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IDENTIFICATION OF UNCORRELATED SOURCES OF EXCITING FORCES BY MEANS
OF THE METHODS OF CROSSPOWER SPECTRUM MATRIX DECOMPOSITION INTO
SINGULAR VALUES AND EIGENVALUES

J. KROMULSKI

Industrial Institute of Agricultural Engineering
(60-963 Poznan, ul. Starotecka 31, Poland)

The practical use of the method of the crosspower spectrum matrix decomposition into
singular values in problems of the identification of exciting force sources is discussed. These
methods were used to identify the sources of the exciting forces acting during the work of
a real mechanical system — a collecting press of high level crushing. The method allowed
to draw conclusions about the number of uncorrelated exciting forces acting in the system
and the points of the exciting force application.

1. Introduction

A commonly used method of identification the uncorrelated sources of exciting forces
is the method of square crosspower spectrum matrix decomposition into eigenvalues.
The analysis of the mutual relation between the principal eigenvalue spectrum and the
autopowers determined at each measuring points allows to make conclusion about the
number and places of the force sources application in the system. A similar diagnostic
application should have a method based on the analysis of the mutual relation between
the principal singular value spectrum, determined by decomposition of the crosspower
spectrum matrices into singular values, and the crosspower spectra. The application of
the method of decomposition of the crosspower spectrum matrices into singular values
allows to reduce the number of calculations. If there are several dominant exciting forces,
there is no need to determine all elements of the crosspower spectrum matrices; only
some chosen columns and rows should be determined.

In the paper, practical examples of the identification of uncorrelated sources of ex-
citing forces by means of the singular value decomposition method were presented.

In the following discussion SV (singular value) and SVD (singular value decomposi-
tion) will be used intensively.
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2. Mathematical bases of the procedures of separation of the uncorrelated components
from the reciprocal crosspower spectrum matrices

Some of the basic theorems of linear algebra are those describing the decomposition
of matrices into eigenvalues (Eq. (1)) and the decomposition of the matrices into singular
values (Eq. (2)). The theorem of the matrix decomposition [A]nxn into eigenvalues [4]
states that for each square matrix [A]nxn there is such a unitary matrix [U]nxn, that

VIR~ [Alnxn [Ulnxn = [Alvxn = diag (M1, ..., An) 1)

with: [U]nxn a unitary matrix containing in its columns the eigenvectors, [Alnxn a
diagonal matrix containing the eigenvalues in descending order. The following formula
can be derived from this theorem

[Alnxn = [Ulnxn [Alnxn [U]ﬁxN' (2)
The theorem of the singular value matrix decomposition [1, 2, 4] says that for each
[A]amx v matrix there are such unitary matrices [U]arxam, [V]vxn, that
[U) ¥ xae [Almxn [VINxn = [E]mxn (3)
where:
[E]MXN = dla'g (011021 ey Tpgly e ,aﬂ.)a
if the rank of matrices [A]pxn equals r, then

012022 ...0¢ a0d Brpiseiiyon =03 ¥ <ni

The o1, 02, 0, 0y numbers are unanimously defined and are called singular values of the
[A]mxn matrix. The columns of the [V]nxn, [U]mxm matrices are called sometimes
singular vectors of the [A]arx v matrices.

The following formula can be derived:

[A]MxN = [U]MxM [E]MxN [VHVIXN' (4)

The theorems mentioned above are used to determine the decomposition crosspower
spectrum matrices into eigen- and singular values. For a set of X; . n mechanical vi-
bration signals measured in a system (in the time domain) it is possible to compute
their characteristics in the frequency domain Gy xn(w) (crosspower spectra) achieving
a crosspower spectrum matrix. The crosspower spectrum is defined as the complex en-
semble average of the complex product of the conjugated 1-sided instantaneous spectrum
G7(k) and 1-sided instantaneous spectrum G (k):

Gij(k) = G} (k)Gj(k) (5)

where k — frequency index.
The 1-sided instantaneous spectrum is defined as:

Si(k)  for k=0,
Gi(k) =14 2S5i(k) for 1<k<N,/2-1, (6)
0 for N,/2<k<Ns—1,
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where S;(k) = Fw(n)z;(n)] is 2-sided spectrum, F' - forward discrete Fourier transform
operator, w(n) — weighting function (was used Hanning weighting function), z;(n) — time
record, n — time index, N, — number of samples (was used 2048).

Computing all crosspower spectra we achi ving 3 dimensional crosspower spectrum
matrix. This matrix can be considered as a set of square matrix (determined for each
frequency). The element (4, jw) of this matrix contained value of crosspower spectrum be-
tween signal z; and z; at frequency w. In the determined matrix, the non-zero off-diagonal
elements indicate a correlation relationship between the corresponding signals.

The application of the eigenvalue matrix decomposition for the analysis of oper-
ating response data based on the eigenvalue decomposition of the crosspower matrix
(Eq. (6)) [5]:

[Gnxn(@)] = [Unxn(@)] [ANxnv (@)] [Unxn (@)]7. (7)

The obtained eigenvalues [Anxn(w)] of [Gnxn(w)] in descending order can be consid-
ered as principal component autopower spectra. The principal component spectra are
mutually totally uncorrelated (crosspower spectra are zero). The principal autopower
spectra, sorted in descending order and plotted as a function of frequency, yield a graph-
ical representation of the rank of the crosspower matrix which indicates the number of
incoherent phenomena (principal uncorrelated sources of mechanical vibration) observed
in the signal set S(z1,22,...,2ZN) at every frequency [5, 6].

Instead of analysing the eigenvalue decomposition of a square matrix, one can use
its SVs. The SVD allows to draw conclusions about the number of uncorrelated sources
in the same way as the eigenvalue analysis [1].

The decomposition of crosspower spectrum matrices into singular values can be per-
formed by means of the following relationship (Eq. (8)):

[Crxn(@)] = [Untxm (@)] [Enrxn (@)] Vv (w)] 2. (8)

The method of decemposition of the crosspower matrix into singular values and singular
eigenvectors does 1 require the analysis of the whole (square) crosspower spectrum
matrix but to analyse only a matrix composed of chosen columns or rows. The number
of analysed columns or rows should be higher than the number of uncorrelated forces
acting on the system.

The computation times of decomposition of random generated matrices were deter-
mined. The calculations were performed by a microcomputer with the Intel 486DX2/66
processor. The matrix decomposition into eigenvalues was performed by means of the
EISPACK package algorithms, while for. computation the matrix decomposition into
singular values the LINPACK package algorithms were used. The calculation was made
using the MATLAB 4.2C programme containing LINPACK and EISPACK procedures.
A comparison of the relative computation times of decomposition of complex symmet-
ric matrix Gyyxn (N =1,2,...,100) into singular and eigenvalues (without computing
eigen and singular vectors) is shown in Fig. 1.

Comparing the computation times of decomposition of the matrix Gnx N into sin-

‘gular and eigenvalues one can say that the method of the singular value matrix de-
composition is a less time consuming method. The possibility of performing the SV
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Fig. 1. The comparison of the relative computation time of decomposition of the Gy xn
(N =1,2,...,100) complex symmetrical matrix into singular and eigenvalues.

decomposition of a square matrix containing only chosen columns of crosspower spectra
considerably reduces the time of the executed calculations.

3. Test results. Application of the methods of matrix decomposition into singular
values to determine the number of uncorrelated sources of exciting forces
acting during the operation of the machine

The method depicted above was used to identify the sources of exciting forces acting
during the work of a real mechanical system — a collecting press of high level crushing.

The geometrical model of the press with marked measuring points is presented in
Fig. 2.

The SV frequency spectrum (calculated for the dominant SV) obtained from the
analysis of the crosspower spectrum of signals of vibration acceleration determined dur-
ing exciting the machine by means of force applied to one of the points (the measuring
point 2 in y direction) is shown in Fig.3.

In order to spot the place of the force application, the correlation coefficients be-
tween the frequency spectrum of the highest principal SV (X (wy,ws,...,ws)) and the
autospectrum (Y (wy,ws,...,wn)) calculated for each measuring point was analysed.

The highest values of the correlation coefficients obtained were those between the
principal spectrum and the point of the force application (Fig.4). The Pearson correla-
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Fig. 2. The geometrical model of the press with measuring points.
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Fig. 3. Frequency spectrum of the principal SV (the SV of the highest value).

tion coefficients r was determined by means of the following relationship:

COIT = —'Sﬁ’—— (g)
VSxxSyy
where
n n n n
L, inZYi n EXE n ZYE
Y= ;Xiyi—i"ﬁi1 Sxx = ;Xf——'"_ﬁln ,  Syy= ;Yf——-—i:ln :

The hypotheses associated with this test is: Ho : p = 0; Ha : p # 0.
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Fig. 4. Autopowerspectra determined at chosen points of the press. The value of the correlation
coefficient between the frequency spectrum of the principal SV and the autospectrum are shown.

The computation of this test statistic is as follows:

g = corr vn—2
P T
and the rejection region for this test (for & = 0.05) are [¢t*| > 1.96.

Computed test statistic for correlation coefficients larger than 0.0692 is not in the
rejection region, we cannot reject the hypothesis that the data are not linearly related
in our example.

The confidence intervals were computed. For correlation coefficients larger than 0.689
the confidence interval was smaller than 0.01 and for correlation coefficients larger than
0.859 the confidence intervals was smaller than 0.005.

Before applying the method of identification of sources and the force application
points to analyse the real behaviour of the machine, an analytical model was built [3].

(10)
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Forces, determined from the analytical model, acting on the bearing crank during
the idle run of the machine (the balanced and unbalanced crankshaft — piston system)
are shown in Fig. 5.
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Fig. 5. Forces acting on the crank bearing:  — horizontal component, z — vertical component,
a) the unbalanced crankshaft-piston system, b) the balanced crankshaft-piston system.

The analysis of the included charts leads to the conclusion that during the idle
run the unbalanced force acting on the bearing crank in the horizontal direction (z) is
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higher than that acting in the vertical direction (z). Average values of the amplitudes
of those forces are 1562 N and 653 N, respectively. After adding a balancing mass in the
crankshaft — piston system, the average values of the amplitudes of the unbalanced
force components are 408 N and 675N; in this case the unbalanced force acting in the
vertical direction is larger.
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Fig. 6. Correlation coefficients between the principal singular value spectrum and the autopower
spectrum measured at important jointing points of the press presented as a function of the distance
from the tractor operator seat; a) the unbalanced crankshaft-piston system, b) the balanced
crankshaft-piston system.
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Fig. 7. The principal (uncorrelated) spectra computed from the matrix of crossspectra presented in
linear and logarithmic scales.

For both cases (balanced and unbalanced system) measurements of the mechanical
vibration were conducted, in joint places of the machine during the idle run.

The correlation coefficients between the principal singular spectrum and the auto
spectrum of vibration accelerations measured at seven points of the press (at each point



236 J. KROMULSKI

a measurement was made in three directions: z, y, z) were determined. The values of the
correlation coefficients obtained are depicted in Fig.6. Analysing the included results,
it can be seen that for the unbalanced system, higher correlation coefficient values are
between the singular spectrum and the auto spectrum of vibration accelerations in the
place of the case where the bearing crank is: the in direction z for the unbalanced
system and for the balanced system in the direction z. In this case a full agreement of
the results based on analytical calculations and the obtained from real measurements was
achieved.

For the variant of work with a balanced crankshaft system, the principal autospec-
tra (uncorrelated) were computed by means of the eigenvalue decomposition method
(according to relationship (2)). Plots of principal uncorrelated spectra in linear and
logarithmic scale are shown in Fig. 7.

It becomes noticeable that only one autospectrum is dominant which indicates the
occurrence of only one uncorrelated force.
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Fig. 8. Singular value spectrum determined for one column of the crosspower matrix of the mechanical
vibration acceleration of the press for straw materials.

In Fig.8 the frequency spectrum of the SVs determined for one column of the
crosspower spectrum matrices is shown. A similarity between the principal auto spec-
trum and the singular one is seen. The correlation coefficients between the autospectra
and the principal uncorrelated spectra (computed from the eigenvalues decomposition
of the matrix) or the singular value spectrum is depicted in Table 1.

In both cases the highest correlation coefficients were obtained in the connecting-rod
in the direction of the pressing force. The closer to the point of the pressing force
application was the measuring point, the higher the values of the correlation coefficients
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Table 1. Correlation coefficients between the principal spectrum of SVs or eigenvalues and the
crosspower spectrum of vibration accelerations.

237

Point (j) of crosspower (G;j) | Correlation coefficient between | Correlation coefficient between

spectrum measurement (i — | the crosspower spectrum and | the crosspower spectrum and

case of press gearbox, direction | the principal spectrum deter- | the SV spectrum determined

along the machine track) mined by decomposition of | by decomposition of one col-
the crosspower spectra matri- | umn of the crosspower matri-
ces into eigenvalues ces into SVs

Case of press gearbox, direc- 0.2895 0.602

tion along the machine track,

point 1 in z direction

Case of press gearbox, vertical 0.1435 0.4133

direction, point 1 in z direction -

Case of the machine near the 0.8041 0.9883

chamber of pressing, direction

along the machine track, point

8 in z direction

Case of the machine near the 0.8012 0.9736

chamber of pressing, vertical

direction, point 8 in z direction

Floor under tractor seat, direc- 0.0117 0.279

tion along the machine track,

point 5 in z direction

between the auto and the principal spectra. The enclosed results confirm the possibility
of the application of the methods of the crosspower spectrum matrix decomposition into
singular value spectra for the identification of the vector of exciting forces.

4. Conclusions

1. The analysis of the crosspower spectrum matrix decomposition into eigenvalues
and SVs allows to draw conclusions about the number of uncorrelated exciting forces
acting in a system.

2. For the identification of the number of uncorrelated forces acting in the system
and the determination of the places of their application the method of decomposition of
the crosspower spectrum matrices into the SVs can be successfully used.

3. Reciprocal relations between a crosspower spectrum determined at chosen points
of a system and the principal (uncorrelated) eigen- or singular spectra allow to identify
the points of the exciting force application.
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