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A speaker recognition system based on joint factor analysis (JFA) is proposed to improve whisper-
ing speakers’ recognition rate under channel mismatch. The system estimated separately the eigenvoice
and the eigenchannel before calculating the corresponding speaker and the channel factors. Finally, a
channel-free speaker model was built to describe accurately a speaker using model compensation. The
test results from the whispered speech databases obtained under eight different channels showed that
the correct recognition rate of a recognition system based on JFA was higher than that of the Gaussian
Mixture Model-Universal Background Model. In particular, the recognition rate in cellphone channel

tests increased significantly.
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1. Introduction

In cellphone conversations in public places, if the
messages of one party involve a password, band card
number, ID card number, or other sensitive private
information, the conversation generally proceeds on
a special articulation mode of whispered speech. The
other party of the conversation generally understands
and agrees. However, criminals hide their identities
through whispered speech and conduct financial frauds
via cellphone by taking advantages of these secret
modes of information exchange. Based on the precondi-
tion that clients’ privacy protection through whispered
conversations is conducted, determining the identity of
a whispering speaker has effectively become an urgent
issue for financial security sectors.

Compared with the recognition of speakers using
normal speech, identifying whispering speakers is more
difficult. First, the vocal cord does not vibrate in whis-
pered speech, resulting in the absence of FO in the
speech signals. The first and the second formants shift
toward high frequency, and the corresponding band-
width increase (GANG, HEMING, 2009). Therefore,
an efficiency parameter that characterizes whispered
speech is lacking. Second, during the development of a
whispering speaker recognition system, samples of the
training data generally are generated from recorded
signals in indoor environment with high signal-to-

noise ratio (SNR); in contrast, the test samples gener-
ally are generated from signals recorded in cellphones
with low SNR. The mismatch between training and
testing channels results in low recognition rates and
inadequate robustness in the whole recognition sys-
tem.

Regarding the issue of characteristic extraction of
whispered speech, many research results have been
reported. A system was established using 13 Mel
frequency cepstral coefficients (MFCC) as speaker
features and Gaussian Mixture Model (GMM) with
128 Gaussian components as speaker models (JIN,
et al., 2007). Altogether, from 8% to 33% relative
improvement in identification accuracy was achieved
compared with the performance under corresponding
matched conditions. Fan introduced a whisper speaker
ID system based on modified linear frequency cepstral
coeflicient and feature mapping, which achieved an ab-
solute +20% enhancement compared with an MFCC
baseline system (FAN, HANSEN, 2009). In another
paper, Fan discussed the various differences between
whispered and neutral speeches among different speak-
ers and their effect on neutral trained MFCC-GMM
systems, and he proposed a confidence space to mea-
sure the quality of whispered speech for the task of
speaker ID (FAN, HANSEN, 2010). However, no articles
concerning channel mismatch of whispered speech are
available. In this study, the joint factor analysis (JFA)
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model proposed by Kenny was adopted (KENNY et al.,
2007). First, the model was simplified, and the eigen-
voice and the eigenchannel were estimated separately.
Then, the speaker and the channel factors were deter-
mined using training to obtain a channel-free speaker
model. Finally, the trained model was tested. The test
result suggested that, for whispered speech signals, the
recognition rate of the system based on JFA was su-
perior to that of GMM — Universal Background Model
(UBM) under channel mismatch.

This paper proceeds as follows: the JFA and the es-
timation of the eigenvoice and eigenchannel are intro-
duced in Sec. 2. The training and testing methods for
the whispering speaker model are introduced in Sec. 3.
In Sec. 4, the whispered speech database is described,
and the test environment is presented with test results
given. Conclusions are presented in Sec. 5.

2. JFA

JFA is a speaker and session variability model in
GMM. There are a number of C' Gaussian components
in the fixed Gaussian structure, and the mean vector of
each Gaussian element is F'-dimensional. Thus, a C'x F’
mean supervector with C' Gaussian mean connections
can be obtained. Similarly, a CFx CF hyper-covariance
matrix ¥ (the elements are on the diagonals) with the
covariance matrices connected in series is obtained.

Based on factor analysis, a supervector M of
speaker s can be expressed as Eq. (1)

M(s) =m+v-y(s) +u-x(s), (1)

where m represents a speaker- and channel-free mean
supervector obtained through UBM training; both m
and the dimension of M(s) are CF x 1. v is a low-
rank rectangular matrix that represents the eigenvoice,
y(s) is a speaker factor; u is a low-rank rectangular
matrix that represents the eigenchannel, and x(s) is
a channel factor. All these factors are assumed to be
independent and satisfy standard normal distribution.
JFA estimates the hyper-parameter set A = (m,u,v)
in Eq. (1). In the eigenvoice matrix v and eigenchannel
matrix u estimations, the correlation among factors
will be involved if joint estimation is adopted, resulting
in large volume of data and high computational cost.
The literature suggested that the effects of separate
estimation are better than those of the joint estimation
when data of each person under multiple channels exist
(KENNY et al., 2008). Therefore, the estimation was
carried out separately for the two kinds of space. The
process is presented in the next sections.

2.1. Estimation of eigenvoice

Step 1: With the UBM trained using the basic
Expectation-Maximization (EM) algorithm, the mean

supervector m and hyper-covariance matrix 3 are ob-
tained. m is formed by the serial connection of m.,
where m, represents the mean supervector of the UBM
Gaussian element c. In the following formula, variables
with the ¢ suffix represent the statistical quantities
corresponding to the Gaussian function ¢ of GMM,
whereas variables without the ¢ suffix represent all the
statistical quantities of GMM.

Step 2: Section h of the speech data of speaker s is
calculated corresponding to the zeroth-order statistics
of the UBM model. The posterior probability of frame
t in a whispered speech signal corresponding to UBM
is set as y;(c); thus

Nie(s) = 3 (o).

(2)
N.(s) = Z Np.o(s).
h

Considering N.(s) as an element in the leading diago-
nal, a CF x CF diagonal matrix N(s) is constructed.

Step 3: Section h of the speech data of speaker s is
calculated corresponding to the first-order statistics of
the UBM model, i.e.,

Five(s) =Y ye(e)(Ys —me),

(3)
F.(s) = Z Fp c(s),
h

where Y; is the characteristic vector of frame ¢ in a
whispered speech signal. With F.(s) connected in se-
ries, a CF x 1 F(s) is obtained.

Step 4: All speaker data are processed according to
the following formula, and the expected values of the
first- and second-order statistics of speaker factor y(s)
are estimated:

I(s) = I+ vIX 'N(s)v,
E(y(s)) =17 (s)v' = F(s), (4)
E(y(s)y(s)") = E(y(s))E(y(s)") + 17" (s),

where E(-) is a solution of the mean value. Here, the
channel effect is averaged using averaging operation
in all the speech sections of the speakers. Assumption
can be made that only the speaker information exists
(KENNY et al., 2005).

Step 5: Eigenvoice v is estimated according to the
statistics acquired previously. Let

B, =Y Ne(s)E(y(s)y(s)"),
) ()
T =3 F(s)By(s)").

For each Gaussian element ¢ = 1,...,C and for each
f=1,..,F seti=(c—1)F + f. Let v; denote the
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i-th row of v and I denote the i-th row of I". Then,
v is updated through the following matrix equation:

Steps 4 and 5 are repeated until space v converges.
2.2. Estimation of eigenchannel

The steps involved in estimating the eigenchannel
are the same as those involved in estimating the eigen-
voice, but with two differences.

1. In the calculation of the first-order statistics, m
is not considered as the center, whereas m + v - y(s)
is used as the basis. In other words, the corresponding
speaker factor is supposed to be extracted first in the
estimation of the eigenchannel so that the next cal-
culation step can be carried out. The purpose of this
procedure is to eliminate the corresponding speaker
information.

2. The eigenvoice in Eq. (1) is based on the speaker.
Theoretically, the space of a person can be estimated
according to one section of his speech, but the eigen-
channel needs to be estimated with multiple speech
sections of a person under various channel conditions.
Accordingly, Eq. (4) transforms into

1(s) = I + u"S 7 Ny (s)u,
E(xn(s)) =1 (s)uT="1F,(s), (7)
E(xn(s)xn(s)") = E(xa(s) E(xa(s)") +17"(s).

3. Training and testing of the whispering
speaker model

3.1. Training of model

The training of the speaker was conducted when
the hyper-parameter set A = (m,u,v) of the sys-
tem was obtained. For a characteristic vector X; (t =
1,...,T) of an arbitrary speech section, the speaker
factor y(s) was estimated according to Eq. (4), and the
speaker model was obtained consequently. However,
tests showed that the effects of the method were in-
effective in recognizing whispering speakers, as shown
in Table 2. Therefore, the estimation method, which
combined the speaker and the channel factors, was pro-
posed in this study to improve the recognition effect.
Specifically, matrices v and u are merged, and factors
y(s) and x(s) are merged. Let

With the introduction of w and z into Eq. (4) for esti-
mation, factor x(s) of the joint factor z obtained from
the estimation was deleted finally, and the speaker
model was obtained.

3.2. Testing of the model

The model testing process uses the integration of
the channel factor, i.e.,

P(xlms) = / P(xlmas, 2)N([0, ) dz.  (9)

In this formula, x is the characteristic vector of whis-
pered speech, mg represents the supervector m+v-y(s)
of the speaker obtained from the training, and x =
(x1(8),...,xn(s)) is a set of all channel factors.

The integration is difficult to solve; hence, the fol-
lowing formula is generally used for an approximate
solution (KENNY et al., 2007):

log P(x|ms) = tr (Z_Idiag(F -my))

1
- gtr (S~ diag(N - my - mg))
1 2
+3 "1*1/2uT2*1FH , (10)

where N and F represent the zeroth- and the first-
order statistics of the tested speech relative to UBM,
tr(-) represents the solution of the matrix trace, diag(-)
represents the solution of the selected diagonal ele-
ments, and 171/2 represents the selection of the upper
triangular matrix.

4. Test results
4.1. Whispered speech database

The test data were obtained from the whispered
speech database in Soochow University, composed of
whispered speeches recorded from 100 students (80
males and 20 females), aged from 18 years to 27 years,
under eight channel environments. The eight record-
ing channels included hand microphone (HM), headset
(HS), desktop microphone (DT), earphone-type micro-
phone (EP), recorder pen (RP1), recorder pen+hand
microphone (RP2), cellphone recording (CR), and cell-
phone conversation recording (CC). The corpus was
constructed using different types of sentences, includ-
ing representation of all vowels and consonants. The
sampling frequency was 8 KHz, and the quantization
precision was 16 bit. A total of 800 different records of
whispered speeches were available, and the duration of
each record was approximately 2 min. For each record,
the first 90 s was cut off to compose database 1, and
the last 30 s was cut off to compose database 2; thus,
each database has 800 sections.

4.2. Characteristic parameter extraction of acoustics

First, the whispered speech signals were pre-
emphasized using a weight factor of 0.97. Then, the
beginning and the end were cut off through endpoint
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detection. DC removal and normalization were con-
ducted on the preserved parts to guarantee identi-
cal ranges of the fluctuation amplitudes under vari-
ous channels, and a Hamming window with a frame
width of 20 ms and frame shift of 6 ms was added. Fi-
nally, the characteristic coefficients of 12-dimensional
MFCC were extracted from each frame for framing.
With the corresponding difference coefficients taken
into account, a total of 24 dimensions were obtained.

4.8. UBM and space estimation

We used databasel to train the UBM model. The
UBM models were trained separately because of the
different proportions of male and female speeches, and
the Gaussian element of each UBM was set to 256.
A UBM with 512 Gaussian elements was formed after
the combination. The linguistic data for the eigenvoice
and the eigenchannel were the same as above. The fac-
tor number of the speaker was set to 50, and the factor
number of the channel was set to 20. From the tests,
the system was saturated when these two values were
set. Even if the system factor number was increased
further, the system performance did not improve sub-
stantially; on the contrary, the storage space increased
accordingly.

4.4. Test results

The whispered speech recorded through HM chan-
nels with high SNR in database2 was considered as the
training data. The whispered speeches recorded with
the other seven channels in database2 were used as
the test data set. For each record in the test data set,
we randomly selected a fixed section as test data. The
fixed section times selected were 1, 2, and 6 s. We re-
peated the test 30 times at 1 s fixed time, 15 times at
2 s fixed time, and 5 times at 6 s fixed time. The mean
of the test results are shown in Tables 1-3.

Table 1. The recognition rate of whispering speaker
in the GMM-UBM system.

recognition rate %
HS | DT | EP | RP1 | RP2| CR | CC
1ls 46.58 1 42.53 | 23.05 | 32.74 | 37.63 | 17.80 | 6.11
2s 52.83(52.47|27.94 {42.94 | 46.18 | 22.29 | 8.53
6 s 60.78 | 62.78 | 32.00 | 49.78 | 54.78 | 30.22 | 10.33

test time

Table 2. The recognition rate of whispering speaker
using JFA with separate estimation of channels.

recognition rate %
HS | DT | EP | RP1 | RP2| CR | CC
1ls 59.33 | 72.17| 57.17 | 54.33 | 60.50 | 52.17 | 37.83
2s 75.67|86.17|69.67 | 65.17 | 75.83 | 66.83 | 51.50
6 s 90.33193.00 | 79.83 | 78.67 | 86.00 | 84.00 | 68.50

test time

Table 3. The recognition rate of whispered speaker using
the JFA with the joint estimation of channels.

recognition rate %
HS | DT | EP | RP1 | RP2| CR | CC
1s 66.50 | 82.00 | 74.50 | 65.67 | 73.17 | 63.17 | 49.50
2s 85.5095.17 | 88.83 | 80.67 | 86.50 | 81.00 | 64.00
6s 96.00 | 99.67 [ 95.00 | 92.17 | 95.33 | 96.33 | 86.50

test time

The results acquired using the GMM-UBM sys-
tem with no channel compensation added and based on
the classical MAP algorithm (REYNOLDS et al., 2000)
are shown in Table 1. The results acquired through
JFA with channels estimated separately and JFA with
channels estimated jointly are shown in Tables 2 and 3,
respectively. Inferences were made from the compari-
son of the three tables. 1) Compared with the GMM-
UBM system, the performance of the system using
JFA after channel factor compensation improved sig-
nificantly in all test channels. In particular, the recog-
nition rate for the channel using cellphone conversation
drastically increased. 2) The performance of JFA us-
ing joint estimation of channels was superior to that
using separate channel estimation. 3) As the test time
increased, all recognition rates of the three systems
improved gradually, but that of the system using JFA
improved faster.

5. Conclusions

In this study, JFA was applied for recognition of
whispered speakers. Based on the specific conditions
of databases, the advantages of the eigenvoice and
the eigenchannel were fully applied to compensate
the channels in the characteristic domain of speakers.
Compared with the GMM-UBM system, the perfor-
mance improved significantly. In the JFA application,
the following improvements were attained according to
the characteristics of the whispered speech databases:
1) the UBM model was obtained directly using the
whispered speech databases in the estimation of hyper-
parameter sets. Thus, conducting iterative updating
for m. in Eq. (3) was unnecessary, and the computa-
tional burden was reduced. 2) the JFA approach was
adopted: the eigenvoice and the eigenchannel, as well
as the speaker and the channel factors, were respec-
tively merged before the speaker model was trained.

From the tests, the recognition rate was observed
to increase as the test time lengthened. However, this
condition failed to meet the real-time requirement of
the system. Therefore, the focus of further research is
that, based on the acoustic characteristics of whisper-
ing speakers, the system should be compensated si-
multaneously in the model and in the characteristic
domains; thus, higher recognition rates can be attained
in the testing of short-time whispered speech signals.
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