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In industrial processes electrical motors are serviced after a specific number of hours, even if there is a
need for service. This led to the development of early fault diagnostic methods. Paper presents early fault
diagnostic method of synchronous motor. This method uses acoustic signals generated by synchronous
motor. Plan of study of acoustic signal of synchronous motor was proposed. Two conditions of synchronous
motor were analyzed. Studies were carried out for methods of data processing: Line Spectral Frequencies
and K-Nearest Neighbor classifier with Minkowski distance. Condition monitoring is useful to protect
electric motors and mining equipment. In the future, these studies can be used in other electrical devices.
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1. Introduction

Condition monitoring of synchronous motors de-
creases the cost of maintenance and the risk of unex-
pected failures of machine. In this monitoring, main-
tenance or machine replacement based on previous
records or statistical estimates of motor failures. Usu-
ally, the information about machine are provided by
condition monitoring systems. An important element
of diagnostics is having an accurate means of condition
assessment. Condition monitoring also uses measure-
ments taken while a motor is operating. On the basis
of measurements operator determines the state of mo-
tor. Measurements can be performed with the use of
various sensors. Various signal processing methods can
be applied to extract characteristic features of selected
signal (Sin et al., 2003).
Synchronous motors are constructed of steel, alu-

minium and copper elements. Many researchers have
discussed thermal and mechanical properties of ma-
terials (Bogucka, 2014; Duda, 2013; Gluchowski
et al., 2014; Golanski, Slania, 2013; Gronostaj-
ski et al., 2013; Kulczyk et al., 2014; Kulesza et
al., 2013; Madej, 2013; Mamala, Sciezor, 2014;
Musial, 2013; Szyszkiewicz et al., 2013; Tom-
czak et al., 2013; Stubna et al., 2014). Thermal
and mechanical properties of materials are very im-
portant for the diagnostics. Many diagnostic and vi-
sualization methods were developed by researchers

(Bienias et al., 2013; Czmochowski et al., 2014;
Girtler, Slezak, 2013; Glowacz et al., 2014a;
2014b; Gogola et al., 2013; Jaklinski, 2013; Smal-
cerz, 2013; Tasinkevych et al., 2012; Tu et al.,
2014). Electrical signals are often used in diagnos-
tics of electrical machines (Dudzikowski, Ciurys,
2010; Glowacz, Glowacz, 2007; Glowacz, 2013;
Glowacz, Kozik, 2012; 2013; Glowacz, Zdro-
jewski, 2009; Gwozdziewicz, Zawilak, 2011; Ko-
zlowski, 2009; Lin et al., 2013; Orlewski, Siwek,
2010). In this paper, research concerns with acoustic
signals of selected synchronous motor. The results of
research can be used to improve the diagnostics of syn-
chronous motors in industry.

2. Process of acoustic signal recognition

of synchronous motor

The process of acoustic signal recognition of syn-
chronous motor contains two processes. The first of
them is a pattern creation process. In this process
training samples are converted into feature vectors.
The second is an identification process (Fig. 1). In this
process test samples are used to obtain the state of
motor.
At the beginning of the pattern creation process

acoustic signals of synchronous motor are recorded. Af-
ter that data are divided. Next divided data are sam-
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Fig. 1. Process of sound recognition of synchronous motor
with the use of Line Spectral Frequencies and K-Nearest

Neighbor classifier.

pled and normalized. Afterwards signals are converted
through the Line Spectral Frequencies. The pattern
creation process uses 10 feature vectors. Steps of iden-
tification process are similar to the pattern creation
process. Soundtrack splitting, sampling, normalization
and feature extraction are the same for both processes.
Significant change occurs in the classification. In this
step, feature vectors are compared with each other.
Feature vectors of training samples are compared with
feature vector of test sample.

2.1. Line Spectral Frequencies

Line spectrum frequency (LSF) method was pro-
posed by Itakura (1975). It was used for robust repre-
sentation of the coefficients of linear predictive speech
models. In this paper author investigates performance
of LSF for acoustic signal recognition of synchronous
motor. Linear predictive analysis of acoustic signal as-
sumes that a short stationary segment of sound is rep-
resented by a linear time invariant all pole filter. It can
be defined as follows:

H(z) =
1

A(z)
, (1)

where H(z) is a p-th order model of the vocal tract.
LSF method refers to the p-th order inverse filter
A(z). This filter can be represented by two polyno-
mials P (z) = A(z) − zp+1A(z−1) and Q(z) = A(z) +
zp+1A(z−1). It is expressed as follows:

H(z) =
1

A(z)
=

2

P (z) +Q(z)
. (2)

These polynomials have p/2 zeros on the unit circle.
Phases of the zeros are interleaved in the range [0; π].
These p zeros create the LSF features of the linear pre-
dictive model. The formant frequencies depends on the

zeros of A(z). LSF features can be used to model sound
related information in the sound spectra (Bozkurt et
al., 2010; Morris, Clements, 2002). On the basis of
the literature author decided to use LSF method for
sound of synchronous motor. Training and test sam-
ples of sound were converted through LSF method.
After these calculations following feature vectors were
obtained (Figs. 2, 3).

Fig. 2. LSF coefficients of acoustic signal of faultless syn-
chronous motor.

Fig. 3. LSF coefficients of acoustic signal of synchronous
motor with shorted stator coils.

2.2. K-Nearest Neighbor Classifier

Different methods of classification of the sig-
nals were presented in the literature (Duan, Zhou,
2014; Glowacz, Glowacz, 2012; Hachaj, Ogiela,
2011, 2013; Jaworek, Augustyniak, 2011; Kan-
toch et al., 2011; Kantoch, Augustyniak, 2012;
Knap et al., 2014; Meo et al., 2013; Michalak et
al., 2013; Mikulik, Zajdel, 2009; Ogiela et al.,
2007; Oleksy, Szymanski, 2010; Rojek, Studzin-
ski, 2014; Roj, 2013; Skowronek, Wozniak, 2013;
Smolen et al., 2012; Su, Fu, 2014; Uygur et al.,
2014; Valis, Pietrucha-Urbanik, 2014; Zuber et
al., 2014). In this paper K-Nearest Neighbor Classifier
was applied. This classifier used feature vector calcu-
lated in the earlier step. Each vector in training set
has n attributes. These attributes are formed as an
n-dimensional vector: x = [x1, . . ., xn]. Next these n
attributes are considered to be the independent vari-
ables. Vectors also have another attribute, denoted
by p. This attribute is the dependent variable. Value
of attribute depends on the other n attributes x. At-
tribute p is an identifier of the class.
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A set of M vectors are given together with their
corresponding classes: x(i), p(i) for i = 1, 2, . . . ,M .
This set is referred to the training set. In the identi-
fication process vectors from test set are used. These
vectors have n attributes. These attributes are formed
as an n-dimensional vector: y = [y1, . . ., yn]. The prob-
lem is to find the class that this vector y belongs to.
This can be done in the following way:

1. identify k vectors in the training set whose inde-
pendent variables x are similar to y,

2. use these k vectors in the training set to classify
test vector into a class v.

This method is called K-Nearest Neighbor classi-
fier. The most important step of this method is to find
similarity between vectors. The good idea is to use dis-
tance function (Ming Leung, 2007). In this approach
Minkowski distance was chosen. Minkowski distance
is the measure of distance between two selected vec-
tors. Two vectors with the same lengths are given:
y = [y1, y2, . . . , yn], x = [x1, x2, . . . , xn]. In this case
Minkowski distance is defined as follows:

d(y,x) =

(
n∑

i=1

(|yi − xi|)r
)1/r

. (3)

One of the cases of K-Nearest Neighbor classifier
is k = 1. In this case vector in the training set is
closest to y and set v = p. Variable p is index of the
class of the nearest neighboring vector. Using a nearest
neighbor method to classify vectors can be very helpful
when there are large number of vectors in training set.
K-Nearest Neighbor classifier uses a majority decision
rule to classify the test vector. It compares the num-
ber of k nearest neighbors (feature vectors of training
set) and selects the class that has the most of them.
The advantage of such rule is that, it reduces the risk
of over-fitting due to noise in the training data. Usu-
ally parameter k is equal odd number in units or tens
(Ming Leung, 2007).

3. Results of acoustic signal recognition

Sound card and OLYMPUS TP-7 microphone were
used to record acoustic signals. Parameters of audio
file were: format – WAVE PCM, sampling frequency –
44100 Hz, number of bits – 16, number of channels – 1.
Short circuit and broken coils were located in the sta-
tor circuit of synchronous motor (Fig. 4). Operational
parameters of synchronous motor were following:

• acoustic signal of faultless synchronous motor,
nrotations = 1500 rpm, URS = 100 V, IR =
30.9 A, Iw ≈ 0 A,

• acoustic signal of synchronous motor with shorted
stator coils, nrotations = 1500 rpm, Rz = 2.5 Ω,
URS = 100 V, IR = 31.2 A, Iw ≈ 0 A.

Fig. 4. Scheme of stator winding for the synchronous motor
with shorted stator coils (U3-X3).

Moreover synchronous motor operated in open-loop
control. In open-loop control feedback loop is not em-
ployed. Variations of the system are not detected or
corrected. Investigations were conducted for acoustic
signal of faultless synchronous motor and acoustic sig-
nal of synchronous motor with shorted stator coils
(U3-X3).
The pattern creation process was conducted for 5

training samples with a duration of five seconds for
each category of acoustic signal. Next 36 test samples
were used in the identification process. On the basis
of the pattern recognition system should determine
the state of synchronous motor correctly. Efficiency of
acoustic signal recognition is expressed by following
relation:

E =
NCITS

NTS
100%, (4)

where NCITS – number of correctly identified test
samples in the identification process, NTS – number
of test samples in the identification process, E – effi-
ciency of acoustic signal recognition.
Figure 5 shows efficiency of acoustic signal recogni-

tion of synchronous motor depending on the number of
Line Spectral Frequencies coefficients. The best results

Fig. 5. Efficiency of acoustic signal recognition
of synchronous motor depending on the number

of LSF coefficients.
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were obtained for 3 coefficients. The best recognition
results were obtained using the normalization of the
amplitude. Parameter r was 4.0. Efficiency of acous-
tic signal recognition of faultless synchronous motor
was 100%. Efficiency of acoustic signal recognition of
synchronous motor with shorted stator coils was 100%
(Fig. 5). Results of diagnostic system was verified by
Matlab.
Figure 6 illustrates efficiency of acoustic signal

recognition of synchronous motor depending on pa-
rameter k. The best results were obtained for parame-
ter k = 1, 3, 5.

Fig. 6. Efficiency of acoustic signal recognition of syn-
chronous motor depending on parameter k.

4. Conclusions

In this paper, acoustic signal recognition system
was analyzed for synchronous motor. Methods of data
processing were used for synchronous motor. Results
of researches were very good for Line spectrum fre-
quency method and K-Nearest Neighbor classifier with
Minkowski distance. Efficiency of acoustic signal recog-
nition of synchronous motor was 100% for 3 coeffi-
cients.
A limitation of proposed method is that it can be

useful for electric motors with the same parameters
and size. Condition monitoring is useful to protect elec-
tric motors and mining equipment. In the future, these
researches can be used in other electrical devices.
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