-
lated using v(1)(x, y, t) = −iωW (x, y, t) and Eq. (3) as

v(1)(x, y) = −iω
∞
∑

m,n=1

cmnWmn(x, y) (15)

and inserted into Eq. (9) instead of v(2), Eq. (10) has been used providing the acoustic
pressure distribution on the surface z = 0 in the form of

p(1)(x, y) = ρ0c

(

k

2π

)2

S1

2π
∫

0

π/2−i∞
∫

0

M (1)(ϑ, ϕ)

exp {i(kxx + kyy)} sinϑdϑdϕ, (16)

where it has been denoted (cf. Eq. (16))

M (1)
mn(ϑ, ϕ) =

1

S1

∫

S1

v(1)(x, y) exp {−i(kxx + kyy)} dS1

= ω

∞
∑

m,n=1

cmn

ωmn
M (1)

mn(ϑ, ϕ). (17)

The acoustic pressure from Eq. (16) has been inserted into Eq. (8)2 resulting in the
modal coefficient

p(1)
mn = − i

ωmn
ρ0c

(

k

2π

)2

S1

2π
∫

0

π/2−i∞
∫

0

M (1)(ϑ, ϕ)M (1)∗
mn (ϑ, ϕ) sinϑdϑdϕ

= −i
ω

ωmn
ρ0c

(

k

2π

)2

S1

∞
∑

p,q=1

cpq

ωpq
Fpq,mn, (18)
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where the intermodal coefficient of the pair of modes (p, q) and (m,n) has been de-
noted as

Fpq,mn =

2π
∫

0

π/2−i∞
∫

0

M (1)
pq (ϑ, ϕ)M (1)∗

mn (ϑ, ϕ) sin ϑdϑdϕ. (19)

Further, the determined coefficients p
(1)
mn from Eq. (18), p

(2)
mn from Eq. (13) and fmn

from Eq. (8) for a given distribution of the plate’s surface excitation force f(x, y) have
been inserted into the equations system (7). Solving this equations system provides the
coefficients cmn.

4. Acoustic power

The time-averaged acoustic power of an excited and damped rectangular plate has
been formulated using Eqs. (15), (16) and (17) as [13]

Π(1) =
1

2

∫

S1

p(1)(x, y)v(1)∗(x, y)dS1

=
1

2
ρ0c

(

k

2π

)2

S2
1

2π
∫

0

π/2−i∞
∫

0

M (1)(ϑ, ϕ)M (1)∗(ϑ, ϕ) sin ϑdϑϑdϕ

=
1

2
ρ0c

(

k

2π

)2

S2
1

∞
∑

pq,mn=1

cpqc
∗
mn

ω

ωpq

ω

ωmn
Fpq,mn. (20)

The integration within the first line of Eq. (20) has been performed over the surface
S1 for z = 0 (the impedance approach) whereas within the integration over the variable
ϑ within the second line of Eq. (20) has been performed over the contour Γ (Fig. 3).
The fourfold series in the third line of Eq. (20) can be substituted by a double series. For
this purpose Eq. (7) has been multiplied by c∗mn, summed up over the indices m,n =
1, . . . ,∞ giving

Π(1) =
iω

2
S1

∞
∑

m,n=1

c∗mn

{

fmn − p(2)
mn − ω2ρh cmn

[

k4
mnk−4

D −
(

1 + i
β

ω

)]}

. (21)

The coefficients p
(2)
mn have been given in Eq. (13).

The time-averaged acoustic power of a rectangular piston vibrating with velocity
v(2) (cf. Eq. (1)) has been computed using Eqs. (11) and (12) (the impedance approach)
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Π(2) =
1

2

∫

S2

p(2)(x, y)v(2)∗(x, y)dS2

=
1

2
ρ0c

(

k

2π

)2

S2
2k2

2π
∫

0

π/2−i∞
∫

0

M (2)(ϑ, ϕ)M (2)∗(ϑ, ϕ) sinϑdϑϑdϕ, (22)

where from Eq. (12)

M (2)(ϑ, ϕ)M (2)∗(ϑ, ϕ) =

{

v(2) sin(α(2)
/

2)

α(2)
/

2

sin(β(2)
/

2)

β(2)
/

2

}2

. (23)

A formula convenient for numerical computations has been presented earlier in [10]
where the radiation resistance and reactance of a rectangular piston have been expressed
as a fast convergent infinite series containing the integral Bessel and Neumann func-
tions. On the other hand in the case of small argument values ka2, kb2 � 1 in the
active acoustic power Eq. (22) (integration within the limits 0 ≤ ϑ ≤ π/2) the follow-
ing approximation has been used

{

sin(α(2)
/

2)

α(2)
/

2

sin(β(2)
/

2)

β(2)
/

2

}2

∼= 1 − sin2 ϑ

12

{

(ka2)
2 cos2 ϕ + (kb2)

2 sin2 ϕ
}

which leads to

ReΠ(2) ∼= ρ0c
(k2S2v

(2))2

4π

{

1 − 1

3

[

(ka2)
2 + (kb2)

2
]

}

. (24)

The time-averaged mutual acoustic power of a rectangular plate vibrating with am-
plitude v(1)(x, y) given in Eq. (15) under the acoustic pressure p(2)(x, y) (Eqs. (11) and
(12)) generated by a vibrating piston has been formulated as

Π(1,2) =
1

2

∫

S2

p(2) (x, y) v(1)∗ (x, y) dS1 =
1

2
ρ0c

(

k

2π

)2

S1S2

2π
∫

0

π/2−i∞
∫

0

M (2) (ϑ, ϕ) M (1)∗ (ϑ, ϕ) exp(−ik · l0) sinϑdϑϑdϕ, (25)

where the scalar product k · l0 has been given after Eq. (11). The mutual acoustic power
of a rectangular piston vibrating with amplitude v(2)(x, y) = v(2) exp(iδ) Eq. (1) under
the influence of the acoustic pressure p(1)(x, y) (Eqs. (16) and (17)) generated by a
vibrating plate has been formulated as
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Π(2,1) =
1

2

∫

S2

p(1) (x, y) v(2) (x, y) dS2 =
1

2
ρ0c

(

k

2π

)2

S1S2

2π
∫

0

π/2−i∞
∫

0

M (1) (ϑ, ϕ) M (2)∗ (ϑ, ϕ) exp(−ik · l0) sinϑdϑϑdϕ. (26)

Considering Eqs. (25) and (26) it is obvious that Π (1,2) = Π(2,1)∗ and Π(2,1) = Π(1,2)∗.
The total acoustic power of the vibrating plate-piston system embedded into a flat

rigid baffle has been expressed as a sum of the acoustic self-power of the plate Eqs. (20)
or (21) and the piston Eqs. (22) or (24), and the mutual acoustic power of the vibrating
sources Eqs. (25) and (26)

Π = Π(1) + Π(2) + Π(1,2) + Π(2,1). (27)

Considering equations used to formulate the total sound power radiated Eq. (27)
leads to conclusions that this quantity depends on the surface force amplitude f(x, y)

exciting the rectangular plate, on the amplitude v(2) = −iW (2) exp(iδ) and on the
generated acoustic pressure levels. Since however it is not possible directly to influence
none of mentioned quantities except for the piston vibration velocity, so controlling the
acoustic power can take place only via the amplitude W (2) and phase δ Eq. (1) at a
measured frequency ω.

5. Concluding remarks

It has been proved analytically that the sound power radiated by a rectangular plate
can be minimized by a vibrating flat piston antisource. Formulas presented herein make
it possible to perform some numerical simulations of some steady state harmonic pro-
cesses to help further designing some acoustic cancellation systems for a power trans-
former casings.
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