
ARCHIVES OF ACOUSTICS

Vol. 39, No. 3, pp. 403–410 (2014)

Copyright c© 2014 by PAN – IPPT

DOI: 10.2478/aoa-2014-0044

Standing Waves and Acoustic Heating (or Cooling) in Resonators
Filled with Chemically Reacting Gas

Anna PERELOMOVA, Weronika PELC-GARSKA

Gdansk University of Technology, Faculty of Applied Physics and Mathematics
Narutowicza 11/12, 80-233 Gdansk, Poland; e-mail: {anpe, wpelc}@mif.pg.gda.pl

(received December 11, 2012; accepted July 29, 2014)

Standing waves and acoustic heating in a one-dimensional resonator filled with chemically reacting
gas, is the subject of investigation. The chemical reaction of A → B type, which takes place in a gas,
may be reversible or not. Governing equations for the sound and entropy mode which is generated in the
field of sound are derived by use of a special mathematical method. Under some conditions, sound waves
propagating in opposite directions do not interact. The character of nonlinear dynamics of the sound and
relative acoustic heating or cooling depends on reversibility of a chemical reaction. Some examples of
acoustic heating in a resonator are illustrated and discussed.
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1. Introduction

Investigation of acoustic oscillations in resonators is
of great importance because sound waves always prop-
agate in bounded volumes. Recent interest in this sub-
ject is caused by engineering and technical application
of resonators. Acoustic field in resonators filled with
a Newtonian fluid has been studied thoroughly the-
oretically and analytically, for example in the papers
(Biwa, Yazaki, 2010; Mortell, Mulchrone, Sey-
mour, 2009). It has been established that nonlinearity
may lead to periodic shock waves for intense perturba-
tions in a resonator (Keller, 1977; Chester, 1964;
Ockendon et al., 1993). Kaner et al. (1977) were
the first to introduce the analytical method of different
scales to describe the acoustic field in closed volumes.
This method uses the slow dependence of the shape
of progressive wave on nonlinearity and attenuation,
and its fast dependence on the retarded time. How-
ever, most of previous analytical considerations require
the sound to be periodic in time (Kaner, Rudenko,
Khokholov, 1977; Ochmann, 1985).
In this study, sound perturbations and acoustic

heating in a resonator filled with chemically reacting
gas (where the chemical reaction of A → B type may
make a gas acoustically active) is the subject of in-
vestigation. Chemically reacting gas, under some con-
ditions, is a non-equilibrium medium. The interest in

the non-equilibrium hydrodynamics constantly grows
because of a wide application of non-equilibrium media
in lasers, physics of atmosphere, and physics of plasma
(Osipov, Uvarov, 1992). There are a lot of papers
concerning the sound propagation in unbounded vol-
umes of such media (Demidov, Rytenkov, Skre-
bov, 1988; Blinov, 1989). Bauer and Bass (1973)
have investigated the possibility of the sound amplifi-
cation in a gas maintained in ambient vibrational and
radiative non-equilibrium by thermal radiation. Srini-
vasan and Vincenti (1975) introduced different ways
to excite the vibrational mode of a gas, for example,
chemical reaction. Kogan andMolevich (1985) have
taken into account the possibility of a non-equilibrium
state, not only of the vibrational but also of the ro-
tational degrees of a molecule’s freedom. Molevich
(2002; 2003) was the first to mention some special
mechanisms of nonlinear self-action of the acoustic
beam which cause the self-focusing of sound in an
acoustically active medium, cooling of gas by sound,
and the excitation of acoustic streaming in opposite di-
rection as compared to the one of sound propagation.
The acoustic cooling in a gas with the chemical reac-
tion of A → B type in unbounded volumes was also
studied by the authors for the high and low-frequency
sound in (Perelomova, Pelc-Garska, 2011).
In this paper, the special mathematical method

based on projecting was used to separate the equa-
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tions governing the sound and non-acoustic modes in
a resonator. The method has been worked out and ap-
plied previously by one of the authors for some prob-
lems of weakly nonlinear flows (Perelomova, 2003;
2006; 2010). The projecting method leads to govern-
ing equations of acoustics modes which in general do
not require the sound be periodic in time. To describe
the sound itself in a resonator, the method of pro-
jection is complemented by the method of different
scales (Kaner, Rudenko, Khokholov, 1977). The
equations governing the sound and non-acoustic modes
are discussed in Sec. 5 and the numerical examples of
acoustic perturbations and acoustic heating are pre-
sented in Sec. 6.

2. Basic equations

The momentum, energy, and continuity equations
in a gas where a simple chemical reaction of A → B
type takes place, read:

ρ
dv
dt

= −∇P,

CV,∞

R

dT
dt

− T

ρ

dρ
dt

= Q, (1)

dρ
dt

+ ρ∇ · v = 0.

The system (1) should be complemented by the dy-
namic equation of the mass fraction Y of reagent A
and the thermal equation of state:

dY
dt

= − Q

Hm
, P =

ρT

m
. (2)

In the systems of Eq. (1), (2), v, ρ, P denote the ve-
locity, density, and pressure of a gas, respectively; T
is the temperature measured in Joules per molecule,
CV,∞ is the molar “frozen” heat capacity at a con-
stant volume (i.e., correspondent processes take place
at infinitely high frequencies), R = CP,∞−CV,∞ is the
universal gas constant, CP,∞ is the “frozen” heat ca-
pacity at a constant pressure, Q is the heat produced
in the medium per one molecule due to a chemical re-
action, H denotes the reaction enthalpy per unit mass
of reagent A, and m denotes the averaged molecular
mass of a gas.

3. Dispersion relations in a one-dimensional flow

The one-dimensional gas flow along axis OX is con-
sidered. Every quantity in Eq. (1) represents a sum
of unperturbed value and its variation, for example:
ρ = ρ0+ρ

′ (where in a weakly nonlinear flow |ρ′| � ρ0,
and so on). Following (Molevich, 2002; 2003), we as-
sume that the stationary quantities Y0, T0, P0, ρ0 are
maintained by a transverse pumping, so that in the

longitudinal direction pointed by axis OX the unper-
turbed medium is homogeneous and v0 = 0. The di-
mensionless quantities which characterise a chemical
reaction QT , Qρ, QY depend on the type of heat pro-
duction:

QT =
T0
Q0

(
∂Q

∂T

)
T0,ρ0,Y0

,

Qρ =
ρ0
Q0

(
∂Q

∂ρ

)
T0,ρ0,Y0

, (3)

QY =
Y0
Q0

(
∂Q

∂Y

)
T0,ρ0,Y0

.

The characteristic duration of a chemical reaction is:

τc =
HmY0
Q0QY

. (4)

Equations (1), with account for Eq. (2) within accu-
racy up to quadratic nonlinear terms, take the forms
as follows:

∂v′

∂t
+

T0
mρ0

∂ρ′

∂x
+

1

m

∂T ′

∂x

= −v′ ∂v
′

∂x
+
T0ρ

′

mρ20

∂ρ′

∂x
− T ′

mρ0

∂ρ′

∂x
,

∂T ′

∂t
+(γ−1)

(
T0
∂v′

∂x
−QT

Q0

T0
T ′−Qρ

Q0

ρ0
ρ′−QY

Q0

Y0
Y ′
)

= −v′ ∂T
′

∂x
− (γ − 1)T ′ ∂v

′

∂x
,

∂Y ′

∂t
+

1

Hm

(
QT

Q0

T0
T ′+Qρ

Q0

ρ0
ρ′+QY

Q0

Y0
Y ′
)

= −v′ ∂Y
′

∂x
,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= −v′ ∂ρ

′

∂x
− ρ′

∂v′

∂x
,

(5)

where γ =
CP,∞

CV,∞
denotes the frozen adiabatic expo-

nent. The linearized version of Eq. (5) describes a flow
of infinitely-small magnitude:

∂v′

∂t
+

T0
mρ0

∂ρ′

∂x
+

1

m

∂T ′

∂x
= 0,

∂T ′

∂t
+ (γ − 1)

(
T0
∂v′

∂x
−QT

Q0

T0
T ′

−Qρ
Q0

ρ0
ρ′ −QY

Q0

Y0
Y ′
)

= 0,

∂Y ′

∂t
+

1

Hm

(
QT

Q0

T0
T ′+Qρ

Q0

ρ0
ρ′+QY

Q0

Y0
Y ′
)

= 0,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= 0.

(6)
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All perturbations may be represented as sums of pla-
nar waves:

f(x, t) =

∫
f̃(k, t) exp(−ikx) dk

=

∫
f̃(k) exp(iωt− ikx) dk, (7)

(f̃(k, t) denotes the Fourier transform of f(x, t),

f̃(k, t) =
1

2π

∫
f(x, t)eikx dx, where k is the wave num-

ber). Every type of motion is determined by one of
the four roots of dispersion equation of the linear flow,
ω(k). The dispersion relations for three non-thermal
modes (two acoustic and one non-wave) and the ther-
mal one, which is not progressive, are described by the
equalities:

ω2 = k2
T0
m

CP

CV
= k2

T0
m

CP,∞ +mH

(
∂Y

∂T

)
P

CV,∞ +mH

(
∂Y

∂T

)
V



= k2
T0
m

CP,∞ +
(Qρ −QT )τc
1 + iωτc

Q0

T0

CV,∞ − QT τc
1 + iωτc

Q0

T0

, ω = 0. (8)

The approximate roots of dispersion relations for both
acoustic branches were firstly derived in (Molevich,
2003). A weak dependence of heat release in a chemi-
cal reaction on the temperature and density (|Qρ| � 1,
|QT | � 1) is assumed. The dispersion relations have
been evaluated in the high-frequency case, i.e. when
acoustic frequency is large as compared with the in-
verse characteristic duration of a chemical reaction, τc:
ωτc ≈ |k|uτc � 1:

ω1 = u(k − iB),

ω2 = u(−k − iB),

ω3 = i

(
1

τc
+

(γ − 1)Q0(Qρ −QT )

u2m

)
,

ω4 = 0,

(9)

where

B =
Q0(γ − 1)(Qρ + (γ − 1)QT )

2u3m
(10)

and u =
√
γ T0

m is the frozen sound velocity. The first
two roots in (9), ω1, ω2, are acoustic and ω4 corre-
sponds to the thermal (entropy) mode. The third non-
acoustic root ω3 is responsible for the non-wave vari-
ation in mass fraction of reagent A. For the sound to
be a wave process, attenuation (when B is negative),
or amplification, (if B is positive) should be small as
compared with the characteristic acoustic wavenum-
ber, |B| � k. That in fact determines the smallness
of |Qρ|, |QT | more precisely in dependence with the
characteristic domain of sound wavenumbers.

4. Definitions of modes in linear flow

In general, every perturbation of the field variables
contains contributions from each of the four modes,
for example, ρ′ = ρ′1 + ρ′2 + ρ′3 + ρ′4. That allows de-
composition of equations which govern every mode in
their linear parts using specific properties of the modes.
Keeping in mind that∫

f(x, t) dx =

∫
(−ik)−1f̃(k) exp(iωt− ikx)dk, (11)

one may determine the modes as specific relations of
perturbations.

ψ1=


v′1
T ′
1

Y ′
1

ρ′1

 =



u

ρ0
− uB

ρ0

∫
dx

(γ − 1)T0
ρ0

− 2γT0B

ρ0

∫
dx

2Bu2

(γ − 1)Hρ0

∫
dx

1


ρ′1,

ψ2=



− u

ρ0
− uB

ρ0

∫
dx

(γ − 1)T0
ρ0

+
2γT0B

ρ0

∫
dx

− 2Bu2

(γ − 1)Hρ0

∫
dx

1


ρ′2,

ψ3=



(
(γ − 1)Q0 (Qρ −QT )

ρ0T0γ
+

1

τcρ0

)∫
dx

−T0
ρ0

u2

H(γ − 1)ρ0

1


ρ′3,

ψ4=



0

−T0
ρ0

−τcQ0 (Qρ −QT )

Hmρ0

1


ρ′4.

(12)

The linear equations governing any mode may be de-
composed directly from the system (6) by use of rela-
tions (12). The dynamic equations governing the excess
density in acoustic wave progressive in the positive and
negative direction of axis OX, take the forms:

∂ρ′1
∂t

+ u
∂ρ′1
∂x

− uBρ′1 = 0,

∂ρ′2
∂t

− u
∂ρ′2
∂x

− uBρ′2 = 0.

(13)
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The equations for excess densities of the entropy and
the chemical modes are as follows:

∂ρ′4
∂t

= 0,

∂ρ′3
∂t

+

(
Q0(γ − 1)(Qρ −QT )

T0γ
+

1

τc

)
ρ′3 = 0.

(14)

The Eqs. (13), (14) correspond to the dispersion rela-
tions (9).

5. Dynamic equations in a weakly nonlinear flow

5.1. Dynamic equations for the sound
in a weakly nonlinear flow

To obtain Eqs. (13), (14), we may also use a special
mathematical method based on projectors. Projecting
is in fact a linear combination of Eqs. (6) in order to
hold in the linear part of resulting equation only terms
corresponding to the chosen mode. For example, by
multiplying the first and second equations of the sys-
tem (6) by the following factors, correspondingly,

ρ0
2u

+
(γ − 1)Q0 (Qρ + (γ − 1)QT ) ρ0

2mu4

∫
dx,

ρ0
2mu2

+
(γ − 1)Q0 (3Qρ + (γ − 3)QT ) ρ0

4m2u5∞

∫
dx,

and the third and fourth equations of the system (6)
by the following factors, respectively:

−H(γ − 1)ρ0
2τcu3

∫
dx,

1

2γ
− (γ−1)Q0 (−3Qρ+γ (2Qρ−3QT )+3QT )

4mγu3

∫
dx,

and taking their sum after that, one gets an equation
governing the excess density in acoustic wave progres-
sive in the positive direction of axis OX (it coincides
with the first equation from the system (13)). The
terms belonging to all other modes become reduced in
the final equation. In a similar way it is possible to ob-
tain an equation for the second acoustic mode and for
the non-acoustic modes in an unbounded space. To de-
scribe the sound in a resonator, the method of different
scales will be used (Kaner, Rudenko, Khokholov,
1977; Rudenko, Soluyan, 1977). This method ex-
ploits the idea of a slow dependence of the shape of pro-
gressive modes caused by the nonlinearity and attenu-
ation, and a fast dependence on the retarded time. The
acoustic field is considered in new variables: η = x−ut,
ξ = x + ut, corresponding to the progressive in the
positive and negative direction of axis OX waves, and
µt, where µ =Max(B/k,M) (M denotes the acoustic
Mach number). In the linear non-viscous flow, acous-
tic perturbations are functions exclusively of the re-
tarded variables, ρ′1(η), ρ

′
2(ξ). We fix relations (12) in

a weakly nonlinear flow and combine Eqs. (5) in the
way described at the beginning of this subsection. We
will also consider the magnitudes of non-acoustic per-
turbations much smaller than that of the sound, so
that every perturbation in the non-linear part of equa-
tions is in the leading order a sum of specific acoustic
quantities, ρ′ = ρ′1 + ρ′2 and so on. Dynamic equations
for acoustic branches take the forms:

∂ρ′1
∂t

−uBρ′1=−u(γ+1)

2ρ0
ρ′1
∂ρ′1
∂η

− u(γ−3)

2ρ0
ρ′2
∂ρ′1
∂η

+
u(γ2−3γ+4)

2γρ0

(
ρ′1
∂ρ′2
∂ξ

+ ρ′2
∂ρ′2
∂ξ

)
,

∂ρ′2
∂t

−uBρ′2=
u(γ+1)

2ρ0
ρ′2
∂ρ′2
∂ξ

+
u(γ−3)

2ρ0
ρ′1
∂ρ′2
∂ξ

− u(γ2−3γ+4)

2γρ0

(
ρ′2
∂ρ′1
∂η

+ ρ′1
∂ρ′1
∂η

)
.

(15)

Let ρ′1 and ρ
′
2 be periodic functions of η and ξ, and

their averaged over periods values be zero: ρ′1(η) = 0,
ρ′2(ξ) = 0. It can easily be concluded that averaging the
first equation over period in ξ, and the second over pe-
riod in η leads to equations for non-interacting acoustic
modes progressive in different directions,

∂ρ′1
∂t

− uBρ′1 +
u(γ + 1)

2ρ0
ρ′1
∂ρ′1
∂η

= 0,

∂ρ′2
∂t

− uBρ′2 −
u(γ + 1)

2ρ0
ρ′2
∂ρ′2
∂ξ

= 0.

(16)

5.2. Acoustic heating

Acoustic heating is an increase in the ambient tem-
perature associated with nonlinear losses in the acous-
tic energy. It associates with the entropy mode. To
obtain an equation describing interaction between the
acoustic and entropy modes in a resonator we multiply
the first equation of the system (5) by 0 and the sec-
ond, third, and fourth equations by following factors:

− ρ0
mu2

+
ρ0Q0(Qρ −QT )(γ − 1)τc

m2u4
,

ρ0H(γ − 1)(−mu2 +Q0(Qρ −QT )(γ − 1)τc)

mu4
,

1− 1

γ
− (γ − 1)2Q0(Qρ −QT )τc

mu2γ
.

To eliminate the acoustic and relaxation terms in the
linear part of the final equation we calculated the sum
of all four expressions. In the nonlinear part, only
quadratic terms correspondent to the acoustics modes
are kept, since their magnitudes are large as compared
with the non-acoustic ones. The equation governing
acoustic heating takes the form:
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∂ρ′4
∂t

=

(
u(γ−1)(γ−2)

γρ0
− τcQ0(Qρ−QT )(γ−1)2(γ−2)

muγρ0

)

·
(
ρ′1
∂ρ′1
∂η

− ρ′1
∂ρ′2
∂ξ

+ ρ′2
∂ρ′1
∂η

− ρ′2
∂ρ′2
∂ξ

)

−2Bu(γ − 1)

ρ0

(
∂ρ′1
∂η

∫
ρ′1 dη −

∂ρ′1
∂η

∫
ρ′2 dξ

−∂ρ
′
2

∂ξ

∫
ρ′1 dη +

∂ρ′2
∂ξ

∫
ρ′2 dξ

)
−uB(γ − 1)(γ − 2)

ρ0γ

(
ρ

′2
1 + 2ρ′1ρ

′
2 + ρ

′2
2

)
. (17)

After averaging over the period in η and ξ, Eq. (17)
becomes reduced to:

∂ρ′4
∂t

= −2Bu(γ − 1)

ρ0

(
∂ρ′1
∂η

∫
ρ′1 dη +

∂ρ′2
∂ξ

∫
ρ′2 dξ

)

−uB(γ − 1)(γ − 2)

ρ0γ

(
ρ

′2
1 + ρ

′2
2

)
. (18)

Thus, the periodic waves almost do not interact in the
volume of a resonator.

6. Acoustic field and relative nonlinear
phenomena

In an acoustic nonlinear resonator, the perturba-
tions of density and velocity in the leading order are
sums of specific parts:

ρ′ = ρ′1 + ρ′2, (19)

v′ = v′1 + v′2 ≈ u

ρ0
(ρ′1 − ρ′2), (20)

where ρ′1, ρ
′
2 are solutions of Eqs. (16). We leave only

leading-order relations from Eqs. (12) in view of the
fact that the squared acoustic terms are the source of
heating. We will consider zero initial perturbation of
density ρ′(x, t = 0) = 0 and initial excess velocity as
v′(x, t = 0) = 2Mu sin(ωx/u) in the sections below. It
is convenient to rearrange equations in the dimension-
less variables,

b = Bu/ω, X = ωx/u, τ = ωt,

η = X − τ, ξ = X + τ, θ = exp(bτ)− 1,

R1 =
ρ′1
Mρ0

exp(−bτ), R2 =
ρ′2
Mρ0

exp(−bτ),

K =
(γ + 1)M

2b
.

(21)

In these notations, Eqs. (16) take the forms

∂R1

∂θ
+KR1

∂R1

∂η
= 0,

∂R2

∂θ
−KR2

∂R2

∂ξ
= 0.

(22)

It is clear that if R1(θ, η) is a solution of the first
equation, R2 = −R1(θ, ξ) is also a solution of the sec-
ond equation in Eqs. (22). Velocity in a flat resonator
satisfies the following boundary conditions: v′|X=0 =
v′|X=L ≡ 0, so that the dimensionless length of a res-
onator L is π-fold. The governing equation for the ex-
cess dimensionless temperature associating with the
entropy mode follows from Eq. (18):

−∂ρ
′
4

∂τ
=
∂T ′

4/T0
∂τ

= bM2(γ − 1) exp(2bτ)

·
(
2

(
∂R1

∂η

∫
R1 dη +

∂R2

∂ξ

∫
R2 dξ

)

+
γ − 2

γ

(
R2

1 +R2
2

))
, (23)

that yields for the periodic sound

∂T ′
4/T0
∂τ

= −bM2 exp(2bτ)

·
(
(γ − 1)(γ + 2)

γ

(
R2

1 +R2
2

))
. (24)

6.1. Standing waves and relative heating
before forming of waves discontinuity

For times smaller than the characteristic time of
formation of the saw-tooth wave, T̃ : T̃ = 1

b ln(1 +
1/K), the periodic solutions of (22) take the forms
(Rudenko, Soluyan, 1977; Riemann, 1953):

R1 = −
∞∑

n=1

2Jn(nKθ) sin(nη)

nKθ
,

R2 =

∞∑
n=1

2Jn(nKθ) sin(nξ)

nKθ
,

(25)

where Jn is the Bessel function of the n-th order. Note
that in a strongly damping resonator with negative b,
discontinuities may not form at all. The velocity and
density fields in a resonator before formation of the
saw-tooth wave for different times τ are presented in
Fig. 1. The density of total energy of the sum of the
Riemann’s waves (22) is constant, its dimensionless
quantity equals

0.5L−1

L∫
0

(
(R1 +R2)

2 + (V1 + V2)
2
)
dX

= 0.5L−1

L∫
0

(
(R1 +R2)

2 + (R1 −R2)
2
)
dX

= L−1

L∫
0

(
R2

1 +R2
2

)
dX = 1,
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Fig. 1. Velocity and excess density in the standing wave in a resonator filled with chemically reacting gas before formation
of the saw-tooth wave, at different fractions of period.

where V1 = v′1/u, V2 = v′2/u are dimensionless veloc-
ities of a fluid in the rightwards and leftwards propa-
gating waves. Thus, the acoustic energy in a resonator
E varies with time as exp(2bτ). Equation (24) readily
may be rearranged into

∂T ′
4/T0

∂(bτ)
= −M

2(γ − 1)(γ + 2)

γ
exp(2bτ). (26)

After integration with the initial condition

T ′
4(τ = 0) = 0,

it yields

M−2T
′
4

T0
=

(γ − 1)(γ + 2)

2γ
(exp(2bτ)− 1). (27)

The important characteristics which describes losses of
acoustic energy in a resonator, is the quality factor, or
q-factor:

q =
E

|∂E/∂τ |
. (28)

The quality factor before formation of the discontinu-
ity is simply q = |2b|−1.

6.2. Saw-tooth waves and relative heating

For the times greater than the characteristic time
of formation of the saw-tooth wave, Kθ > π/2, R1 and

R2 take the saw-tooth shapes consisting of straight-line
parts,

R1 =
η

1 +Kθ
, if − π ≤ η < π,

R2 = − ξ

1 +Kθ
, if − π ≤ ξ < π,

(29)

and are periodic in η or ξ, respectively. The saw-
tooth shapes of R1 and R2 are shown in Fig. 2.
The velocity and density perturbations in a resonator
after formation of the saw-tooth wave for different
times τ are plotted in Fig. 3. For positive coeffi-
cient b, the peak value of waves increases and de-

Fig. 2. Saw-tooth waveforms in accordance to Eqs. (29).



A. Perelomova, W. Pelc-Garska – Standing Waves and Acoustic Heating (or Cooling) in Resonators. . . 409

Fig. 3. Velocity and excess density in the standing wave in a resonator filled with chemically reacting gas after formation
of the saw-tooth wave, for different values of Kθ and b.

creases for b < 0. The quality factor q after for-
mation of the saw-tooth waves is time-dependent, it

equals
∣∣∣∣ 12b

(
1 +

K exp(bτ)

1−K

)∣∣∣∣. The acoustic energy in
resonator for times greater then the characteristic time
of formation of the saw-tooth wave, takes the following
form:

E

E0
=

e2bτ

(1 +K (ebτ − 1))
2 , (30)

where
E0 = E(0) =

2

3
M2.

Fig. 4. Evolution of dimensionless energy for different
coefficients b.

Figure 4 represents dimensionless energy for different
coefficients b. As for acoustic heating, it is described
by equation

∂T ′
4/T0

∂(bτ)
= − 2M2π2(γ − 1)(γ + 2)

3γ(1 +K(exp(bτ)− 1))2
exp(2bτ). (31)

7. Conclusions

The nonlinear standing waves in a resonator filled
with Newtonian fluid have been well-studied, for ex-
ample in (Kaner, Rudenko, Khokholov, 1977).
As far as the authors know, standing acoustic waves
in a non-equilibrium medium like gas with chemical
reaction were not investigated. In this study, a flat
resonator filled with chemically reacting gas, was con-
sidered. A special analytical method based on projec-
tors was used to obtain equations governing the sound
and relative heating in a resonator. The method leads
to general Eqs. (15) which do not require the sound
be periodic in time. The projecting method is com-
plemented by the method of different scales. To ex-
clude interactions between acoustics modes, the peri-
odicity of acoustic perturbations was assumed as well
as equal zero on average. In a Newtonian fluid, curves
of the velocity in a standing wave have nodal points
placed at dimensional distances π from each other.
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In a medium considered in this study, the curves of
velocity possess additional nodal points which travel
between the constant ones (see Fig. 1). The shapes of
velocity after formation of discontiniuty look similar
to those observed experimentally in Newtonian fluid
(Biwa, Yazaki, 2010). Efficiency of acoustic heating
(or cooling) in resonators is of a great importance be-
cause of their wide physical and technical applications.
In this study, Eqs. (26) and (31) which describe acous-
tic heating (or cooling) before and after formation of
a saw-tooth wave, respectively, were obtained. In the
case of irreversible chemical reaction A → B into a
gas, the sound amplifies before formation of discon-
tinuity (b > 0), and the medium becomes cooler. It
never occurs in a resonator filled with a Newtonian
fluid. After formation of discontinuity, attenuation at
the front of the shock wave makes the peak pressure
to decrease independently of the sign of b. The acous-
tic energy in a resonator, four times greater than the
characteristic time of formation of the saw-tooth wave,
tends to zero for negative coefficients b. For b > 0, the

energy tends to value
4b2

(γ + 1)2M2
E0, in accordance to

Eq. (30), as the time increases. That reflects the equi-
librium between nonlinear attenuation on the fronts
of the saw-tooth wave and anomalous enlargement in
their magnitude. The temperature, associated with the
entropy mode, increases if b < 0 and decreases other-
wise in the both cases, before and after formation of
discontinuities. q-factor of a resonator filled with chem-
ically reacting gas also depends on the dimensionless
coefficient b. It is constant before shock formation, and
time-dependent after that. The efficiency of the acous-
tic heating (or cooling) depends on the Mach number
and the coefficient b, Eq. (26), (31).
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