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The aim of the paper is to present applications of the new interval algebraic system in
acoustic problems. The modified algebraic system operates over specifically strictly deter-
mine interval numbers with specially defined addition and multiplication. The introduced per-
turbation interval numbers are defined as ordered pairs of real numbers. Classical perturbation
acoustic problems described by differential equations can be solved in the new interval alge-
braic system as easy as usual.

A novel 3D interval ray–tracing model of detailed representation of the indoor environ-
ment is presented. Interval perturbation ray tracing method is a technique based on geometrical
optics with disturbance in parameters. The developed algorithms use the interval perturbation
methodology where the perturbed images are applied to produce 3D – field of interval il-
lumination zones. It can be easy considered how interval perturbations (small) of nominal
parameters values change solutions of the considered problems.
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1. Introduction

In many acoustical analyses coefficients of a considered problem are not known
exactly, but with only some approximation, say in interval form. It is the simplest way
to introduce uncertainty into mathematical analysis.

From now it’s assumed that values of boundary conditions, material properties, in-
ternal prescribed fields and the shape of a boundary are uncertain and will be modeled
using the new methodology based on interval analysis [7–9]. A novel 2D and 3D inter-
val ray-tracing model of detailed representation of the indoor environment is presented.
Interval perturbation ray tracing method is a technique based on geometrical optics with
interval perturbations in parameters, which can be considered as an easily applied ap-
proximation for estimating uncertain problems in acoustics [8–9].



172 A. WINKLER–SKALNA

2. Algebraic system of two-scale perturbation interval numbers

Interval numbers can by written as z = [z−, z+] and z−, z+, z− ≤ z+ are cal-
led ends of the interval. If we note the center of interval as ^

z = 0.5 (z− + z+) and
the radius: rad (z) = 0.5 (z+ − z−), we can write the interval number as z =[^
z − rad (z) ,

^
z + rad (z)

]
. Therefore, the interval number can be an ordered pair of

real numbers
(^
z , ∆z

)
r
, in simplicity ∆z = rad (z) and ∆ := [−∆z,∆z].

Further 2-scale perturbation numbers, i.e. ordered 3-couples of reals (x0, x1, x2)∈R3

are in use. The first element x0 of the 3-couple is called a main value and the following
are the perturbation values. Denote ε1 = (0, 1, 0) and ε2 = (0, 0, 1), where symbols
have the properties: ε2

1 = (0, 0, 0), ε2
2 = (0, 0, 0), ε1ε2 = (0, 0, 0). Then for every

ζ = (x0, x1, x2) ∈ R2ε we can write (x0, x1, x2) = x0 + ε1x1 + ε2x2.
Assume now, that the radius of the interval z is a two-scale perturbation number and

define two symbolic perturbation intervals ε1 = [−ε1, ε1] and ε2 = [−ε2, ε2]. Then we
write a 2-scale perturbation interval number as: z = ^

z + δz1ε1 + δz2ε2 ∈ IR2ε.
We have used the interval perturbation method based on the new algebraic system

with specifically strictly defined interval perturbation numbers, cf. Skrzypczyk, Pertur-
bation Methods for Acoustic Systems with Interval Parameters, this journal.

Two-scale perturbation interval value functions are defined for two-scale perturba-
tion interval arguments as extensions of classical elementary functions.

3. The reflection of the perturbation ray from intervally
two-scale perturbed surface

Assume that the ray equation (straight line) has the following parametric form,

r = r1 + (r2 − r1) t,

where r = (x, y, z) , ri = (xi, yi, zi) , i = 1, 2, t ∈ IR2ε. (1)

Since all vectors take the perturbed form, we write further r = ^r + δr1ε1 + δr2ε2,
ri = ^r i + δri1ε1 + δri2ε2, i = 1, 2, t =

^

t + ε1δt1 + ε2δt2. The plane equation with
interval parameters takes the form αx + βy + γz + ν = 02ε, α, β, γ, ν ∈ IR2ε.

If the uncertainty in the plane has the interval form ε1f1 (x, y) + ε2f2 (x, y), we
obtain,

α x + βy + γ z + ν − γ
(
ε1f1 (x, y) + ε2f2 (x, y)

)
= 02ε. (2)

Now we can determine the point r0 = (x0, y0, z0) of intersection between the
ray (1) and the perturbed plane (2), assume r0 = ^r0 + δr01ε1 + δr02ε2. The same
notation is taken for x0, y0, z0. Recall the extension form of fi(x0, y0) for perturbed
arguments,
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f i (x0, y0) = fi

(^
x0,

^
y0

)
+

∂fi

(^
x0,

^
y0

)

∂x0
(δx01ε1 + δx02ε2)

+
∂fi

(^
x0,

^
y0

)

∂y0

(δy01ε1 + δy02ε2) ,

x0 = ^
x0 + δx01ε1 + δx02ε2, y0 = ^

y0 + δy01ε1 + δy02ε2.

(3)

To calculate r0 = (x0, y0, z0) one can solve the system of linear interval equa-
tion (2) for ^

x0,
^
y0. This system can be solved directly using interval algebra or as

the hierarchical system of usual real-valued equations. Having the intersection point
(x0, y0, z0) in hand, we can form the plane tangent to the perturbed plane (2) as

z − z0 =
∂z

∂x
(x− x0) +

∂z

∂y
(y − y0) =

(
−α

γ
+ ε1

∂f1 (x0, y0)
∂x

+ ε2
∂f2 (x0, y0)

∂x

)
(x− x0)

+
(
−β

γ
+ ε1

∂f1 (x0, y0)
∂y

+ ε2
∂f2 (x0, y0)

∂y

)
(y − y0) . (4)

4. Ray acoustic emission algorithm with interval perturbations

In the following, the analysis of new concepts of predicting the interval 2-scale
perturbations of Acoustic Emission (2ε-IAE) signals, travelling within a room, is con-
sidered. Such disturbances can occur due to external stimulation or internal events. The
energy reduction of these signals can be affected by perturbed material properties and
by the perturbed geometry of the object. We assume wave propagation complex prop-
erties with respect to intricate shapes, with perturbed variations, and discontinuities in
thickness and surface curvature. There is a strong analogy between the physical propa-
gation of sound and light. The technique employed by the interval 2ε-RayAE algorithm
exploits this analogy through classical steps reminiscent of rendering:

1. Generate a source of space perturbed interval vector field (2ε-IPVF) to present
internal 2ε-IAE;

2. For each 2ε-IAEP, generate a series of weak edge segments that represent per-
turbed reflections/transmission of the 2ε-IAE ray;

3. For each sensor location test all 2ε-IAERs and record the number and values of
time intersections between the single 2ε-IAER and the sensor neighbourhood.

A ray emitted from an omni-directional source with initial sound power Ei0,
i = 1, 2, ..., n, travels in its original direction. After it hits the boundary of the en-
closure for the first time, the sound power carried by the ray will be reduced to Ei1

due to the surface absorption. The time and distance travelled from the source to the
boundary are tk and dk, respectively. After n reflections, the rays sound power will be
reduced to Ein, the time and distance travelled from the last reflection point being tn
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and dn, respectively. Thus, when a ray arrives at the receiver position after n reflec-
tions, its sound power is Ein, and the time and distance travelled are t and d, where
t = t1 + t2 + t3 + ... + tn, d = d1 + d2 + d3 + ... + dn.

Due to 2-scale perturbation, we write tk =
^

t k + δtk1ε1 + δtk2ε2, dk =
^

dk +
δdk1ε1 + δdk2ε2, k = 1, 2, ..., n,

Ein = Ei0e
−ξ d

n∏

k=1

(
12ε − αk

)
, (5)

where Ei is sound power carried by the i-th ray, Ei0 is the original sound power of the
ray, ξ is the air absorption attenuation, αi is the surface absorption coefficient of the i-th
plane. Assume that ξ =

^

ξ + δξ1ε1 + δξ2ε2, αk = ^
αk + δαk1ε1 + δαk2ε2. If we use

interval 2-scale perturbation algebra, then

n∏

k=1

(
12ε − αk

)
=

n∏

k=1

(
1− ^

αk

)− ε1

n∑

k=1

δαk1

n∏

i=1
i6=k

(
1− ^

αk

)

− ε2

n∑

k=1

δαk2

n∏

i=1
i6=k

(
1− ^

αk

)
, (6)

e−ξ d =

(
1 + ε1

(
δξ1

n∑

k=1

^

dk +
^

ξ

n∑

k=1

δdk1

)
+ ε2

(
δξ2

n∑

k=1

^

dk +
^

ξ

n∑

k=1

δdk2

))

exp

(
−^

ξ

n∑

k=1

^

dk

)
. (7)

Finaly, from Eqs. (5–7) we can calculate interval 2-scale perturbation sound power
Ein even if Ei0 is the perturbation value as well. If the initial sound power E0 is uni-
formly distributed between N 2ε-interval rays, then we have Ei0 = E0Qi/N , where
Qi is the directivity factor, N is the total number of the initial rays [4, 8].

5. Numerical example

Consider a reverberation chamber of irregular shape with an isotropic spherical
sector-directional sound source placed inside. We analyze three cases of sound absorb-
ing screen settings: 1) empty chamber; 2) screen in the middle of chamber; 3) screen on
the wall (see Fig. 1). All dimensions, locations and absorbent coefficients of walls and
screens can be perturbed. The values of interval 2-scale perturbed sound pressure level,
in any point of the room, can be calculated as it was described above (see Fig. 2). The
mean values of randomly perturbed absorbent coefficients of all walls and screens are
determined. All numerical values are dimensionless.
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Fig. 1. View of the room.

Fig. 2. The map of interval sound file – 2nd case.
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6. Conclusions

This paper investigates the feasibility of predicting the interval perturbations of
sound signals travelling within a indoor environment. The attenuation of these signals
is affected by perturbed material properties and by the perturbed geomtry of the object.
For example, wave propagation could be complex because of intricate shape with per-
turbed variations and discontinuities in thickness and surface curvature. In contrast to
much of the reported results, this paper provides a perturbation ray firing procedure to
model the interval transmission of rays both across the surface and through the interior
of a complex rooms. With the new interval algebraic system we get very simple and
useful mathematical tool which can be easy used in analysis of acoustic problems. This
methodology can be applied problems with uncertain parameters.
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