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PROBLEM OF AN OPTIMAL DISCRETIZATION IN ACOUSTIC MODELLING

A. BRANSKI

Institute of Technics, Pedagogical University
(35-310 Rzeszéw, Reytana 16 C, Poland)

In this paper two new models of an acoustic source in BEM are proposed. For simplicity
a plane axisymmetric source is modelled. Up to now, the models consist of elements of the
same dimension. Furthermore, the nodes are equi-spaced on each element. In contrast to
these models, the first new one is composed of optimal elements on which the nodes are
equi-spaced. The second new model is composed of optimal elements too but the nodes
on each element are optimal (Tchebicheff nodes). Numerical calculations pointed out that
the quality of the new models is better than the known ones.

List of symbols

HjsHo,j break points, optimal break points; j-element € [u;_1,p;), § = 1,2,...,n;,
j-element in BEM is equivalent j-subinterval in mathematics,

Vi, Ve,i, UT,i nodes: arbitrary, equi-spaced, Tchebicheff separate numbered on each element;
i=0,1,..-,ﬂ{j,

qu. (z) polynomial of g;-degree defined on j-subinterval; q; = n;;,

Pq(z) piecewise polynomial of g-degree defined on [a,b] interval; ¢ = max g;,

- J
f(z), f(z) any given function, interpolating function,
P nij+1 g-degree model with n;-elements and nij + 1 nodes on each j-element,
inj,

| P norm of C[u;-1, ;] space (Tchebicheff norm),

o(...) Ref. [10] p. 494,

fi.n n-th divided difference of the function f(z) at the nodes v;, Refs. [2], [9] p. 193,

PBi(%) finite product, Refs. [2], [9] p.193,

p radius of the membrane,

Tn(z) Thebisheff polynomials of n-th degree, Ref. [10],

F®)(x) (p) derivative of f(z).

1. Introduction

The studies show that the conventional BEM yields reliable results if the model of
the acoustic source is composed of many elements (Ref. [8]). Using too many elements
is a burden to the user and also it is not efficient computationally. This difficulty may
be alleviated in one of the following three ways.
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1. Application of optimal nodes

In almost all the early papers, equispaced nodes were selected on the elements. Fur-
thermore, the elements had the same dimension, see e.g. Ref. [8]. But in Refs. [2, 3, 4,
5, 7] optimal nodes were proposed. They were found applying the Tchebicheff theorem
where the optimal nodes are equal to the zeros of the Tchebicheff polynomials.

2. Application of optimal elements

Up to date, the acoustic boundary was discretized on elements of the same dimension.
If the model was poor quality, a few elements or every one was subdivided into smaller
elements. In this way the quality of the model increases. Thereby a good quality model
consists of too many elements. To avoid the proliferation of the elements, in this paper an
irregular /optimal discretization is proposed. The idea of optimal discretization is based
on the minimization of the Tchebicheff metric of the functional space which is composed
of the cross-section function of the source and the cross-section function of the model.
One can gauge this idea by applying the theorem given in Ref. [1] p. 189. By this means
a new model with optimal elements is obtained (in other words, an optimal model in
the sense of discretization).

3. Application of optimal nodes on each optimal element

In this case the idea of optimal elements and the idea of optimal nodes are connected.
Note that the model with optimal nodes contains elements of the same dimension. On the
contrary, the model with optimal elements contains equi-spaced nodes on each element.

A next new model will be built basing on both the optimal elements and the optimal
nodes; hereafter it will be called an “optimal” model. Remark that such a model is not
optimal in a mathematical sense. This is because the optimal nodes were found assuming
fixed boundaries of the elements and vice versa.

From the mathematical point of view, the optimal model should be derived minimiz-
ing the metric of the functional space by the change both of the break points and the
nodes. This problem will not be solved in this paper.

In order to demonstrate the validity of new models, their quality is compared with
two known models (the comparative ones). The first of them is the regular model; it
contains elements of the same dimension and equi-spaced nodes on each element. The
second model contains elements of the same dimension and optimal nodes (it is an
optimal model in the sense of distribution of the nodes), Ref. 7].

2. Piecewise polynomial interpolation theory

Let f(z) be any given function. The mathematical aim of this paper is to construct
an interpolating function f(z) which is in the form of the piecewise polynomial and
which satisfies the Lagrange’s interpolation condition, Ref. [9].

Let A, be any partition of the [a, b] interval, i.e.,

A a=p,g<p1<...<pj._1<uj<...<u,.j=b, i=1,2,...,n4, (2.1)

and A, be any arbitrary partition of the j-subinterval, z € [u;1,u;), Fig. 1,
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Fig. 1. General distribution of the nodes on the j-subinterval.

Ay: piaSw<n <. <V <y <. <wp Sy, (22)
where n;; may be different on each j-subinterval.

Furthermore, the set of the nodal values {f(v:)}o” = {fi}o” should be known.

2.1. Arbitrary selection of the nodes

Let g;-degree interpolating polynomials Py, (z) be defined on each j-subinterval,
nij
fimi @) =Pg; (@) = foiPil), € [pjm1,45), G5 =T (2.3)
=0
Then the g-degree piecewise polynomial P,(z) on the [a,b] interval is defined by:
fnj,nij(:c)EPq(:c)quj(z), s T Y — Y g = maxg;. (2.4)
The polynomial Py, (z) on the j-subinterval fulfils the interpolation condition

ff,nij(ui) = .f(yi) = qu (V‘i)? j = 1y2r L7 I £ € [p'J—lnu'J) (25)

The error of the piecewise polynomial interpolation can be expressed similarly as
the polynomial interpolation, Ref. [6]. In this case, the error at every point of the
j-subinterval can be written as follows:

Ep;j,ngj+1(m) = f(ZE) = Pq_j (.’B), S {P’j—lnuj)? (26)
and the error of the piecewise polynomial interpolation can be expressed by the formula
Epinjmiy41(2) = f(@) = Po(z), @ € [a,b]. (27)

Because of the reasons described in Ref. [6], only the estimation of Ep;j,nijﬂ(x) at the
point z can be calculated,

mf,ﬂr-}-l
|IEP§js“;‘j+1($)“°°sf < —(ni.?' _:1)!1Pnij+1(9?)|a (2.8)
where
R nig41 = 1F "5 (2)llo =  sup |fmit ) (z)). (2.9)
2€[pj—1.14]

In practice the estimation of Ep;; n,; 11 (z) plays a minor part. Then two estimations are
introduced: the estimation over the j-subinterval and over the [a, b] interval, i.e.

sm.f ij+1
msﬂaP‘ﬂij-’-l ) A [)u‘j—laﬂj), (210)

“Ep;j,n,'j+1"00

EP;ﬂj,n,-j+1 = “EP;nj,n‘-j+1“°O = mja‘x”EP;j,ﬂ,'j+1”m? z € [a, b], (2.11)
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where
Emp,n,-jﬂ =P +1(@)le = sup  |Poy41()]- (2.12)
TE€[pj—1,15] .
If the nodes are equi-spaced, Eq. (2.3) is simplified

Pg; (@) =) feiNi(®), € [mjm1, ), (2.13)
=0

where fe; = f(ve,i) and N;(z) - see Ref. [8].
Consequently the next formulae are simplified too; for further details see Ref. [11].
Assuming that f(z) is continuous and f("i+1)(z) is continuous or it has a finite
number of singularities of different kinds, the achievable error estimation over the [a, b]
interval is given by the formula (Ref. [11] 5. 121)

ij+1
Epin my+1 = O(1/nj ™). (2.14)

Note that Eq.(2.14) does not say anything about the distribution of the break points
and nodes.

2.2. Optimal nodes

The optimal nodes, v ;, are better for the interpolation than the equi-spaced ones; a
detailed discussions of the mathematical aspects of the nodes v ; can be found in Refs.
(4, 11]. In this case the piecewise polynomial Eq. (2.3) can be expressed by the formula

nij
Pu(@) =) foiTi), =€ [ujo1,py). (2.15)
=0
At the considerations given above, the error estimation over the [a, b] interval is given
by the formula (Ref. [11] 5.121)

ij+1
Epin, niy+1 = Ollogn; /ng ™), (216)

which is nearly as good as (2.14).

2.3. Optimal elements

An error estimation of the best (optimal) interpolation of the function f(z) by the
function Pg4(x) is given by Eq. (2.14). It can be achieved by a special distribution of the
break points. Such a distribution can be found minimising the metric of the functional
space. This space consists of two functions, i.e. f(z) and Py(z). Next, the Tchebicheff
metric || f(z) = Py(2)||oo is assumed and in this way the functional space Cla, b] is defined.
Minimizing this metric the optimal break points po ; are obtained; they make up the
optimal elements.

In this paper the main problem is the interpolation with optimal po ;. From the
mathematical point of view, the problem of the distribution of the optimal break points
is considered in Refs. [1]. The distribution of pp ; is defined by the following theorem
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(Ref. [1] p.189): let f(x) be continuous and f®)(z) exists at each point z € [a,b],
p € [1,00), but f)(z) may have got a finite number of discontinuous of the different
kind. If

b
B:/WWMWM<W, (2.17)
a

then the achievable error estimation over the [a,b] interval is given by Eq.(2.14). Such
an estimation assures the break points pup ; which fulfil the following condition:

KO, j
[ tf(p) |1/p dr =

a

j—=1
B
1

SR & T (2.18)

where poo = a, Hon; = b.

3. Multi-element models of the source

8.1. Acoustic source

For simplicity, one considers a fully axisymmetric source, i.e. both the geometry and
acoustic variables are independent of the angle of revolution. The membrane vibrating
with an axisymmetric mode placed in an infinite baffle is chosen as the source. In this
case, the function f(z) may be interpreted as a cross-section of the source, hence a =
0, b = z3; an explicite form of f(z) was derived in Ref. [4]. An acoustic field of the
source (an exact acoustic field), i.e. the directivity function Q(k,~) = function (f(z))
and the acoustic pressure near the source p(k, H,zp) = function (f(z)), was described
extensively in Ref. [12] p. 594.

3.2. Models of the source

Hereafter, the function f(z) ought to be interpreted as a cross-section of the model.
Then the model Mp is given by Eq.(2.4): Mp = P4(z) = fnj ni; (). It is the g-degree
model with n; elements and n;; nodes on each element; the full symbol is Mp.p, n, 41
Hereafter the index “n;j,ni; + 17 will be dropped to simplify the notation. If Eq. (2.4)
is substituted into the formulae for the exact acoustic field, an acoustic field of Mp is
obtained; it is denoted by Qp(k,'y) = function ( fnj,n‘j (z)) and pp(k, H,zp) = function
(fn ;ini; (%)) The error of the model Mp constitutes the interpolation error, Eq. (2.7).
The estimation of the model error on the [a,b] interval, Eq.(2.11), is assumed to be
a direct measure of the model quality. Furthermore, the difference between the exact
acoustic field and the model acoustic field

* AQp(k,v) = Q(k,7) — Qp(k,7),

o App(k,H,zp) = p(k,H,zp) — pp(k,H,zp),
may be interpreted as an indirect measure of the model quality; for further details see
Ref. [7].
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The model Mp with evenly-spaced break points p. ; and equi-spaced nodes v, ; is
called the regular model Mp. Rinjyng+1 (in Fig.2 pe; — V and v,; — W). The model
Mp with equi-spaced break points s, ; and optimal nodes v ; is called the model with
optimal nodes Mp.0-N;n; nij+1 (in Fig.2 e j - V and vr; — o). In this paper they are
two comparative models.

\ AUNEUI. SN SR, 4
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X
Fig. 2. Distribution of the nodes and the break points at the nodes: 1 - MP;R;z,s’ 2 - MP;O_N;2'3,
3-Mp,o_piaa4-Mp, s

3.2.1. Model with optimal elements. The model Mp with optimal break points po,;
and equi-spaced nodes v, ; is called the model with optimal elements Mp;o_.ij i+l
(in Fig.2 po,; — ¥ and ve; — M). The Mp.o_p constitutes Eq. (2.4) but the boundaries
of the elements ought to be calculated from Eq. (2.18). The acoustic field ép‘.o_ pl(k,v),
Pp.o—p(k,H,zp) and the estimation of the model error on the [a, b] interval Ep.o_p of
Mp.o_p can be derived quite similarly as those of the general model Mp.

3.2.2. “Optimal” model. The model Mp with optimal break points up, ; and optimal
nodes vr; is called the “optimal” model Mp;0;n; nij+1 (or the model with optimal dis-
cretization and optimal nodes); (in Fig.2 uo,; — ¥ and vy,; — »). The Mp.o constitutes
Eq. (2.4) via Eq. (2.15) but the boundaries of the elements ought to be calculated from
Eq.(2.18). As to the Qp.o(k,7), Pp.o(k, H,zp) and Ep,o, see the general model Mp.

Both the Mp,o and Mp,o_p models were not applied in BEM up to now; they are
new models of the acoustic source.

4. Numerical implementation

The aim of the numerical calculations is a comparison of the quality of the new
Mp.o_p and Mp.o models with those of the comparative models, i.e. Mp,p and Mp.o_n-.
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To do this, one assumes 2-degree models (n;; = 2) with 2 elements (n; = 2) and 3 nodes
on each element (n;; +1 = 3):

— regular model; lines 1: short + long, cf. Ref. [7],

MP',R;2,3
MP;O—N;2,3
2: short + short + long, cf. Ref. [7],
Mp.0-p;23
+ long + long (bolted),
MP;O;2,3

In all the figures the same kind of lines relates to the same model, cf. Ref. [7].

— model with evenly-spaced break points and optimal nodes; lines

— model with optimal elements and equi-spaced nodes; lines 3: short

— model with optimal elements and optimal nodes; lines 4: short +
short + long + long (bolted).

5. Calculations, results, conclusions

To verify the quality of Mp.o_p and Mp,p, the direct and the indirect measures
of the model quality are calculated. For this purpose the error estimations on the [a, b]
interval are done and plotted in Fig. 3A (the model error is not presented). As expected,
the error estimations Ep.o_p and Ep. are less than Ep,z. Because the error estimation
Ep is a direct measure of the model quality then,

The models Mp.o_p and Mp.o are of better quality than the model Mp,p in the sense

of the direct measure of the model quality.

This conclusion confirms the existence of the optimal discretization. As can be noticed
in Fig. 3A, the model Mp.o_p ought to be compared to the model Mp,r and Mp.o to
Mp.o_ - This conclusion is conceivable because in Mp,o_p [Mp.g and Mp.o/Mp.o_N,
respectively, the nodes are fixed but only the discretization changes. Note that in Fig. 3A
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the sensitivity of Ep to the discretization is little visible; better results are presented in
the Appendix. Under the circumstances given above, the next conclusions will be given
only for Mp,o_p and Mp,g because for Mp.o and Mp.o_y they are the same.
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To check the quality of Mp,o_p and Mp.p estimated by the indirect measure, two
examples are done.

1. The difference of the directivity functions AQp(k,«) are studied; the results are
displayed in Fig.4. As can be seen from the figure, only in some places of the space (they
are difficult to describe) the directivity of Mp.o_p is better convergent to the exact one
than that of Mp.p. It is worthly of notice that despite this the error estimations of
Mp.o_p and Mp.q are less than that of Mp.g.

2. For a comprehensive study two differences of the acoustic pressure App(k, H,zp)
are computed. First, App(k, H, zp) at the fixed point of the axis z (zp = 0) and H = 0.1b
in relation to the wave number k is calculated. The results are presented in Fig.5.
Examining Fig. 5, it is interesting to note that for both k¥ < 6 and k£ > 20 the acoustic
pressure of Mp,o_p is worse convergent to the exact one than that of Mp,p.

Second, taking into account the value k = 5, App(k, H,zp) on the line parallel to
the source radius and at a distance H = 0.1b is computed. The results are plotted in
Fig. 6. Examination of this figure indicates that only at some points of the space the
acoustic pressure of Mp.o_p is better convergent to the exact one than that of Mp,p.
In other words,

The better model derived basing on the direct measure of the quality may not be better
in the sense of an indirect measure.
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This conclusion is obvious because the models Mp,o_p and Mp.; were built basing
on the theory which assured the minimum of the error estimation of the model over the
[a, b] interval. Consequently, this theory assured only a minimum of the direct measure
of the model quality. There are no mathematical causes for taking the minimal value
simultaneously by the indirect measure of the model quality.

It seems that the problem of optimal discretization ought to be considered from the
acoustical point of view, in other functional spaces in which the objective function will
depend on the acoustical fields of the model and the source.

Appendix - example

One assumes that the cross-section of the source is described by the function
f(z) = Cy sin(nz) exp(-Cax),

where ¢; = 2.4301, C; = 2.25; the coefficients Cy, C» were selected in such a manner
that the function reaches its maximum value at the point z = 0.3.
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Fig. 7. Cross-sections of the source and of the models: solid line — source, 1 - Mp.p.2 30
3-Mp,o_pp,a

Two models Mp; ;3 5 and Mp,o_p., 3 are compared. The cross-sections of the source
and of the models are depicted in Fig. 7 and the error estimations are plotted in Fig. 3B.
The latter figure clearly indicates that the difference between Ep._p, and Ep.r is consid-
erable (similarly between Ep.p and Ep.o_y). But the numerical calculations (not given
in this paper) confirm the conclusion given above for a membrane.
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