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This work addresses the problem of difficulties in classical interpretation of combination tones as non-
linear distortions. One of the basic problems of such an interpretation is to point out the sources of these
distortions. Besides, these kinds of distortions have numerous “anomalies” which are difficult to explain
on the grounds of physics or physiology. The aim of the model presented in this paper is to show that
combination tones phenomenon can be explained as an effect of central mechanisms. Most of existing
theories of pitch perception focus mainly on virtual pitch perception and do not take into account com-
bination tones as an element of the same mechanism. The proposed model of central auditory processing
for pitch perception allows one to interpret in a coherent way both virtual pitches and combination tones
phenomena. This model is of a demonstrative nature and gives an introduction to more advanced model.
It belongs to the class of spectral models and it will be shown that such a model can be in a simple way
extended to spectral – time model which is partially consistent with autocorrelation models.
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1. Introduction

Pitch perception is closely connected with spectral
analysis which is for example manifested in the fact
that sounds with different frequencies can be ranked
by pitch in a proper frequency-related order. The con-
nection between pitch perception and spectral anal-
ysis was explicitly noticed by G. Ohm who in 1843
announced the psychophysics law which states that
in complex sounds individual pitches are distinguished
only if the spectrum of the sound contains appropriate
spectral components. More precise observations show,
however, that this law is not completely correct. Al-
ready in the times when Ohm published his law the
phenomenon of combination tones was known i.e. addi-
tional audible tones to which correspond no frequency
components contained in the source sound. More or
less at the same time the interpretation problem of
the pitch of complex sounds also was noticed which
as a result of farther investigations led to discovery
of the residue phenomenon and connected with it the
phenomenon of virtual pitch. The phenomena of vir-
tual pitch and combination tones can be observed e.g.
in the situation when the source of the sound con-
tains two sinusoidal components with different frequen-

cies (two-tone). An occurrence of these phenomena de-
pends however closely on the location of spectral com-
ponents in the frequency domain. An example of pitch
perception image for a two-tone is shown in Fig. 1.
Such an image will be called a psychophysical spec-
trum. The basic information about virtual pitches and
combination tones will be now briefly presented.
Firstly, the effect of virtual pitch was observed in

harmonic complex from which its fundamental fre-
quency had been removed. It turned out that the pitch
of fundamental frequency is also perceived when it had
been removed from harmonic complex. In the case of
two-tone virtual pitches are observed in a narrow band
around the frequency of ω2 − ω1. A distinctive fea-
ture of virtual pitches is the fact that they are diffi-
cult to jam with noise. What is more, in case of two-
tone a noise which is not very intensive can even am-
plify the audibility of virtual pitches. Virtual pitches
are much stronger effects in harmonic complexes and
their audibility increases along with an increase of the
amount of source tones. Initially it was thought that
the mechanism of generating virtual pitches can be al-
most fully understood on the basis of the ear’s phys-
iology. The discovery of binaural perception of vir-
tual pitches (Houtsma,Goldstein, 1972;Houtsma,
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Fig. 1. Differentiation of spectra for two-tone on different
levels of auditory process.

2007) was a strong argument for the central origin of
the phenomenon and it triggered further development
of central theories.
There are many theories (models) of virtual pitch

perception, which can be divided into two categories:
spectral (place) theories and temporal (time) theories.
The basis of spectral theories is the assumption that
the basis for pitch identification is an approximate
spectral image of the stimulus generated at the level
of the inner ear, which is coded by vibrations of the
basilar membrane. Such a spectral image will be called
as a physiological spectrum1 (see Fig. 1). On the other
hand, temporal theories are based on time distribution
of spikes generated as a result of sound stimulus in au-
ditory nerve fibres. The best known theories of the first
category are presented in Goldstein (1973),Wight-
man (1973) and Terhardt (1974). At its simplest,
the main idea of these theories is to select the best fit-
ted pattern of harmonic complex to a given group of
tones. Because they operate in frequency domain they
assume resolution of spectrum components. However,
a virtual pitch can also occur with unresolved compo-
nents. These kinds of situations are better dealt with
theories of the second category, which are to be found
in studies of Licklider (1951),Meddis and Hewitt
(1991a; 1991b) or Moore (1997). Pitch estimation in
these models is connected with an effect of synchrony
in response of auditory nerve fibres to sound stimulus
and relies in general on using autocorrelation function

1This spectrum is different in dependence on if the ear coop-
erates with nervous system or not. Hence the terms: active and
passive physiological spectrum have been introduced in Fig. 1.

(ACF) for firing rate of spikes in auditory nerve. How-
ever, these models too are subject to some limitations,
because the effect of synchrony is not observed above
5 kHz which reduces the applicability of temporal the-
ories up to the frequency of 5 kHz. A more comprehen-
sive review of these issues can be found in Cheveigne
(2005).
Combination tones contrary to virtual pitches have

somewhat different features. They behave as additional
real components introduced into sound spectrum: they
are subject to beating with tones of near frequency in-
troduced into the stimulus and they can be masked by
a noise band centred at their frequency. Frequencies of
combination tones are linear combinations of primary
tones with low integers. This triggered a hypothesis
formulated by Helmholtz (1856), saying that combi-
nation tones are nonlinear distortion products gener-
ated within the ear2. Helmholtz showed that an ad-
dition of displacement square factor to equation of
harmonic oscillator driven by two sinusoidal forces
introduces to the oscillator’s vibration spectrum ad-
ditional components (Helmholtz, 1863). Helmholtz
solved this equation by perturbation method and he
obtained in the first order of calculations “square” fac-
tors with frequencies of ω2−ω1, ω1+ω2, 2ω1 and 2ω2,
and in the second order of the calculations “the third
order” factors with frequencies of 2ω1 − ω2, 2ω1 + ω2,
2ω2 −ω1, 2ω2 +ω1, 3ω1 and 3ω2. Helmholtz’s hypoth-
esis is generally accepted up till now, although there
are facts that can challenge its credibility. Given that
combination tones happen as a result of nonlinear dis-
tortions it is noteworthy to think that we can only
hear so few combination tones. The most prominent
combination tones are the tones of odd orders of type
ω1 − n(ω2 − ω1) for n = 1, 2 . . . 6, ω2 > ω1 in particu-
lar 2ω1 − ω2 tone and also the difference tone ω2 − ω1

(Plomp, 1965; 1976; Smoorenburg, 1972a; 1972b).
It is noteworthy to think that the tone of the third
order 2ω1 − ω2 (n = 1) is audible at lower levels of
the sound than the tone of the second order ω2 − ω1.
Tones above the frequency of ω1 are not usually au-
dible. The tone of 2ω1 − ω2 is particularly not ac-
companied by the tones of 2ω1 + ω2 and 2ω2 + ω1

whereas the audibility of 2ω2 − ω1 is sporadically re-
ported. Apart from that a certain “anomaly” in per-
ception of combination tone 2ω1 −ω2 was observed. If
amplitudes of tones ω1, ω2 are identical and equal to x
then the nonlinear tone 2ω1 − ω2 should increase ini-
tially as x3 whereas in fact it increases smaller than
the first power (Zwicker, 1955; 1968; Goldstein,
1967; Helle, 1969/70; Smoorenburg, 1972a; 1972b;
Zwicker, Fastl, 1973). The audibility of combina-
tion tones of type ω1 − n(ω2 − ω1) strongly depends
on the ratio of primary tones frequency and is limited

2Some authors consider also so-called extra-aural combina-
tion tones in contrast to intra-aural considered in this work,
which sources are outside the ear (Lohri et al., 2011).
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to the range of ω2 : ω1 from about 1.1 to about 1.5
(Plomp, 1965; Smoorenburg, 1972a; 1972b). More-
over, their levels increase markedly with decreasing
ω2 : ω1 (Zwicker, 1955; Goldstein, 1967; Green-
wood, 1971; Smoorenburg, 1972a; 1972b). Contrary
to virtual pitches, binaural perception of combination
tones is not observed psychophysically.
The problems outlined above are more in-depth dis-

cussed in Plomp (1976) and de Boer (1984; 1991).
Singularities in combination tone perception are tried
to be explained at the level of the ear’s physiology.
Some kind of spectral sound analysis is conducted di-
rectly in the cochlea of the inner ear. Owing to an ap-
propriate mechanical construction of the cochlea spec-
tral information is directly represented as the maxima
of envelope of basilar membrane’s vibrations, whereas
various frequencies correspond to various places of
maximal stimulation of the membrane. In order to de-
termine the sources of nonlinear distortions the mecha-
nisms of both the middle and inner ear were examined.
The measurements of transmittance of the middle ear
point out to its linear behaviour in a quite wide range
of changes of acoustic pressure. However, an analysis
of the basilar membrane in the inner ear showed max-
ima in places corresponding to spectrum components
of nonlinear distortions (Robles et al., 1997). How-
ever, these maxima were shown only in the situation
when there was cooperation between the ear and the
auditory nervous system.
The research conducted over the past decades

shows that sound is not the only source of mechani-
cal energy determining the behaviour of the cochlea.
Outer hair cells (OHC’s) which are found in the or-
gan of Corti, which are detectors of sound informa-
tion can also move as a result of the action of effer-
ent neurons which provide information from the brain
(Ashmore, 2008). This feature of OHC’s causes that
some vibrations of basilar membrane in the cochlea can
be amplified while the other can be damped. In this
way auditory system realise the feedback between the
central and the peripheral levels. Studies conducted
by Ruggero and Rich (1991) indicate that combina-
tion tones closely depend on the condition of OHC’s.
It turns out that characteristic for a membrane con-
trolled by signals from the auditory nerve a nonlinear
relation of the basilar membrane’s displacement de-
pending on an acoustic stimulus changes into a linear
relation when function of OHC’s is disturbed. There-
fore, some researchers assume that the sensory cells in
the cochlea are the source of the nonlinearity (Eguiluz
et al., 2000).
There is also one more source of information re-

garding combination tones, i.e. otoacoustic emission
(OAE). When the ear is stimulated by two-tone burst
containing spectral components ω1, ω2, (ω2 > ω1), an
emission of sound containing spectral components with
frequencies of |nω1 ±mω2|, where n and m are some

small integers, is registered in the external ear canal
(the so-called DPOAE). These kinds of studies were
conducted on various species of vertebrates, includ-
ing mammals (e.g. recently Michalski et al., 2011),
birds, reptiles and amphibians (e.g. Van Dijk, Man-
ley, 2001). The ears of many of these animals signifi-
cantly differ from the human ear e.g. the frog’s ear does
not have a basilar membrane. It is interesting that nev-
ertheless DPOAE 2ω1−ω2 is observed as a dominating
component.
Concluding, physiological research has shown that

the ear, and in particular the inner ear, is complex,
controlled by nervous system electromechanical de-
vice which can analyze sounds and also can generate
sounds. Most of widely accepted theories of combina-
tion tones assume to model the vibrating elements of
the inner ear by sound-driven harmonic nonlinear os-
cillator (Helmholtz, 1863; Eguiluz et al., 2000;Van
Dijk, Manley, 2001). However, these theories do not
explain, how locally vibrating elements generate glob-
ally combination tones. Furthermore, “the origins of
many of the nonlinearities in the mechanics of the
cochlea remain a contentious issue” (Ashmore, 2008).
The indicated difficulties in interpreting combina-

tion tones as nonlinear phenomena raise the question of
whether or not another explanation of the phenomenon
is possible. In the present study an alternative thesis
was assumed that combination tones are the product
of the central mechanisms which are responsible for
pitch extraction. One of the main problems with lo-
cating the source of combination tones at the central
level is the fact that these tones are to be found at the
peripheral level. However, this can be justified by that
the feedback between the central and peripheral levels
puts combination tones to the ear by OHC (Fig. 2).

Fig. 2. Schematic diagram of the location of the auditory
processor in auditory system.
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A simplified model of central auditory process-
ing for pitch perception, which describes generation
of both combination tones and virtual pitches, will
be presented in the next chapters. Following on from
Goldstein (1973) this model will be called an au-
ditory processor. The presented model will belong to
the class of spectral models and owing to assumptions
made earlier the description of virtual pitches will be
far insufficient. The model proposed in this work is
of demonstrative nature and gives an introduction to
more advanced model. However, an advantage of such
a model is easy presentation of the proposed mecha-
nism of combination tone generation. Furthermore, it
will be shown that such a model can be in a simple way
extended to spectral – time model which in the scope
of virtual pitch phenomena will be partially consistent
with autocorrelation models. In proposed construction,
in an elementary scope, the notions from the theory of
group algebras (convolution algebras) will be used.

2. Basic construction elements of model

Sound pitch sensation refers to a very broad class of
signals including also some forms of noises. However,
in order to simplify our considerations the scope of
signals taken into account can be restricted to almost-
periodic ones. We will consider amplitude spectra of
such signals which we will describe with finite linear
combinations of Dirac impulses with nonnegative co-
efficients:

F =
1

λ

∑

ω∈Ω

Fωδω or F =
1

λ

∑

ω∈Ω

Fω〈ω〉, (1)

where Ω ⊂ R is a finite set of frequencies and Fω ≥ 0,
〈ω〉 :=: δω is the Dirac measure in the point ω ∈ R
and λ ∈ R is a normalizing constant such that norm

‖F‖:=1

λ

∑
ω∈Ω

Fω satisfy ‖F‖ < 1 . The space of all dis-

crete measures on R containing such spectra will be
denoted by M1(R). Sets of frequency differ from R
which have some group structure G will be also con-
sidered and also the spacesM1(G) of discrete measures
on G.
We start our considerations from observation that

from mathematical point of view the convolution
(i.e. ∗-operation) describes generation of combination
tones, because e.g.:

δω2
∗ δ−ω1

= δω2−ω1
, δω1

∗ δω1
∗δ−ω2

= δ2ω1−ω2
. (2)

If G is a group, then M1(G) has a well defined convo-
lution3.
3We will use also multiplicative group notation instead of ad-

ditive. If gi ·g
′

j is multiplication of gi, g
′

j ∈ G then convolution is:

(

∑

i
Agiδgi

)

∗

(

∑

j
Bg′

j
δg′

j

)

=
∑

i,j
AgiBg′

j
δgi·g′j

.

Pitch perception process will be described in the
form of “psychophysical” spectrum sequence {Pi}∞−∞

which is generated on the basis of an appropriate se-
quence of physical spectra {Fi}∞−∞. More precisely, it
generally will be defined as an infinite iteration process
Ψ , in which spectrum P (n+1) is created on the basis of
previous spectra P (k) and F (k) for k ≤ n:

P (n+1) = Ψ
(
{Pi}n−∞, {Fi}n−∞

)
. (3)

The “linear” formula is the one of the simplest possi-
bilities to determine iteration process Ψ :

P (n+1) = Q
(n)
F ∗ P (n) + δ0, (4)

where Q(n)
F ∈ M1(X) is a factor dependent on phys-

ical spectrum F (n). It can be noticed that formula
(4) is similar to the formula S(n+1) = qS(n) + 1 of
generation the n+1 partial sum of the geometric se-
ries 1, q, q2, q3 . . .. Formula (4) has also its deeper psy-
chophysical meaning connected with the rise and decay
of pitch sensation in response to a rectangular pulse
stimulus (Plomp, 1964). Such pitch sensation varies
approximately geometrically. It will be farther more
thoroughly discussed. One can assume in the simplest
case that

QF = αF (n) + βδ0, (5)

where α, β ∈ R and δ0 is Dirac measure in zero (con-
volution identity).
When process (4) is a stationary iterative one i.e.

when F (n) = F = const, the natural task is to de-
termine criteria of convergence and points of conver-
gence of such a process. Then, one can notice that
for ‖QF‖ < 1 mapping Ψ : P 7→ QF ∗ P + δ0 is
contracting-mapping and using contracting-mapping
principle the psychophysical limit spectrum P can be
determined as a fixed point of Ψ . The situation, in
which F (n) = F ≡ 0 will be called the silence state. In
such a case Q(n)

F = βδ0 and from Eq. (4) psychophysi-
cal spectrum is

P =
1

1− β
δ0. (6)

The next step in the proposed construction is to intro-
duce intoM1(G) such a structure which can split pitch
sensations into tonal and virtual ones. In the simplest
case one can do it by introducing two sets of frequen-
cies: tonal T and virtual V which satisfy G = T ∪ V .
Moreover, a group structure should be introduced in
the set G. One can do it, assuming that G is an exten-
sion of subgroup V by two element group Z2. It can be
realized by simple or semi-simple product. If θ denotes
generator of group Z2 then G = V ∪ θV . A division G
into tonal and virtual sets implies that any spectrum
P can be written down as a sum of two components:
tonal PT and virtual PV i.e. P = PT + PV . It is as-
sumed that every physical spectrum F has only tonal
part, so FV ≡ 0 and so:



T. Ziębakowski – Combination Tones in the Model of Central Auditory Processing. . . 575

F = θ
1

λ

∑

ω∈Ω

Fωδω. (7)

The above considerations will now be illustrated by a
simple example.
Example. Perception of a single tone in the form

of a rectangular pulse (see Plomp, 1964).
Let G = Z2 × Z be a semi-simple product group

determined by relation θ〈ω〉θ = 〈−ω〉 for integers
〈ω〉 ∈ Z and θ ∈ Z2 (the brackets “〈 〉” denote
passing from additive to multiplicative notation i.e.
〈ω〉 · 〈ω′〉 = 〈ω + ω′〉, 〈0〉 = 1, moreover, the sym-
bol 〈ω〉 in dependence on the context may denote an
element of group G or an element of space M1(G)
with amplitude 1. The tonal spectrum determines val-
ues on the elements of θ〈ω〉 type, but virtual spec-
trum determines values on the elements of 〈ω〉 type.
Let F (n) = F = θ〈ω〉 be a spectrum of one tone with
the frequency ω and amplitude 1, and QF = βδ0+αF
where α = β = q/2 and 0 < q < 1. Then ‖QF ‖ =
‖αF + βδ0‖ ≤ ‖αF‖+ ‖βδ0‖ = q < 1 so process (4) is
convergent. Starting from the spectrum of the silence

state: P =
1

1− β
δ0 one gets the next psychophysical

spectra for n = 1, 2, 3, ... on the basis of (4):

P (n) =
(2−q)2 − qn+1

2(1−q)(2−q) 〈0〉+ q(2−q−qn)
2(1−q)(2−q)θ〈ω〉. (8)

The process {P (n)} is convergent to the spectrum
P =

(2− q)

2(1− q)
〈0〉+ q

2(1− q)
θ〈ω〉. When we reset com-

ponent θ〈ω〉 in the physiological spectrum from a cer-
tain moment i.e. since some n0 F

(n) = F ≡ 0 for
n > n0 then process {P (n)} comes back to the silence
state through the following sequence of psychophysical
spectra:

P (n) =
2(1−q+2−nqn)

(1−q)(2−q) 〈0〉+ 2−nqn

(1−q) θ〈ω〉. (9)

The above example has been illustrated in Fig. 3.
Let us also observe the role of factor βδ0 in Eq. (5).

Fig. 3. Pitch perception P
(n)
ω of single tone in the

form of the rectangular pulse: F
(n)
ω = 1 for n =

1 . . . 15, and: F
(n)
ω = 0 for n > 15 (q = 0.7 in
Eqs. (8) and (9)).

If β = 0 at F ≡ 0 then QF ≡ 0 and therefore reset
of the physiological spectrum resulted in an instan-
taneous jump to the silent state, which has not been
evidenced in the experiments.

3. Auditory filters

Auditory filters have been introduced to psychoa-
coustics in order to describe such phenomena as the
masking phenomenon, the critical bands phenomenon,
or the phenomenon of tuning. These phenomena are
observed psychophysically and also are studied on the
grounds of physiology of the ear. Although the mech-
anism of functioning of auditory filters is not fully
known, most researchers suppose that it functions at
the peripheral level. However, one can assume, as we
do in this work, that as in case of combination tones
this mechanism is located at the central level and
is reflected at the peripheral level through the loop-
back. In our model of auditory processor, introduc-
tion of filters allows one to reduce the amount of spec-
tral components taking part in processing described by
Eq. (4). The mechanism proposed in Eq. (4) makes it
possible to generate for every pair of components ω1,
ω2, additional spectral components with frequencies of
|nω1 ±mω2|, where n and m are any given integers,
which in fact is not observed. Apart from this auditory
filters will function as a template used to estimate vir-
tual pitch. Filtering will concern the both tonal and
virtual sets of frequencies. In the structure of filters
presented in Fig. 4 in the tonal part the comb filter
is set for generating fundamental tone and harmonics
whereas in the virtual part the filter with three pass-
bands is set for only such virtual pitch which comes
from neighbouring harmonics. For simplicity, rectan-
gular outlines of filters and equal width of passbands
are assumed. The coherence of the model requires to
take into consideration two auxiliary passbands around
zero frequency: unperceivable subvirtual pitch (virtual
zero) and unperceivable zero combination tone (tonal
zero).

Fig. 4. Filters’ characteristics for given Ω.

The designed processor will be equipped with a
collection of virtual-tonal auditory filters which will
be indexed (like in harmonic complex) by fundamen-
tal frequency Ω. Mathematically, filters can be de-
scribed by means of filters’ characteristics, i.e. function
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ϕΩ : T ∪V → {0, 1} where Ω runs through the set ΩV

of all the frequencies corresponding to perceived vir-
tual pitches. An assumption is made that values of the
set ΩV create a finite arithmetic progression:

ΩV = {Ω1, Ω2, . . . , Ωmax}, (10)

where Ωi+1 = Ωi +∆.
The initial Eq. (4) defining pitch perception will be

rewritten on respective filters, on the condition that on
individual filters the spectra processing occurs inde-
pendently. Accordingly, a certain partial psychophysi-
cal spectrum P

(n)
Ω can be connected with every pair of

tonal-virtual filters for given Ω ∈ ΩV so:

P
(n+1)
Ω = ϕΩ · (QF ∗ P (n)

Ω ) + δ0. (11)

The dot denotes multiplying the spectrum (as a mea-
sure) by the function. All of partial spectra create the
final pitch spectrum according to the rule of superpo-
sition:

P (n) =
∑

Ω∈ΩV

P
(n)
Ω . (12)

It is easy to show that partial psychophysical spectrum
P

(n)
Ω can be non-zero only on filter passbands.

4. Determination of psychophysical spectra

for periodic signals

Amplitude spectra of periodic signal are discrete
spectra, in which the components are equally spaced
by a fixed width ∆ω. In our model this situation is
described by the group G = Z2Z with the defining
relation θωθ = ω−1 which4 in the additive notation is
given by θ〈ω〉θ = 〈−ω〉 where ω ∈ Z, θ ∈ Z2. Group G
as a set can be presented as G = Z ∪ θZ what shows
the division of groupG into the virtual and tonal parts.
The space M1(G) can be in this case identified with
L1(G), so instead operate on measures we can operate
on functions for which the convolution is defined by
the formula:

f ∗ g(x) =
∑

y∈G

f(y)g(y−1x),

f, g ∈ L1(G), x ∈ G.

(13)

Additionally, owing to the discreet character of the
group and due to the limitation of frequency ranges by
the auditory filters the consideration of spectra can be
narrowed down to finite dimensional linear spaces, so
Eq. (11) can be written in the matrix form. Let N > 0
be the number of the highest audible component. Let
us define the following subset in G:

B = {〈−N〉, 〈1−N〉, . . . , 〈0〉, . . . , 〈N+1〉, 〈N〉,
θ〈−N〉, θ〈1−N〉, . . . , θ, . . . θ〈N−1〉, θ〈N〉} . (14)

4One can also assume that θωθ = ω but relation θωθ = ω−1

allows one to make the consideration simpler and more trans-
parent.

This set can be treated as a certain base of linear sub-
space W ⊂ L1(G) generated by this set. In base B the
element QF ∈W can be written as:

QF = [V−NV1−N , . . . , VN , T−N , T1−N , . . . , TN ]T, (15)

where the first half is the virtual and the second the
tonal part.
Let us now turn to writing Eq. (11) in the ma-

trix form in the base B. Let us now take the ele-
ment QF ∈ W defined by Eq. (15) and let us write
down the operation QF ∗ (·) in the base B as mapping
QF : W →W given by as follows:

QF : W ∋ f → ϕB · (QF ∗ f) ∈W, (16)

where

ϕB(〈i〉) = ϕB(θ〈i〉) =
{
1 for |i| ≤ N,

0 for |i| > N.

The matrix of this mapping in base B has the following
form:

QF =

[
V TT

T VT

]
, (17)

where

V =




V0 V1 · · · VN 0

V−1 V0 V1
... VN

... V−1
. . .
. . .

...
. . .

V−N

...
. . .
. . .
. . .

... VN

V−N

...
. . .
. . .
. . .

...

. . .
...
. . .
. . . V1

0 V−N · · · V−1 V0




,

T =




T0 T1 · · · TN 0

T−1 T0 T1
... TN

... T−1
. . .
. . .

...
. . .

T−N

...
. . .
. . .
. . .

... TN

T−N

...
. . .
. . .
. . .

...

. . .
...
. . .
. . . T1

0 T−N · · · T−1 T0




.

(18)

The characteristics of the filters ϕΩ can be likewise
written in the matrix form ΦΩ (Eq. (9)). In the base
B = {bk} (Eq. (14)) it will be diagonal matrices with
values of (ΦΩ)k,k = ϕΩ(bk) on the main diagonal. For
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example, for Ω = 2 and an even N matrix Φ2 has the
following form:

Φ2= diag




0, . . . , 0,

−2

1̆ , 0,
0

1̆, 0,
2

1̆, 0, . . . , 0︸ ︷︷ ︸
V

−N

1̆ , 0, 1, 0, . . . ,
−2

1̆ , 0,
0

1̆, 0,
2

1̆, . . . , 0, 1, 0,
N

1̆︸ ︷︷ ︸
T




. (19)

The psychophysical spectra P(n)
Ω and δ0 can be writ-

ten in the form of one column matrices with a length
4N+2. In view of the above definitions Eq. (11) takes
the following form:

P
(n+1)
Ω = ΦΩQFP

(n)
Ω + δ0. (20)

Because ΦΩδ0 = δ0 then it follows from the preced-
ing equation that P(n+1)

Ω = ΦΩP
(n+1)
Ω . The problem

of how to determine spectra P(n)
Ω can be reduced to

subspace WΩ ⊂ W determined by projecting images
ΦΩ. Equation (20) can therefore be given by:

P
(n+1)
Ω = QΩP

(n)
Ω + δ0, QΩ := ΦΩQFΦΩ. (21)

The above considerations will be illustrated in the next
section on two-tone problem example.

5. Two-tone pitch perception

Let us consider physical spectrum of two-tone
given by:

F =
θ

2N + 1
[F−ω2

〈−ω2〉+ F−ω1
〈−ω1〉+ F0〈0〉

+Fω1
〈ω1〉+ Fω2

〈ω2〉] , (22)

where ω2 > ω1 > 0. In an artificial way an imper-
ceptible 0-th tonal component was introduced into the
spectrum as an element of the mechanism of the audi-
tory processor. It is assumed that the amplitude of this
component has a constant in time value. Amplitude
spectrum has property F−ω = Fω so by substituting
Expression (22) into Eq. (5) we have:

QF = β〈0〉+ θ [ε〈0〉+A(〈−ω1〉+ 〈ω1〉)
+B(〈−ω2〉+ 〈ω2〉)] , (23)

where ε, A, B, are calibrated amplitudes F0, Fω1
, Fω2

by factor α/(2N+1). While having QF it is possible
to determine matrix QF (17). The aim is to determine
partial limit spectrum PΩ := lim

n→∞
P

(n)
Ω of sequence

of partial psychophysical spectra of two-tone for indi-
vidual fundamental frequencies Ω ∈ ΩV . These spec-
tra are determined from the following equation derived
from Eq. (21):

PΩ = (I−QΩ)
−1

δ0, (24)

where I is an identity matrix in the base B of the
space W .
Let us now consider a tonal filter with the fun-

damental frequency Ω showed in Fig. 4 and for sim-
plicity let us assume that 2r is smaller than auditory
frequency resolution so only one component can be lo-
cated within passband. Depending on the position of
two-tone components in relation to the tonal filter the
four cases can be differentiated which are showed in
Fig. 5. Case 1 is the most interesting one. It can be
checked that other cases can be narrowed down to ei-
ther no perception of tones (Case 2) or to perception
of one or two singular tones (Cases 3 and 4).

Fig. 5. The possibilities of deploying two-tone in relation
to the tonal filter.

Let us now consider Case 1. The psychophysical
spectrum determined from Eq. (24) can be presented
in the following form:

PΩ = [V−N , V1−N , . . . , VN , T−N , T1−N , . . . , TN ]T. (25)

Let us write non-zero components of this spectrum as
functions of amplitudes ε, A and B:

V0 = (1− β)S, Vω2−ω1
= (1− β)R,

T0 = εS, Tω2−ω1
= εR,

T2ω1−ω2
= AR, Tω1

= AS +BR,

Tω2
= BS +AR, T2ω2−ω1

= BR,

(26)

where
r = 2AB,

s = (1− β)2 − ε2 − 2A2 − 2B2,

R =
r

s2−2r2
,

S =
s

s2−2r2
.

(27)

The spectrum is also presented in Fig. 6. It can be ob-
served that the spectrum contains virtual pitch ω2−ω1,
and in the tonal range apart from fundamental com-
ponents it also contains zero component and combina-
tion tones with the frequencies of ω2 − ω1, 2ω1 − ω2

and 2ω2 − ω1.
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Fig. 6. Partial psychophysical spectra of two-tone
– the Case 1.

Let us now go over the mechanism of generating
psychophysical image of two-tone in the model con-
structed above. This one can enrich psychophysical
spectrum with components which frequencies are lin-
ear combination of the frequencies of physical spectra
components with low integers. In order to better illus-
trate this issue the following diagrams will be used:

p1
f1−→ p2

f2−→ p3· · ·pn−1
fn−1−−−→ pn, (28)

where {pi}n1 , {fj}
n−1
1 are sequences in the group G

such that pi+1 = fi · pi. These sequences will de-
scribe non zero components of corresponding spectra{
P (i)

}n
1
,
{
F (j)

}n−1

1
which satisfy Eqs. (4) and (5).

For example, two steps of the process generated by
one spectral component described in Sec. 2 can be de-
scribed by the following diagram:

〈0〉 θ〈ω〉−−−→ θ〈ω〉 θ〈ω〉−−−→ 〈0〉. (29)

In general, there are many paths that lead to gener-
ating a certain spectral component of psychophysical
spectrum. However, not every path is possible to be
proceeded due to the fact that some components are
cut off by the auditory filters. Below, there are ex-
amples of paths leading to generation of combination
tones.

〈0〉 θ〈ω2〉−−−→θ〈ω2〉
θ〈ω1〉−−−→〈ω2−ω1〉 θ−→θ〈ω2−ω1〉,

〈0〉 θ〈ω1〉−−−→θ〈ω1〉
θ〈ω2〉−−−→〈ω1−ω2〉

θ〈−ω1〉−−−−→θ〈2ω1−ω2〉,

〈0〉 θ〈ω2〉−−−→θ〈ω2〉
θ〈ω1〉−−−→〈ω2−ω1〉

θ〈−ω2〉−−−−→θ〈2ω2−ω1〉.

(30)

Let us note, that both virtual and tonal pitches are
generated in different steps of perception process: tonal
ones in odd steps and virtual ones in even steps so we
can say odd-even pitch rather than tonal-virtual one.
First path in (30) shows that combination tone ω2−ω1

in tonal spectrum exists only if the imperceptible 0-th
tonal component in spectrum F is introduced (see also
Eq. (26): Tω2−ω1

> 0 if ε > 0).
Image presented in Fig. 6 is not, however, fully

compatible with this one in Fig. 1. The spectrum pre-
sented in Fig. 6. lacks higher combination tones, such
as ω1−n(ω2−ω1), n > 1. On the other hand, the spec-
trum contains the 2ω2−ω1 combination tone, which in
practice is not psychophysically observed. As we know
from the Introduction, it occurs, however, in the alive
ear i.e. in situation when ear cooperates with nervous
system. Thus, an explanation of these phenomena re-
quires to take into account the feedback which in our
model has been omitted. We return to the first of these
problems in Sec. 7.

6. Extension to spectral-time model

As we know from the Introduction, there are two
mechanisms in auditory system responsible for pitch
extraction: spectral (place) and temporal (time). These
correspond to two kinds of pitch perception models:
spectral and temporal. There are attempts to create a
model which merges these mechanisms into one whole
(e.g. Meddis, O’Mard, 1997) but they are not en-
tirely satisfactory (see Cheveigne, 2005).
In this section, we show in outline that our spectral

model can be in a simple way extended to spectral –
time model. Moreover, it turns out that such an ex-
tended model allows one to describe pitch perception
process by one mechanism in both frequency and time
domain.
The spectral model presented in the previous chap-

ters has several limitations the most important of
which include the fact that:

1. It is based on the concept of spectral models and
inevitably inherits some of their drawbacks de-
scribed earlier in the Introduction.

2. In virtual pitch perception it does not take into ac-
count phenomena connected with shift of compo-
nents in harmonic complexes, the so-called I and
II shift effects

3. It predicts occurrence of combination tone of the
type 2ω2−ω1, which is not, however, psychophys-
ically observed.

4. It does not explain such phenomena as tuning,
masking or suppression.

Let us also turn our attention to the fact that our
considerations are based on the assumption that the
bandwidth of filter passbands is smaller than auditory
frequency resolution. If we in our model reject this
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assumption that within passbands additional compo-
nents can be appeared what is shown on Fig. 7. Then:
5. There is the problem of localization of pitch of
source tones in the situation when two compo-
nents are placed within a range of the same pass-
band.

Fig. 7. The psychophysical spectrum in the case when two-
tone is placed within a range of the one tonal passband.

As far as virtual pitch perception is concerned the first
two problems can be well solved by models based on
autocorrelation analysis (Licklider, 1951; Meddis,
Hewitt, 1991a).We will show now that by moving our
construction from frequency domain to time domain
we obtain in the range of virtual pitch perception a
model consistent with autocorrelation models.
Let us consider the group G = Z2R with the defin-

ing relation θtθ = t−1 which in the additive notation
is given by θ〈t〉θ = 〈−t〉 where t ∈ R, θ ∈ Z2. This
time instead of applying it for spectra, it will be used
for waveforms on a principle similar to that described
in Sec. 2. In the time domain the same symbols will
be used as in the frequency domain, they will only be
spelled with a lower key. The group G determines the
psychophysical time domain divided into two parts:
the virtual (real time t) and the tonal (time θt). Let us
consider the waveform s(t), which by assumption will
be appropriately “cut” by means of a window and let
us define the physiological waveform f ∈ L1(G) in the
following form:

f(t) ≡ 0, f(θt) = s(t). (31)

Equation (4) which defines the perception process can
be rewritten in the following way:

p(n+1) = f ∗ p(n) + δ0, (32)

where p(n) is the n-th psychophysical waveform. The
convolution is given by a formula, similarly to Eq. (13):

f ∗ g(x) =
∫

y∈G

f(y)g(y−1x),

f, g ∈ L1(G), x ∈ G.

(33)

Let us follow the process of creation of this waveform.
We start from p(0) = δ0. Then, we have p(1) = f + δ0
and p(2) = f ∗ f + f + δ0. It can be checked that f ∗ f
contains only the virtual part and that:

f ∗ f(τ) =
∫

t∈R

f(θ〈t〉)f((θ〈t〉)−1〈τ〉)dt

=

∫

t∈R

f(θ〈t〉)f(〈−t〉θ〈τ〉)dt

=

∫

t∈R

f(θ〈t〉)f(θ〈t+ τ〉)dt

=

∫

t∈R

s(t)s(t+ τ)dt. (34)

We see that the process of generating a psychophysical
waveform in its virtual part is therefore in its first steps
approximated by means of ACF.
Now, let us return to the beginning of our con-

siderations on the spectral model. Let us note that
it has been implicitly assumed that the physiological
spectrum which is fed to the input of auditory pro-
cessor agrees with the physical spectrum of the sound
However physiological spectrum understood as the en-
velope of vibration of the basilar membrane is a far
approximation of the sound spectrum. Moreover, the
spectrum reflected in auditory nerve is enriched with
additional information connected with the temporal
phase synchrony of auditory nerve fibres Sound infor-
mation at the level of the auditory nerve can thus be
described by a discrete set of amplitudes {Aω ∈ R}
and a discrete set of phase factors {ϕt ∈ [0, 2π[} where
ω ∈ S where S ⊂ R is a discrete set of frequencies,
and t is related to the dependence t = 1/ω. Extension
of our spectral model to the spectral-time model can
thus be achieved by replacing the real amplitudes Fω

in Eq. (1) or (7) with complex amplitudes Aωe
iϕ1/ω .

After substitution in Eq. (7) we have:

F = θ
1

λ

∑

ω∈S

Aωe
iϕ1/ωδω. (35)

We can pass to the time domain by means of formula
f(t) := F (1/t). Finally, in our extended model, the
filtering described in Sec. 3 should be taken into ac-
count. Summing up the psychophysical waveforms for
all auditory filters we get as regards virtual pitch the
procedure similar to SACF proposed by Meddis and
Hewitt (1991a).
Concluding we see that virtual pitch can be simul-

taneously estimated by the spectral and the temporal
mechanism. Previously presented spectral model can
only estimate the band in which virtual pitch may oc-
cur. Temporal mechanism, however, allows one to more
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precisely estimate the location of virtual pitch within
the band on principle of extraction of the maximum of
SACF in the iterative process. Let us add that process-
ing between bands also occurs in the extended model
In the time domain such a processing can be described
by the cross-correlation function of signals from two
different bands-time windows.
The time extension of the spectral model outlined

above does not solve all the problems, in particular the
third and the fourth problem and also does not com-
pletely solve the fifth problem. However, these prob-
lems can be solved by taking into account the feed-
back between the central and the peripheral auditory
system and by a proper choice of the group G The lat-
est is connected with the problem of encoding sound
information in the auditory nerve fibres. Such an en-
coding can be described by a stochastic process in the
frequency-amplitude domain. In our model, the intro-
duction of the additional amplitude dimension requires
an “extension” of the group G. Good results can be
achieved by using the group SL(2,R). A full consider-
ation of this issue is beyond the scope of this paper.
The model based on this group will be the subject of
a separate publication.

7. Discussion

An explanation of some “anomalies”
of combination tones

The presented model of auditory processor can in
an easy way explain the occurrence of combination
tones in limited ranges of the frequency quotient of
harmonic components of two-tone (approximately 1.1
– 1.5). Combination tones occur when tones ω1, ω2 fall
into adjacent passbands of a given tonal filter, i.e. in
a neighbourhood of frequency quotient (k+1)/k (see
Fig. 8). For k > 1 these quotients are to be found in

Fig. 8. Pictorial view of participation of tonal filters in cre-
ation of combination tone of type 2ω1 − ω2.

the range from 11:10 to 3:2 (for k = 1 the ratio is 2:1,
for which the combination tone would have to occur
around the inaudible zero frequency).
Next problem arises when the amplitude of the tone

2ω1−ω2 increases, when frequencies of the tones ω1,
ω2 are getting closer to each other. If, however, the
frequency ratio of the tones ω1 : ω2 is close to unity, the
number of auditory tonal filters which can encompass
the tones ω1, ω2 in adjacent bandwidths increase (see
Fig. 8). At the same time the combination tone has
a greater intensity, because it is generated by a larger
number of filters.
Another problem arises when the amplitude of

combination tone 2ω1−ω2 increases depending on the
level of stimulus. In the classical interpretation of
Helmholtz this tone should increase in a logarithmic
scale 3 times faster than source tones at least in the
range of low level, which in reality it is not observed.
The presented model predicts that the level of combi-
nation tone 2ω1−ω2 increases more or less equal to the
level of primary tones, what is convergent with empir-
ical data (see Fig. 9).

Fig. 9. The level of combination tone 2ω2−ω1 as a function
of the level of tone ω1 (β = 0.4, ε = 0.4, ω2 : ω1 = 4 : 3,

A = B).

Tonal versus virtual pitches

The proposed model, according to the description
presented in the preceding sections, assumes that the
auditory processor has two groups of registers, one of
which remembers tonal spectra and the other virtual
ones for various sizes of auditory filters (see Fig. 10).
The effective pitch sensation as a psychophysical spec-
trum is the sum of spectra from all tonal and virtual
registers. However, as what was mentioned in the In-
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Fig. 10. Schematic diagram of the auditory processor.

troduction, there are large differences in perception of
virtual and tonal pitches. In the present model this is
explained by the feedback between the auditory pro-
cessor and the peripheral system. It is assumed that
virtual registers – contrary to tonal ones - do not par-
ticipate in the feedback. Therefore, virtual pitches are
not in direct interaction with “real” tones on the pe-
ripheral level, owing to which, for example, they are
not subject to beat phenomenon with tones of similar
frequencies.
The occurrence of higher combination tones, such

as ω1−n(ω2−ω1), (n > 1) can also be explained by
feedback of the auditory processor. Let us assume that
owing to the feedback the initial spectrum of the two-
tone is enriched with the combination tone 2ω1−ω2. By
performing similar calculations for three – tone it can
be demonstrated that the combination tone 3ω1−2ω2

is generated on the basis of the rule 2(· 1)−(· 2) i.e.
2(2ω1−ω2)−ω1 = 3ω1−2ω2. On the same basis further
combination tone, such as ω1−n(ω2−ω1) are obtained.

Problem of locating the auditory processor

In the proposed model of the central auditory pro-
cessing of pitch the perception process is described by
means of convolution and sound spectra generated by
ears. From the mathematical point of view convolu-
tion is directly connected with symmetry. Therefore,
symmetry described by a group (of symmetry) plays

the main role in the proposed construction. Similar
cases are to be found in contemporary physics. Sym-
metry is the basis of the most fundamental phenomena
such as elementary interactions and elementary parti-
cles. Symmetry also allows one to simplify some prob-
lems in physics e.g. the problem of describing an opti-
cal spectrum. If e.g. chemical particles have nontrivial
symmetry then on this basis we can in a qualitative
way describe the optical spectrum without having to
solve differential equations. In analogy to this, in our
case symmetry may describe a structure of neural net
which is responsible for pitch extraction. One of the dif-
ficulties of our analogy is that the physics of the brain
is nonlinear contrary to spectroscopy whose physics is
linear. In general most of methods based on symme-
try do not work on nonlinear systems. We could also
put forward a hypothesis that the action of neural net
as a macroscopic structure is connected with a linear
quantum structure with an inner symmetry on micro-
scopic level. Such a structure could perform signal pro-
cessing according to the presented description. There
is one argument in favour of this hypothesis which is
also a conclusion of the proposed model, namely, the
structure responsible for signal processing on the cen-
tral level must be richer and more complex than the
neural structure of the brain.
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209.

34. Zwicker E., Fastl H. (1973), Cubic difference
sounds measured by threshold- and compensation-
method, Acustica, 29, 336–343.


