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Beating sinusoids are an interesting case of a simultaneous change of intensity and fre-
quency achieved without the need of a modulator. Studies of the perception of beats provide
numerous data concerning also the sound pitch perception. Hitherto, the following conclu-
sions have been made from those studies: i) if the amplitude of one tone is much larger
than the amplitude of the other one, of the two-tone complex, the pitch shifts towards
the frequency of the larger amplitude tone; ii) if the amplitudes of the two tones are the
same, the pitch is localized precisely at the arithmetic average of the two tone frequencies.
These statements imply therefore, that a symmetry with respect to the arithmetic average
frequency of the two-tone beatings is present in the pitch localization on the frequency
scale. Most recent studies show, however, that this symmetry is not always maintained.
In the current study, divided into Part 1 and Part 2, an attempt is made, basing on the
discussion and numerical analysis of the functions which describe the beatings, to deter-
mine the cause of this asymmetry. One of the arguments may come from the fact that the
narrow-band condition for beating waveforms is only partially satisfied. This implies that
the consequences of the relative rate of changes of the amplitude envelope to the resultant
frequency envelope should be considered in the analysis of the beatings signal. The lack
of symmetry is evidenced by the functions which reflect the influence of the magnitude
of the ratio of the amplitudes of two signal components on the values of the normalised
parameters EWAIF (Envelope Weighted Average of Instantaneous Frequency) and IWAIF
(Intensity Weighted Average of Instantaneous Frequency) correlated with the sound pitch.
In Part 2, two psychoacoustic experiments are described that aimed at the examination of
the pitch of beatings in view of the symmetry arguments mentioned above. Main conclu-
sions obtained in this part of the study are used throughout together with the literature
available on this subject.

1. Introduction

In spite of its rudimentary character, the phenomenon of beating sinusoids continues
to be the subject of interest of both the theory of modulation [9, 15, 16] as well as the
studies of the perception of sounds with time-varying parameters.

The beating waveform, also referred to as TCC (Two-Component Complex [4]) as
the superposition of two tones with very similar frequencies, may also, from the an-
alytical standpoint, be regarded as an example of the elementary modulation process
known as TTSS (Two-Tone Single-Sideband) [15]. The basic feature of the beating is
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the time-variation of the amplitude envelope which resembles that of the modulated
waveforms. Usually, this variation does not arise from nonlinearities of the amplitude
(AM) or the frequency modulation (FM) process, but follows from superposition of two
signals which is evidently a linear process. In the signal resulting from superposition the
features of the two components, in particular their individual time variations, cease to
be important. The Fourier spectrum of the beating waveform contains two components
of pre-determined frequencies and amplitudes. The width of the Fourier spectrum of
beats is equal to the frequency difference of its two components. All these arguments
out the elementary properties of the beats phenomenon as long as we confine ourselves
to spectral analysis.

The beating waveform manifests itself as a periodic variation of the sound pressure
level (SPL) with the repetition time equal to the inverse of the frequency difference of
the two components. The SPL variations (envelope of the beating) can be monitored on
an oscilloscope or directly perceived as an audible loudness change. It occurs however,
that the beating cycle also features an instantaneous frequency variation [1, 2, 4, 8, 14,
15, 16], perfectly synchronised with the variations of the sound pressure level. But from
the perceptual point of view and its physical detection, the former is not perceived as
easily as the changes in the loudness. Both these features of the beating waveform, i.e.
the change of the amplitude envelope and the instantaneous frequency variation, are not
resolvable in the Fourier spectrum. Determination of the instantaneous frequency varia-
tions in the beating cycle requires frequency demodulation, an instrumental task which
is not straightforward within the acoustic frequency range [10]. Hence, the procedure
of the demodulation is usually performed employing Hilbert transform algorithms [1,
9] or time-frequency distributions TFD [9]. The perceptual complexity of the beatings
results mainly. from the simultaneous occurrence of changes of the amplitude envelope
together with the instantaneous frequency variations, including the occurrences of ex-
treme frequency changes at the moments which correspond to the minima of the sound
amplitude envelope. Perception of the beatings is a part of the studies of signals of
variable frequency and the amplitude envelope and provide an insight into problems of
simultaneous perception of the loudness and the pitch of sounds.

Investigation of the physical properties and the perception of beatings is also impor-
tant for the room acoustics, particularly with sounds of time-varying frequency propa-
gating in a room. A beating-like effect occurs in a room [12] when two waves superpose,
for instance, the direct wave of an advancing frequency and the reflected one having the
same frequency changes but reproducing its previous history of the frequency change. In
a specific point of the room there is some frequency difference which causes the beatings
and which depends on the velocity, character of the frequency changes and the delay of
the reflected wave.

While it is difficult to accept that sound propagation in our environment may involve
nonlinear processes of amplitude and frequency modulation, it must be quite natural to
expect, for the envelope changes and instantaneous frequency variations, that it results
from acoustic waves superposition; there is little doubt that the two features should
appear even in geometric structures of moderate complexity. Hence, it seems purposeful
and justified to devote some attention to this kind of phenomena.
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This study consists of two parts. Part I is mainly devoted to the physical aspect of
variations of the beatings signal and its results establish some grounds for the subject of
the perception of the beatings pitch that is dealt with in Part II. In its principal contents,
the study deals with the so called complementary pair of signals usually referred to as
SL and SH [3]. The signal abbreviated as SL (Stronger Low) consists of a pair of tones
in which the lower frequency signal is of a higher sound pressure level whereas the
reverse is implied for the Stronger High, abbrev. SH. The subject of particular interest
of the authors is the intuitive possibility of a symmetry or its absence for the two
complementary pairs of signals: SL-SH; those will be discussed on the physical grounds
of the beatings (Part I) as well as the perception of the pitch of the two-tone complexes
SL-SH. There is already a report by DAI [2] who notifies the problem of the asymmetry
in the discrimination of the pitch. Thus far, the reported asymmetries in the perception
of the sound pitch remain unexplained.

The analytical representation of the beatings waveform embraces its two cardinal at-
tributes: the changes of amplitude envelope and the instantaneous frequency variations.
There is a number of articles in which the changes of the amplitude envelope and the
instantaneous frequency variations of the beats have been analysed [1, 3, 8, 14, 15]. In
some of these articles the final formulae, describing the changes of amplitude envelope
and instantaneous frequency variations of beatings, have been obtained in terms of the
analytic signal concept. It looks however that in the majority of the contributions to
this subject, the physical aspects of the beats have been treated only marginally. Con-
sequently, the available description has been only superficial and has routinely ignored
the essential elements of the problem pursued by the present investigation.

2. The beatings — its analytical description and properties

To derive a formula for the changes of the amplitude envelope and instantaneous
frequency variations of a beatings signal, let us assume the real signal r(t) to be a sum
of two tones of different amplitudes z; and zy and the frequencies f; and fy (the
subscripts L and H refer to the lower and the higher frequency tones, respectively).

r(t) = xp cos2m frt + gy cos 2w fyt. (I.1)
Applying the Hilbert transform to the real signal 7(t) we obtain
Hi{r(t)} = zpsin2nfpt + zy sin 27 fyt. (I.2)
The analytic signal associated with the real one (I.1) will be
ro(t) =7(t) + Hi {r(t)}. (1.3)
The envelope of the analytic signal is obtained from the formula:
ra(®)] = VI + [Hi {r()} 14)

This envelope is a real function equal to the real signal envelope. For the beatings (I.1),
the envelope calculated -with the formula (1.4) is

e(t) = |ra(t)] = z1v/1+ 82 + 20 cos 2rA ft (L5)
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where § = zy/zp is the amplitude ratio, whereas Af = fy — fy is the frequency
difference of the superposed signals which effect the beats. 7
The phase of the analytic signal equals

_ Hi{r(t)}
¥a(t) = arctg [_"W [rad]. (16)
The instantaneous frequency IF(t) is calculated as the time derivative of the phase (1.6)

of the analytic signal

1 dipa(t

IF () = “"“ dal) 1y, (L7)
In practice, for the complex signals covermg a certa.m frequency range, the phase changes
are defined with reference to a fixed, constant frequency, for instance fy, its phase being
a linear function of time ¢(f,t) = 27 frt. Then, the instantaneous frequency variations
can be written as

1 dga(t)
F(t) = — ——= L
=520 4 gy, (18)
t
where — =S (p;t( ) ; is the time dependent part of the instantaneous frequency.

Hence, the resulting signal, associated to the real signal r(t) (Eq. (I.1)) may be rewrit-
ten in the following form:

r(t) = |ra(t)| cos [21r[IF (t) dt] =Re {exp [ln [ra(t)] +j21rfIF (1) dt] } e (L9)

This equation points out the possibility of a generalisation of the signal phase (see also
[13]) by regarding the changes of the amplitude envelope as a factor in the phase of the
signal r(t).

Therefore, the expression

CI8(t) = In [ra (t)] + j2r f IF (t) dt = In |r(2)| (L10)

is the complex phase of the resultant signal. The complex instantaneous frequency of
the signal becomes

CIF (¢) = ;__dcz;p(t) [;ﬂ Iral()l———dlrgft)|+jIF(t)]
= Hind dlr(t)|
= 5 T Hi. (L11)

It follows from Eq. (I.11) that the complex instantaneous frequency is a function which
most generally describes the changes of the real signal r(t), disregarding them if they
are associated with phase or the amplitude envelope changes. The magnitude of the
complex instantaneous frequency (a real function describing the changes of frequency)
of the resulting signal r(t) can be calculated according to the equation

2
|CIF(t)|=\/ [51}- |ra1(t)| d"";t(t)l +IFOP [Ha). (L12)
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Note that only when the amplitude envelope is constant, the magnitude of the complex
instantaneous frequency is equal to the instantaneous frequency IF(t).
Applying Eq. (I.8) and (I.11), the complex instantaneous frequency of the beatings
will be ‘
dAf sin(2rA ft) . 0A f(cos(2mA ft) + )
CIF(t) = - i fL .
O=-1r@s 28 cos(2nAft) T 1+ 82 + 26 cos(2nAfe) T

The first part of the complex instantaneous frequency (the real part) results exclusively
from the amplitude envelope changes; the second and the third terms (imaginary part)
involve instantaneous frequency variations and the constant tone frequency fr. The real
part of the instantaneous frequency has been usually omitted in the literature, however,
for acoustic signals of a variable amplitude envelope or for signals which do not satisfy
the narrow band condition, it ought to be taken into account.

The magnitude of the complex instantaneous frequency of the beats (a real function
describing frequency variations) equals according to the equation (I.12)

ICIF (1) = [ SAf sin(2rA ft) r A f(cos(2rA ft) + 6)
V11462 + 26 cos(2mA ft) 1+ 62 + 26 cos(2nA ft)

Generally, the variability of the beats is described with two basic real functions: the
amplitude envelope (I.5),that is the magnitude of the analytic signal and the frequency
envelope (I.14) which is the magnitude of the complex instantaneous frequency of the
analytic signal.

We now differentiate 7(t) Eq. (I1.9) against time

d—;&i) = r(t) Re { [m d"';t(t)l +IF (t)] } (L15)
The expression in square brackets (I.15) is the complex instantaneous frequency. An
essential physical interpretation follows from the Eq. (1.15), namely that the complex
instantaneous fre%u)ency can be regarded as a generalised, relative rate of changes of
1 dr(t
r(t) dt
same time, it is a quantity which, to certain extent, describes the real time evolution
of any signal because it contains only the first derivative of the signal with respect to
time. Under certain conditions, however, namely for a narrow-band signal, the complex
instantaneous frequency (Eq. (I.15)) may adequately account for the signal variability.
Generally, using polar coordinates, we may now write

CIF (t) = |CIF (t)| exp [pcrr (1)] , (1.16)

(1.13)

2
+fL] . (L14)

the signal involving both the envelope and/or the frequency changes. At the

where

< arcke _ A f(cos(2mAft) :Aé?f-:u{é(;:fi; + 25 cos(2w A ft))
is the phase angle between the imaginary and real components of the complex instan-
taneous frequency variations of beatings. The nonlinear dependence of ¢cir on time
points out the existence-of modulation of the phase angle of the complex instantaneous
frequency.

(1.17)
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3. Results of calculations of the beat changes

For the analysis of physical properties of the two-tone beatings, the formulae derived

in section 2 were used in the numerical calculations. The outcome of these calculations,
obviously limited to a few selected parameters of the beatings, present some cognitive
value, and will be applied in Part II of the present study in the interpretation of results
of the investigation of perception processes.

In Fig. 1, envelope changes e(t) (normalised to unity) (a), changes of the real part

of the complex instantaneous frequency Re CIF (t) (b), and the imaginary part of the
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Fig. 1. Basic temporal relations for beating sinusoids of the lower frequency fr = 1000 Hz and the
frequency difference of 10 Hz for the complementary pairs SH — stronger high and SL - stronger low
(see text); (a) the normalised envelopes, (b) the real parts of the Complex Instantaneous Frequency,
(c) the imaginary parts of the Complex Instantaneous Frequency diminished by fr. (SL - amplitude

ratio 0.5 (solid line), amplitude ratio 0.1 (dashed line)), (SH - amplitude ratio 2 (solid line), amplitude

ratio 10 (dashed line)).
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complex instantaneous frequency changes Im CIF (t) (c¢) diminished by f;, = 1000Hz,
the lower tone frequency; are shown. The frequency difference of the beats signal equals
10Hz, the ratio of the amplitudes § with SL marks is 0.5 (solid line), 0.1 (dashed line),
whereas those marked with HL are § = 2 and 10 (solid and dashed lines, respectively).
Thus, the situations discussed here, i.e. when § < 1 and § > 1 (or § = 1/4), refer to
the two complementary pairs of signals which were labelled earlier SL (6 < 1) and HL
(6 >1).

The following conclusions can be drawn from the discussion of the plots in Fig. 1:

e variations of the imaginary part of the complex instantaneous frequency (Fig. 1c)
exhibit a symmetry with respect to the arithmetic average of the two frequencies of the
beating components SL and SH, both for small and large magnitudes of 4,

e at § = 0.5 (with the pair denoted SL) and at § = 2 (with the pair marked
SH), the variations of the imaginary part of the complex instantaneous frequency are
non-symmetrically displaced from the frequency f;, for 4 < 1 and from the frequency
fr = fL + 10Hz for § > 1; respective (see also [3]) average values of these variations
equal fy and ff,

e the changes of the amplitude envelope (Fig.1a) are identical for the two comple-
mentary pairs of signals SL and SH; the minimum of the normalised amplitude envelope
curve is 0.818 for 6 = 0.1 (both SL and SH) and 0.33 for § = 0.5 (SL and SH),

e identical changes of the amplitude envelope lead to identical variations of the real
part of the complex instantaneous frequency (Fig.1b) of zero mean value; it does not
depend on which pair of signals, SL or SH, is discussed,

e at § = 0.1 with the SL pair and § = 10 with the SH pair, the graphs of all the
functions presented in Figs. 1b and 1c look like sinusoidal curves, i.e. they oscillate more
or less around fr at 6 < 1 and fy = fr, + 10Hz at é > 1,

¢ at the moments corresponding to the maximum value of the envelope amplitude,
the magnitudes of the imaginary part of the complex instantaneous frequency (Fig. 1c)
reach a maximum for the SL pair and a minimum for the SH pair.

4. Weighted changes of the frequency envelope

The concepts of amplitude-envelope weighted or squared envelope weighted signal
frequency variations, is widely used, mainly in studies concerning the perception of the
sounds in which changes of amplitude and frequency coexist. FETH et al. [4] proved a con-
siderable correlation between the perceived pitch of the beatings and envelope-weighted
average of instantaneous frequency (EWAIF). Next, ANANTHARAMANN et al. [1] pro-
posed that the application of sound intensity (correctly: squared envelope) variations
(IWAIF: Intensity- Weighted Average of Instantaneous Frequency) as a weighting func-
tion for evaluation of the pitch for beatings yields better accord with subjective in-
vestigations. IWAMIYA et al. [6, 7] used the signal envelope function to weight the in-
stantaneous frequency variations in the determination of the so called principal pitch
of sounds which were-simultaneously amplitude and frequency modulated; a model for
the vibrato achieved by musicians during instrumental performance was achieved in this
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way. The comparison of Figs.1a and 1lc shows also that the instantaneous frequency
variations taking place in the vicinity of maximum of beating§ amplitude has a more
pronounced effect on the perception of the pitch than those occurring within the inten-
sity minimum. From the perceptual point of view, these problems will later be discussed
more thoroughly in Part II.

On the frequency axis, the envelope weighted average of instantaneous frequency [1,
2] defines the coordinate of a centre of gravity of the figure set out by the signal spectrum
which, in the time domain, can be determined from the formula

t
[ et
EWAIF =20 (1.18)
e(t)dt
0
where e(t) is the amplitude envelope (weighting function) and f(t) describes the fre-
quency variations. For periodical changes of amplitude and frequency, the upper bound
of integration ought to be made a multiple of the period of these changes. Similarly,

the squared envelope (intensity) weighted average of the instantaneous frequency can be
defined with [1, 3]

t
f e*(t) f(¢) dt
f e2(t) dt
0

Some problems may arise, when attempting numerical calculations with the formulae
(L.18) and (L.19), for instance, when the envelope amplitude approaches the zero value
(two-tone beatings of amplitude ratio close to 1). For this reason ANANTHARAMAN
[1] recommends a spectral method of the calculation of EWAIF and IWAIF. Given a
preset resolution of analysis, the spectral method, however, is accurate only for large
frequency separations of the two tones of the beatings. The error may be significant
when these separations are small. The usage of the spectral method may be attributed
rather to the wide availability of FFT algorithms. Investigation of the time evolution
of the frequency f(t) requires a demodulation of the signal frequency, involving the
calculation of the Hilbert transform; the latter is not so easily available and so popular
as the Fast Fourier Transform, FFT. From the perceptual point of view, not only the
spectrum of the beatings, but also the pattern of the time variations of the instantaneous
frequency is important.

The functions defined by Eq.(I.14) and illustrated as examples in Fig.1 are neces-
sary if the two weighting representations of the beatings, (1.18) and (1.19), have to be
determined. For the appropriate complementary pairs of signals SH and SL the beatings
envelopes are identical, whereas the frequency variations are described by distinctive
functions. Also, it is of importance which function will be adopted for the description of
the frequency dependence on time f(t). For signals of constant amplitude and variable
frequency, for example for FM signals, f(t) describes directly the variations of frequency
effected by the modulation process. However, if the signal, for which the weighted values
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of instantaneous frequency are to be evaluated, exhibits both envelope and frequency
variations, like the beatings, the formulae (I.18) and (1.19) have to be modified by the
frequency function expressed through the changes of the frequency envelope (I.14).

In order to demonstrate the importance of the frequency envelope variations in eval-
uating the weighted values defined by (I1.18) and (I.19), the two quantities (normalised
through dividing by Aw) were calculated as a function of the amplitude ratio of the
two components SL and SH of beatings in the < 0.5,1 > and < 1,2 > ranges, respec-
tively. Later in the text, we shall refer to the normalised values of EWAIF and IWAIF
as NEWAIF and NIWAIF. They are shown subsequently in Figs. 2-4 with the frequency
fr = 480Hz and the frequency difference Af = 40 Hz.
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Fig. 2. Normalised (divided by beating tones frequency difference) envelope weighted average
of instantaneous frequency - NEWAIF and squared envelope (intensity) weighted average of
instantaneous frequency — NIWAIF versus amplitude ratio of the beating sinusoids. Numerical
calculations for frequency changes resulting from the relative envelope changes only (Eq. (I.20)).

In Fig. 2 there are plots of the normalised envelope weighted average of the instan-
taneous frequency and of the normalised intensity weighted average of instantaneous
frequency vs. 4, i.e. vs. the ratio of the two amplitudes; the frequency changes are linked
to the changes of the amplitude envelope of the beatings via the formula:

5 A 2
s =[BT B ] S f i a20)

Thus, in the plots of Fig: 2 only the real part of complex instantaneous frequency (I.13)
was accounted for, while the imaginary part was omitted. One may see from these plots
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that both relations reach maximal values at § = 1 (largest modulation depth of the
beatings). It is also interesting that for the complementary pairs of the signals SL and
SH these functions display the same values (parity).
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Fig. 3. Normalised (divided by beating tones frequency difference) envelope weighted average
of instantaneous frequency - NEWAIF and squared envelope (intensity) weighted average of
instantaneous frequency — NIWAIF versus amplitude ratio of the beating sinusoids. Numerical
calculations for frequency changes resulting from instantaneous frequency changes only (Eq. (1.21)).

Figure 3 displays similar dependencies, but this time the changes of the frequency
are determined according to the formula

i SAf(cos(2mAft) + 4) 2
= \/[1 F 82 1 20cos(2nlft) | ff —f. (L21)

In this case only the imaginary part of the frequency envelope (I.13), usually referred to
as instantaneous frequency IF(t), (Eq. (1.7)), was accounted for. The coordinates of the
point, with respect to which the symmetry may be discussed, can be set at 6 = 1 on
the abscissa and at NEWAIF (NIWAIF) = 0.5 on the ordinate. The following relation
is valid: the magnitude of NEWAIF and NIWAIF for the pair denoted as SH equals 1
minus the value of NEWAIF and NIWAIF for the pair denoted as SL. At § = 1, thus
when the amplitudes of the two signals are equal (SL = SH), both functions amount
to 0.5, i.e. the resultant frequency yields f; + 0.5Af which corresponds to arithmetic
average frequency of the two component signals of the beatings. The functions describing
the graphs displayed in Fig.3 are odd with regard to the argument § = 1.



SYMMETRY AND ASYMMETRY AS A FEATURE ... PART 1 61

T L N B | T
1.0
09} -
W 08 -
<
= 0.7 —
5
% 06 -
05F ~
§ NIWAIF
8 04 -
ZE 0.3 .
02 -
NEWAIF
0.1 -
0 b =
' ' ' ' 1 I |
0.5 0.7 09 1 1.2 1.5 2

Amplitude ratio &

Fig. 4. Normalised (divided by beating tones frequency difference) envelope weighted average
of instantaneous frequency - NEWAIF and squared envelope (intensity) weighted average of
instantaneous frequency — NIWAIF versus amplitude ratio of beating sinusoids. Numerical
calculations for frequency changes resulting from frequency envelope changes (Eq. (1.22)).

Next, similarly to the plots of Figs. 2 and 3, the complete formula f(¢) for the changes
of the frequency envelope, i.e.

) = [ dAfsin(2mA ft) ]2 [ SA f(cos(2m A ft) + 8)
V(1482 + 20 cos(27Aft) o 1+ 62 + 2§ cos(2wA ft)

2
+ful =fr, (L22)

was employed to produce the dependencies shown in Fig. 4.

The appearances of the graphs in the Figs.3 and 4 are identical. A detailed analysis
of the numerical data points out certain differences, especially in the vicinity of § = 1.
The crossing point of the two curves, NEWAIF(d§) and NIWAIF (), is slightly shifted to
the left from the value § = 1, whereas the magnitudes of the two functions are less then
0.5. With the amplitude ratio d equal one, both the normalised functions exceed 0.5.

Hence, following the results of calculations, an asymmetry of the NEWAIF () and
NIWAIF(4) curves occurs with regard to § = 1. Till now, at the special point § = 1
NEWAIF and NIWAIF were believed to be exactly equal to an average frequency of the
two beating tones (normalised functions equals 0.5). The observed asymmetry results
from taking into account the real part of the complex instantaneous frequency. Let
us take a closer look at the dependence of NEWAIF and NIWAIF on the frequency
separation Af of thetwo tones. Figures 5 and 6 show the results of calculations of the
two functions NEWAIF(A f) and NIWAIF(A f) performed for the frequency variations
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weighted with the complete frequency envelope contour (1.22). In the two figures f; =
500Hz and Af varies from 1Hz up to 500Hz. The graphs in“Figs.5, 6 and 7 were
obtained with § = 1, 0.5 and 2, respectively.
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Fig. 5. Illustration of the NEWAIF and NIWAIF changes as function of the frequency difference
between the beating sinusoids. The frequency changes for calculations are taken from Eq. (1.22).
The lower frequency is constant and equals 500 Hz. The amplitude ratio of two components § = 1.

If there was a full symmetry for the data illustrated in Fig.5, then the values of
NEWAIF and NIWAIF should be constant and equal to 0.5, independent of the magni-
tude of Af. Similarly, for the data presented in Fig.6 and Fig. 7, the values of EWAIF
and IWAIF would not be related to Af and correspond to the appropriate ordinates
read at the lowest range of frequencies (here, Af = 1Hz).

The graphs in all three Figs. 5, 6 and 7, illustrate the essential problem often disre-
garded in the context of acoustic waveforms: the problem of a narrow band property of
signals. The narrow band signal, in the case of beatings, is a signal for which Af/fy <« 1,
whereas the broadband criterion is the similarity of the magnitudes of the frequency dif-
ference Af and of the lower frequency of the complex signal, i.e. Af/fr ~ 1. Figures 5,
6 and 7 demonstrate that a significant effect of the real part of the complex instanta-
neous frequency on the frequency envelope is observed when the beatings do not obey
the narrow band condition (this can be extended to other signals, too). It remains an
open question, if the mathematically correct calculations of the envelope and squared
envelope averages of the instantaneous frequency values would, in the entire A f range,
match the subjective impression of the pitch. Eventually, these values are intended for
the evaluation of the latter.
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Fig. 6. Illustration of the NEWAIF and NIWAIF changes as function of the frequency difference
between the beating sinusoids. The frequency changes for calculations are taken from Eq. (L.22).
The lower frequency is constant and equals 500 Hz. Amplitude ratio § = 0.5.
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Fig. 7. Illustration of the NEWAIF and NIWAIF changes as function of the frequency difference
between the beating sinusoids. The frequency changes for calculations are taken from Eq. (1.22).
The lower frequency is constant and equals 500 Hz. Amplitude ratio § = 2.
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5. Discussion

From the calculations which employ the concept of analytic signal, it follows, that
there is a symmetry in the graphs of instantaneous frequency variations IF(t) with re-
spect to the average value of the two-tone beatings frequency (compare Fig. 1c). However,
for both the SL and SH signals, instantaneous frequency variations exceed and, in case
of § = 1, go well beyond the frequency range delimited by the Fourier transform of the
beatings. Such variations of frequency are viewed as a physical paradox by LOUGHLIN
et al. [9] and he postulates a physical condition according to which the instantaneous
frequency changes should not surpass the width of the Fourier spectrum of the signal.
Changes similar to those depicted in Fig. 1c Loughlin describes as erratic. Though his
suggestions and postulates perhaps deserve a special and careful study, they are not in
accord with the earlier findings of JEFFRES [8], i.e. they contradict the experimentally
observed frequency differences of isolated portions of the beating signals. Loughlin’s idea
of the physical limitations imposed on beating frequency variations remains closer to the
perception of these kind of signals because it concerns the weighted average frequency
of the two tones. In the section of [9] devoted to the phase of the variable amplitude and
frequency signal, LOUGHLIN correctly observes that two components of the phase have
to be considered, i.e. ¢, the derivative of which yields the instantaneous frequency IF,
and @4 effected by the amplitude envelope changes (see also RUTKOWSKI [13]). Such
an approach was also adopted in the present study (Eq.(I.9) and (I1.10)) and the fre-
quency patterns, resulting from the changes of the amplitude envelope, are displayed
in Fig. 1b.

Normalised curves in Fig. 2 reveal that the changes of the amplitude envelope alone
may cause a pitch shift of the same amounts for the complementary pairs of beating
signals (symmetry). The largest frequency shift occurs when the two tones of the beating
signal are of identical sound pressure level; then the rate of changes of the amplitude
envelope is the highest. The occurrence of these frequency shifts, due to the changes of
the amplitude envelope, has already been reported by HARTMANN [5] and ROSSING et
al. [11].

If we limit our discussion of the amplitude envelope weighted changes of the fre-
quency envelope to its imaginary part only, (IF) — Fig. 3, then for § = 1 the normalised
EWAIF and IWAIF will become equal to 0.5. This means that the frequency will be
the arithmetic average of the components of the beats. This was presumed, among
others, by FETH et al. [4] and DaI [2], who have employed this kind of signal as an
“adjustable signal” in their investigations of the sound pitch perception. However, tak-
ing into account the complete form of the frequency envelope (1.22), we found that at
d = 1 the magnitudes of the normalised EWAIF and IWAIF are larger than 0.5 (Fig. 4).
The existence of such displacements or shifts of the normalised functions magnitudes
proves that the narrow band criterion is only partially satisfied by the beatings (com-
pare Fig. 5). These shifts occur also with other values of the amplitude ratio (compare
Figs.6 and 7) and ought to be considered every time when the condition f7 3> Af is not
fulfilled.
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6. Conclusions

Summing up the above analysis of physical features of beatings, it can be stated that
the signal variability is mainly described by two functions: the amplitude envelope (1.5)
and the frequency envelope (I.14). As the amplitude envelope, or its square, is directly
related to the changes of the signal sound pressure level, the frequency envelope tells us
the rate with which phase variations occur as well as the relative speed of the amplitude
envelope variations. Both the rate of phase variations and the relative rate of the envelope
changes exhibit the same dimension-frequency. Association of the time evolution of the
amplitude envelope of beats and the variations of the frequency gives evidence (see Fig. 1)
that at values of the amplitudes ratio approaching 1, the frequency variations occurring
near the maximum of the amplitude envelope ought to be estimated more consequently
than those in the vicinity of the envelope minimum. In the light of this finding, the
concept of two sets of values, the envelope and squared envelope weighted averages
of instantaneous frequency, appears to be correct and entirely justified. The performed
analysis indicates, however, that it is not trivial which form of the frequency variations is
used in the calculations. Using the so called complete formula for the frequency changes,
i.e. the enveloped frequency (I.14), leads to the evidence of asymmetries (Fig.4) in the
course of the normalised EWAIF(4) and IWAIF(6) curves.

The above conclusions are quite general and may be applied to analysis of changes
of the frequency envelope of arbitrary signals, featuring concurrent variations of am-
plitude and frequency envelopes known as MM (Mixed Modulation) or CM (Combined
Modulation).

In the analysis of beatings, due attention has to be paid to narrow-band and/or
wide-band aspects of signals that are important in the question of symmetry or asym-
metry of the complementary pairs of two-tone complex signals. As demonstrated in
section 4, when the distance between the beating components increases, the trend of the
variations of the frequency envelope is to an increasing extent controlled by the rate of
changes of the amplitude envelope (the real part of complex instantaneous frequency).
The above statement also holds for other signals, not only for the beatings.

Unfortunately, it is not possible to establish the exact border between narrow-band
and broad-band signals. Consequently, it must be accepted that each signal (this con-
cerns especially the acoustic signals) with time-varying parameters always exhibits some
departure from the narrow-band criteria. When determining the attributes of the signals
variability, one ought to use the function which describes the frequency envelope of a
sound. It is this function which permits to establish to what extent the narrow-band
attribute determines the signal variability.
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