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Since the non-stationary fluctuation of actual acoustic environment like the road traffic
noise within a long time interval is usually caused not by the change of merely additional
external noise but by the essential change of internal factors themselves, it is reasonable
to give as a mathematical model of this non-stationary fluctuation not an additive model
but a multiplicative model. In this paper, mainly from a methodological viewpoint, first,
the characteristic function method of Mellin transform type for the above multiplicative
model is introduced and a new unified expression form of the probability density function
within a long time interval is derived in an expansion form based on the probability density
function within a short time interval of local stationary type as its first expansion term
with distribution parameters reflecting hierarchically various types linear and nonlinear
correlation information.

1. Introduction

In the actual road traffic in a big city, many kinds of cars run on the roadway. Then,
many traffic factors, such as the number of cars, the mixture ratio of various types of
car, the headway interval between successive two cars and the power level fluctuation
of each car are statistically invariant in an average style within a short time interval
but fluctuate non-stationarily within a long time interval. Therefore, within a long time
interval, the measured sound wave of road traffic noise fluctuates randomly, multiformly
and non-stationarily. Accordingly, for its noise evaluation, it is important to find the
probability distribution form of noise fluctuation directly connected with the evaluation
index L, ((100 — =) percentile) often employed in the actual evaluation of road traffic
noise not only within a short time interval but also within a long time interval. In this
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paper, from the above viewpoint, a new evaluation method is proposed to predict the
probability distribution form of the traffic noise fluctuation within a long time interval
based on the one within a short time interval of locally stationary type.

First, the theoretical model of the relationship between the sound wave of the traffic
noise within a long time interval and the one within a short time interval should be con-
sidered. Since this non-stationarity is originally evaluated as the relative change from a
basic stationary fluctuation, it is first noteworthy that the property of non-stationarity
can not appear without the existence of original basic traffic flow itself. That is, because
this non-stationarity comes not from an addition mechanism of external factors (for
example, any background noise) but from the temporal fluctuation of internal factors
within a long time interval, which are statistically invariant (i.e., locally stationary) on an
average within a short time interval, it would be reasonable to employ the multiplicative
model rather than the additive model as a temporal fluctuation of this non-stationary
traffic noise. After all, mathematically, for such actual non-stationary phenomena, the
mutliplicative model is considered as the central subject of this study and a new unified
theory of evaluating the probability distribution is given by introducing the charac-
teristic function of Mellin transform type, especially from a methodological viewpoint.
More concretely, the objective probability distribution of non-stationary traffic noise
fluctuation within a long time interval is expressed in a hierarchical expansion form by
taking the probability distribution of local stationarity within a short time interval, of
which expansion coefficients reflect concretely the non-stationary statistics (i.e., linear
and nonlinear correlations of higher order) in the form of relative change from the basic
fluctuation within a short time interval for mixture ratio of car type and number of cars
(see Appendixes I and II).

Finally, the effectiveness of the proposed method is experimentally confirmed too by
applying it to the actually observed data of non-stationary road traffic noise fluctuation.

2. Theoretical consideration

2.1. Modelling of non-stationary road traffic noise

Let us consider the traffic noise problem caused by cars moving along two lanes. As
is well-known, the instantaneous A-frequency weighted sound intensity E generated by
many cars running on the roadway can be expressed theoretically as follows [1, 2]:

n1 nz
E =Y Wiif(d,8) + Y Waif(dai8), (2.1)

i=1 i=1
where Wy; — A-frequency weighted sound power of the i-th heavy car, Wa; — A-frequency
weighted sound power of the i-th light car, n; — number of the heavy cars, ny — number
of the light cars, f(d;i,§) — sound propagation characteristic reflecting surrounding en-
vironmental factors, d;; — distance between sound source (i-th car of the j-th type) and
observation point, § — internal factor except dj; in the sound propagation characteristic.
From now on, although dj; depends on the lane, we assume that dj; in each lane
is identical (see Appendix III). Here, since the sound level meter with a time constant
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in the actual measurement gives some averaging effect and the purpose of this study
is originally the stochastic evaluation of non-stationary fluctuation within a long time
interval, by taking an expectation of Eq.(2.1) within a local time interval under the
assumption of local stationarity, binomial distribution assumption for number of heavy
cars, n1, and number of light cars, ne, with mixture ratio of the heavy car, 6;; and
mixture ratio of the light car, 82, (6, + 62 = 1), and Poisson distribution assumption for
total number of cars, n (= ny + n2), with its mean value N in an observed interval, the
mathematical macro-model within a long time interval is first derived [2, 3]:

(E) = N (61(W1i){f (d1,0)) + 62(Wai)(f(d2,9))) » (2.2)

where { )} denotes an average operation within a local time interval and d; instead of
dj; is employed since dj; (¢ = 1,2) are mutually independent and distribute in the same
form. Especially from the above macroscopic viewpoint, the strict stationarity within a
local time interval is not necessarily needed (see Appendix I). It is natural that within a
long time interval, not only N and 6; but also (W;) and {(d;, §)) would fluctuate owing
to non-stationary property of internal factors [4]. Next, by choosing an adequate local
time interval as a standard time interval of local stationarity and using a mean value of
total number of cars, Ny, and mixture ratio of car types, 6,;, Eq.(2.2) is rewritten as
follows:

N 61 (W) + 62(Wai)
No 001 (Whi) + Oo2(Wai)

= LI o (Wi £(dr. ) + Ooa(Wai) (F(d2.0))), (23)

(E) = « No (801 (W1i)(f(d1,0)) + Bo2(Wai)(f(dz2,9)))
~ Nobo1 + bo20

where a = (Wa;) /(W)
Here, the term (f(d;,d)) is eliminated since d; and d; are independent and distribute
in the same form. Now, after defining new stochastic variables Z, X,U; and Us; as

Z = (E), X = No(Oo1 (W1i)(f(dy,0)) + bo2(Wa:)(f(d2,0))),

2.4

s _ N Gt @4
TNy >~ 801+ bo2a’

we can have directly the following multiplicative model with three stochastic variables [5]:

Z= U]UgX. (25)

By corresponding X and Z to the local stationary traffic noise and the non-stationary
traffic noise, respectively, this model relates a local stationary traffic noise within a short
time interval to the non-stationary one within a long time interval.

2.2. General representation of probability distribution of multiplicative model with
stochastic multi-variables

Now, by mathematically generalizing Eq. (2.5), the following multiplicative model
with stochastic multi-variables is considered:

Z=UU,...UnX, (2.6)
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where Uy,Us,..., Uy and X are arbitrary random processes fluctuating only within
a positive amplitude region and mutually correlated each other. Here, let us derive the
probability distribution expression of the stochastic process described by Eq. (2.6). Using
the joint probability density function P(Z, X,Uy,...,Un—1) of Z, X, Us,...,Unp—1 we
have the marginal probability density function P(Z) of Z from its definition as

P(2) =][.../p(z,X,Ul,...UM_l)dXdUl...dUM_l. 2.7)
0 0 0

By denoting a joint probability density function of Z and X conditioned by Uy, ..., Un—1
by P(Z,X|Ui,...,Upm—1), and a joint probability density function of Uy,...,Upy_1 by
P(Uy,...,Up—1), Eq.(2.7) can be rewritten in the form:

P(Z)=IZJ ]o P(Z,X|Uy,...,Un-1)

PUy,...,Up=1)dXdU; ...dUp—y . (2.8)

Here, from the probability measure-preserving transformation, it follows that

(Un, X
P(Z, X|Uy...Uv—1) = P(Um, X[U1 ... Up-1) {g(;x))‘
_ PUm, X|Us...Un- 1)
- XUy...Upy— (29)

Substituting Eqs. (2.6) and (2.9) into Eq. (2.8), we have

_/[ fP(Ul,...,UM_l)
i B RS N T
0 0
i
'P(XUL..UMH’

X|U1,...,UM_1) dXdU, ...dUp—1 . (2.10)

Furthermore, from the following fundamental relationship of probability [6]:
P(UM,X|U1 e UM__'[) = P(UM]X, U]_ e UM_l)P(XlUl v -UM-I)-» (211)

Eq. (2.10) becomes

P(2) :ff / b UM L P(X|Uy,...,.Un-1)
0 0

M-1

oty ] ST NN o ST SO0 I 5 R | R v
P(XUl...UM_ll ! o 1) : -4 (2.12)

Here, for the probability density function f(z) of random variable X, let us introduce
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the characteristic function of Mellin transform type [7, 8, 9] defined by

(e o]

Ma(s) = m{f@)} = [ (@) da.
0
Applying the above characteristics function to P(Z), we have

o= [ [ ()™

Z

dz
] TN ] VT TN SR, .
(XUl...UM_ll Uy ot 1) XUl...UM_l]

XUy ... Up—1)* YP(X (U, ..., Up=1) P(Un, .. .Up—1) dXdUy ... dUp—1 -

If we denote that

e 7 s—1
Muy (61X, Us, . Un) = | (m)
0

zZ
Pl
(X Ur...Um-1
then Eq. (2.14) is rewritten to

& Uypeans Unp

:/[.../(XUI...UM-})B—IMUM(Slx,Ul,...,UM_l)
00 0

P(X|Uy,...,Un-1)P(Us,...,Un_1)dXdU; ...dUn-1 -

With the use of the fundamental relationship of probability:
P(X|Uy, . . Un=1) P(Us, . . Upg1) = PLEX B, Upesa)

= P(UM—llXaUla"'7UM-—2)P(-‘YaU11---yUM—E)L

we have from Eq. (2.16)

=/[...O/(XU1...UM_2)"1

0

[/Usml P(Upm-1|X,Uy,...,Up-2) My, (s|X, U, ..., Up-1) dUpm—1

P(X,Ul,...,UM—2)dXdU1 ...dUM__z .

dz
i

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

After repeated applications of similar mathematical procedures for Eq. (2.18) and em-

ploying the fundamental relationship:
P(X,U,...,Un-j) = P(Um—;|X,U1,..., Um-j-1)

P(X:Ula-'-;UM—j—l)a (j=21-"}M_1)v

(2.19)
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we can obtain (see Appendix IV)

Mz(s) =/X““1PX(X) /Uf‘lP(UllX) {..,[/U;;_IIP(UM_11X,U1,...,UMz)
0 0 0

- My, (s| X, Ul,...,UM_l)dUM_I] ] dUl] dX.  (2.20)

Now, for the purpose of finding an explicit expression of P(Z) from Eq.(2.20), let us

expand My,, (s|X,U,...,Up-1) ina Taylor series around s = 1 as
o0
MUM(8|X3 Ula'-'aUM—'l) - Z AiM(X}Ul'n"';UM—l){S - 1)'M (221)
ip=0

Substituting Eq. (2.21) into Eq. (2.20) and changing the order of the integration and the
summation, we have

Mz(s) = /X"‘PX(X) [[Uf“P(UﬂX) [
0 0

00 oo
[Z (S—l)iM/UH}IP(UM_le,Ul,...,UM_z)
0

ipr=0
'A'iM (Xa U11 s, }UM—I)dUM—ll e :| dUl} dXo ) (222)

where, after denoting an average operation of random variable U, conditioned by
X,Up,y...,Un-1 as ( |X,Un,...,Um-1)v,,, the expansion coefficient can be expressed

1 .
Ay, (X,Uy,...,Um~1) = ”T!((IIIUMyMlX’Ula--'aUM—l)UM : (2.23)

After employing the Taylor series expansion around s = 1 in each integration of Ups_4
(t=2,...,M —1), we obtain (see Appendix V)

Mz(s) = 2 _ZO- > _Z_O(s — 1At m{ A g (X)Px (X)), (2:24)

where

1
Ai,‘ig...iM(X) = [

irlia! .. in
A((InU1)*((InUz)™ .. ((InUm)™|X,Us,...,.UM-1)up - 1 X, Ui X )y, - (2:25)

Here, using the fundamental relationship of the Mellin transformation [9, 10]:

(16 - 0rmr0) =m{ (x) 10}, (226)
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we can obtain the unified expansion expression of the probability density function from
the inverse Mellin transformation of Eq. (2.24) as

P(Z)= Z Z Z (—1)irtinttin

11=0 i9=0 ip =0

d i14ia+...Fipg

where Aj,i,...ip, (X) is given by Eq. (2.25).

As stated in Sec. 2.1, the road trafic noise intensity can be described by Eq. (2.5) and
then, from the Eq. (2.27), we can express the objective probability density function of Z
within a long time interval as

oo oo ; ; d i1+1i2
P(Z) = Z Z(_n 1 iz (5{") {Aiia (X)Px (X)} | 4z » (2.28)
i1=0 t2=0

where ) )
{(InU1)"((In Uz)"2|X, Ur)u, | X ) v

17 1g!

Aiin(X) =

(2.29)

3. Experimental consideration

The actual road traffic noise has been observed on a national road in suburbs of
a big city and the proposed method has been applied to the problem of predicting
the probability distribution form directly connected with noise evaluation indexes L,
(z = 50,5,95,...) for the non-stationary traffic noise level fluctuation within a long time
interval based on the local stationarity.

In this experiment, the sound noise level has been measured at every five second
interval over four hours and forty minutes by using a digital sound level meter under the
actual situation as shown in Fig. 1.

45m 45m

e e

Hiroshima —#

7.5m

«@l— Yamaguchi

8m

@ Observation point

Fig. 1. Measuring situation of road traffic noise.
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Before computing Eqgs. (2.28) and (2.29), we have chosen five seconds, as the basic
local time interval in this experiment, according to the usual type measurement in a
JIS standard [11]. Then, the probability density function Px(X) within a short time
interval of locally stationary type for a road traffic noise could be approximated with a
logarithimic normal distribution [12]:

e {2 ‘“)2} (X >0),

Px(X)={ v2mcX 202 (3.1)
0 (X <0),

2
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Fig. 2. A comparison between experimentally sampled points and theoretically predicted curves (see
Eqgs. (2.28) and (3.3)) for the cumulative probability function and the deviation explicitly reflecting
the effect of non-stationarity from the local stationarity for the road traffic noise fluctuation within
a long time interval under the assumption of independence between Uy and Us in Eq. (3.3).
Experimentally sampled points are marked by (e) and theoretical curves are shown with degree of
approximation i1 + g [i1 +i2 =0 (—), i1 +i2 =1 (-~--), 1 +i2 =2 (- + -), i1 +i2 =3 (- -+ )
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where two distribution parameters g and o have been determined by employing the
well-known method of moment as follows:

T = X,

(3.2)
0'2 U2
et (e - 1) = (X = (X))2).
Clearly, U; and U, are independent of X, hence Eq. (2.29) reduces to
((InUy) (In Us)'2)
Ay (X) = e (3.3)
11:12:
=
2
e
a9
2o
E
E
=1
O
8
g
%
o
-0.5
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L, (dB)

Fig. 3. A comparison between experimentally sampled points and theoretically predicted curves (see
Egs. (2.28) and (3.3) for the cumulative probability function and the deviation explicitly reflecting
the effect of non-stationarity from the local stationarity for the road traffic noise fluctuation within
a long time interval under the assumption of mutual correlation between Uy and Uz in Eq.(3.3).
Experimentally sampled points are marked by (e) and theoretical curves are shown with degree of
approximation i + 42 [i1 +i2 =0 (—), i1 +i2 =1(---), i1 +iz=2 (- » =), i1 +i2=3 (- » - )].
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We have calculated the theoretical probability distribution under the following two as-
sumptions: i) U; and U, are statistically independent, ii) U/; and U, are statistically
correlated. Figure 2 shows a comparison between experimentally sampled points and
theoretically evaluated curves for the cumulative probability function and the deviation
from the first expansion term of local stationarity under the assumption that U; and Us
are independent. Figure 3 shows a comparison between experimentally sampled points
and the theoretically evaluated curves of the cumulative probability function and the
deviation from the first expansion term of local stationary type under the assumption
that U; and U, are statistically correlated. In both cases, the theoretical probability
distribution curves agree well with experimental results but the latter case gives slightly
better result than the former.

4. Conclusion

The random fluctuation observed in the actual living environment shows usually
nonstationarity since even though within a short time interval, the internal factors are
statistically invariant, they fluctuate temporally within a long time interval. In this
paper, by considering the fluctuation due to a temporal change of internal factors with no
additive external factors (like a background noise), the multiplicative model has first been
mathematically introduced. Next, by introducing the characteristic function of Mellin
transform type matched to this multiplicative model, a unified expansion expression for
the probability distribution of the sound fluctuation within a long time interval of the
non-stationarity has been derived.

Furthermore, by applying the proposed method to the actually observed data of a
road traffic noise, its actual effectiveness has been confirmed experimentally too.

Finally, in the proposed method, the influence of only the number of cars and the
mixture ratios of heavy cars and light cars is considered as internal factors. As future
problems, there remain the influence of the other internal factors such as weather and
so on. These can be considered after finding the concrete form of f(d,d).

Appendix I: Stochastic judgement on state transition from local stationarity
to nonstationarity

For an actual noise environment affected by several factors of nature, community
and human susceptibility or sensitivity, it is difficult to find accurately an internal law of
nonstationarity by means of a deterministic system equation such as differential equation.
In this case, exactly it may be said that there are no rationally optimal methods to
divide a whole nonstationary process into some intervals of local stationarity in the
actual environmental phenomena. Furthermore, it needs to construct some methodology
for predicting not only the lower order moments statistics (such as mean value and
variance) but also the higher order moment statistics and/or a whole probability density
function form from which any noise evaluation indices L, can be obtained.
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There seem to be two basic attitudes to deal with the above nonstationarity, from
bottom up and top down ways of viewpoint:

1. After extracting only the frame work of the objective random time series by
smoothing its various fluctuation patterns; a certain kind of time series model of ad-
ditive, multiplicative or mixed type is first introduced and then their parameters are es-
timated. Hereafter, all of discussions on the objective fluctuation pattern and/or stochas-
tic behaviour are given in various ways on the basis of the above artificial time series
model, even in a special case of evaluating the end of its probability density function
curve.

2. Whenever the internal law of the object process is known or unknown, first
one introduces a universal framework of probability distribution expression, which can
minutely deal with the arbitrariness of various random fluctuation and its possible fluc-
tuation pattern itself. Then, the discussions are developed in the extent of its universal
framework.

Furthermore, the above two attitudes can be illustrated by two methods of evaluation
criterion deciding the interval length of local stationarity:

Case A: The evaluation criterion of non-stationarity based on the correlation method
by G.E.P. Box and G.M. JENKINS [13] and the evaluation criterion of semi-station-
arity function by M.B. PRIESTLEY [14] can be first introduced. In the former case, the
framework of autoregressive type time series additive model (e.g., AR or ARMA model
[15]) is first constructed. By employing the autocorrelation function of the data sequence
after difference operations of 0,1,2, ... orders, its correlative time can be used to decide
the order of time series. That is, this correlative time can be employed as the interval
length of local stationarity. In the latter case, after the idea of evolutionary spectra is
first introduced, then the non-stationary process X (t) is described by a multiplicative
model X (t) = C(t)Xo(t). By considering the frequency spectrum of only factor C(t) fluc-
tuating slowly with a lapse of time, the local interval of semi-stationary can be roughly
estimated by the reciprocal of its effective frequency bandwidth.

Case B: First, after focusing on the possible variety on fluctuation pattern of non-
stationary process, a universal framework of generalized probability density expression
(such as Gram—Charier (Hermite) series expansion type [16] or statistical Laguerre series
expansion type expression [17]) is introduced. The non-stationarity of the phenomenon
is reflected in each expansion coefficient of the above probability density expression.

As another method of deciding the interval length of local stationarity, this interval
can be set up in advance based on the engineering requirement, such as a JIS standard,
the actual measuring condition or the facilities for measurement.

In this paper, the main purpose of study has been focused on the following two
points:

1. To propose some theoretical guideline on how to evaluate the probability distribu-
tion for the state transition from local stationarity to non-stationarity of a whole process,
once after arbitrarily establishing the intervals of local stationarity.

2. To confirm experimentally the validity of the above theoretical method by applying
it to the actual environment.
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Appendix IT: Two complementary analysis methods for non-stationary stochastic
phenomena [18, 19]

As the analysis of non-stationary stochastic fluctuation, it can be very often seen
that the analysis is performed systematically based on the law of system dynamics as
seen very often in many stochastic systems theories, once after this dynamical law is
first established in the form of the time evolution form. However, the proposed method
in this paper based on some statistical series expansion is quite different from this usual
method.

In general, for the analysis of the non-stationarity property, the methods can be
classified contrastively in two types as follows:

I. If the system dynamics can be first represented in a form of some time evolution
form (for example, in terms of differential equation) by focusing on only the temporal
relationship among the successively processed state values at more than 2 time points,
it is usual to find systematically its whole solution in a lapse of time based on this
dynamical law. Let us call this a method A.

II. However, even in this method A, it is inavoidable for finding the complete solution
along a time axis to reflect aditionally the static state information such as an initial
state value, terminal state value and/or instantaneous state values at a particular time
point upon the above system dynamics in time axis. That is, to grasp completely the
objective phenomenon with a lapse of time, both informations of dynamic and static
sides must be considered inevitably. From this point of view, there can be proposed
the method of focussing on the static information side between the above two sides
which are typically contrastive each other. For example, first, one can establishe some
mathematical framework of the universal expression form with unknown parameters
based on the basic and obvious static information of state only at each time section.
Afterward, one must try to reflect concretely the dynamic characteristic of state on
these parameters in process of time. Let us call this a method B.

In comparison with the usual method A, the method B has distinctly the following
characteristic properties:

1. First, by neglecting the dynamical characteristic latent among instantaneous state
values in time succession, only the static information of instantaneous state values at
each time section is abstracted to analyze the objective phenomena by finding the ap-
propriate method such as the multivariate analysis. So, it has an advantage to find some
mathematical framework in the universal expression form which is not affected by the
system dynamical law in a time evolution form, even if this system dynamics is not given
in advance in a peculiar expression form. Here, it is no essential problem whether this
dynamical law is complex or not.

2. To analyze the various stochastic phenomena especially in a unified form, it is
inevitably necessary to employ some open style expression form rather than some closed
style expression form. For instance, as an example of the open style expression form, it
can be considered to employ the series expansion type probability expression with ap-
propriate number of distribution parameters. In this particular case, it has an advantage
that the objective stochastic phenomena can be investigated hierarchically and moreover
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it can be discussed in advance that what type of higher stochastic concept is necessary
and how mathematically it should be introduced.

3. In the method A, if the system dynamics is first given in the form of n-th order
differential equation, the infinitesimal quantities more than (n + 1)-th order must be
neglected even though they are latently necessary information. So, the optimality of
employing the above representation form becomes the first problem depending on how
the objective phenomenon is complicated and manifold. For example, in the first order
state vector stochastic differential equation with white noise input, sometimes the second
order infinitesimal quantities become some kind of problem and it is well-known that the
difference between Ito-type and Stratonovich-type stochastic differential equations comes
out. Anyway, it has surely an advantage that if employing the law of system dynamics
in the method A as a clue of analysis, some succesive and systematic procedure for
analysis planning can be easily designed and the algorithm for its calculation process
can be successively constructed. On the contrary, in the method B, instead of first
acquiring the universality which is independent of individuality of specific dynamical
law (proper to the objective system) in the time evolution style based on the system
dynamics, there remains the next problem on how to reflect this time evolution property
on the universal framework of static style introduced in advance. Generally, if any more
valuable information concerning to the state evolution progress of system dynamics can
be found, the present problem in the method B becomes undoubtedly definite more and
more by successively reflecting these constraint informations afterward.

Appendix III: Traffic low model in two lanes

In the main part of this paper, for practical use, a model transforming the traffic
flows in two lanes to the traffic flow in one lane equivalently is derived. Here, let us
derive more accurate model directly derived from traffic flows in two lanes. By splitting
heavy cars into ones moving along the first and the second lanes, n; = n} + n}*, and
heavy cars moving along the first and the second lanes ny = n3 + n3*, Eq.(2.1) can be
rewritten as

n n3 ni" nj
E =Y Wif(d,0)+ Y Wauf(d,8)+ > Wuf(d*,8)+ > Waif(d}*,0).

i=1 =1 i=1 i=1
By choosing an adequate local time interval as a standard time interval of local station-
arity in each line and using a mean value of number of cars, N, and its mixture ratio
of car types, B;j, for the first lane and a mean value of number of cars, Ng*, and its
mixture ratio of car types, ;;, for the second lane, the following macro model can be
derived:
N* 6f + 03a
e b se 3 (02 (Wi 1:0)) + 052 (Wai)(f(d3, 6
N(;- 951 +952a 0 ( 01< 1 )(f( 1 )) 02( 2 )(f( 2 )))

N** 01 +63%a

N5 05t + Oz

(E) =

Ng™ (061 (Whi){f(di”, 8)) + b3 (Wai){f (d37,0))) -
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After defining new stochastic variables Z, X*, U}, Uy, X**,U*, Us* as
Z = (E),  X*=Ng (05, (Wu)(f(di,0)) + 05, (W) (f(d3,6))) ,

. N . 0 +6a

AN TR g
X™ = Ng* (6o1 (Wu)(£(di”, 0)) + 63 (Wai) (£ (d37,0)) »
o1 0D o 0 +05a

SniniseoDig® 2 7 05 +053a’

the following model can be obtained:

Z =71+ 2y,
where
Zl —_ U;U—;X‘, Z2 — U;.U;‘X**.
Here, the probability density functions of Z;, Z are given by using Eq. (2.27). Since Z;,
Zy are statistically independent, the probability density function of Z can be obtained

as the convolution of the probability density functions of Z;, Z,. Since X*, X**, Z; and
Z5 cannot be confirmed, this model can not be confirmed experimentally.

Appendix IV: Derivation of Eq. (2.20)

Equation (2.20) can be derived by making use of Eq. (2.19) in the following way:

oo

M (s) =0/07'--07(XU1---UM—2)’_1

{/UHEIP(UM—dXle!'--1UM—-2)MUM(S|X,UI,'-'sUM—l)dUM—l]
0

«P(Upm—2|X,Uy,y...,Up—3)P(X, Uy, ..., Up—3)dXdU; ...dUp—o

- /f...f(XUl...UM_3)"1 !/Uj;_lzP(UM_ti,Ul,...,UM_3)
0.0 0 ]

[/Uj'\/_{__llp(UM-llXaUls-'-1UM-2)MUM(S|X|U1,---,UM—])dUM_]_:l dUM..sz
0

-P(Um—3|X,Uy,...,Un-4)P(X,Us,...,Un-4) dXdU, ...dUpm-3
=..= /Xs‘lPx(X) [/Uf"lp(U1|X) !

0 0

o
[/U;J__lZP(UM_ng, 1 [T UM_3)MUM(3|X, ' - UM_l)dUM._1] dUM..z] ] dU1:| dX.
0
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Appendix V: Derivation of Eq. (2.25)

From the definition of the expansion coefficient in a Taylor’s series expansion around
8 =1 of My,,(s|X, Uy, ...,Um-1), Aip, (X,U1,...,Upm—1) can be derived as follows:

1 dim

AiM (Xy U].) UM l) | dSIM

MUM(S[X Ul, UM_]_) dUM
=1
. oo ’
g P A U P(Um| X, Ury .o, Up—1) dU.
iM!dSiM M M{A, UVl UM-1 M

0 =1

(e o]
= 1 di s—1
! ds"MU P(Um|X,Uy,...,Un-1) dUnm

g=1
1 o0
= (InUp)™MUS P(Um| X, Us,y o, Unt—1) AU
M
0

=1

oo
1 : ] 2
= —I/(ln UM)lMP(UMIX, Ul,...,UM_l)dUM = KT ] ((ln UM)1M|X, Ul,...,UM_1>UM
iM! tM:
0

Next, let us define My,,_,, .. vy (81X, Uy, ...,Unm—2) as follows
Um (sIX=U11 UM—2)

o0
- [ VS PUM-11X, Uty oy Unt—1) Aiyg (X, Us,y ooy Untos) dUnt 1.
0

My,,_,up (8]1X,U1,...,Up—2) is expanded in a Taylor’s series expansion around s = 1
and its expansion coefficient is denoted as A;,,_, iy, (X, Ui, ...,Upm—2). The expression of
Aiy_yipg (X, Uy, ...,Um—2) can be obtained as follows:

Wisevtar (K olhs oo Uhaa)

1 dim-
"'M 1' dS'M 1

/U;/I 11"P(U'.M IIX Ul:-- Um- 2) "M(X Ul, UM 1)dUM 1

00 1
1 d* e
B /ds'M g UL P(Up=11X,Ury ooy U —2) Aiy (X, Uy ooy Upg—1) dUp—1

s=1
(= ]

(In Upg—1)™ U2 P(Unt=1| X, Us,y ooy Un—2) Ay (X, Uty -, Un—1)dUn -1

IM 1 s=1
0

1

im—1!

el O T e (I M D Ut D 1K, s D tn)

iM-1lin!

((anM )IM-1 4 (X, U, Un21)| X, Dhy vy UM—2)

Upr—1

Upm—1’
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By deﬁning MUM—zUM—lUM(‘ng’ Ul, ey UM_3), ey MUla-uUM—zUM—1UM (S|X) succes-
sively and denoting the expansion coefficient of their Taylor’s series around s = 1 as
Aips_sing—ying (X, Uny .. UM—3), ..., Aiyig...ip, (X), respectively, the above similar pro-

cedure leads to Eq. (2.25).
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