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A solution for the problem of diffraction of a cylindrical sound wave near an absorbing
strip introducing the Kutta-Joukowski condition is obtained. The two faces of the strip
have impedance boundary conditions. The problem which is solved is a mathematical
model for a noise barrier whose surface is treated with acoustically absorbing materials. It
is found that the field produced by the Kutta—Joukowski condition will be substantially in
excess of that in its absence when the source is near the edge.

1. Introduction

Much interest has been shown in recent years to the problem of noise reduction.
Unwanted noise from motorways, railways and airports can be shielded by a barrier which
intercepts the line of sight from the noise source to a receiver. To design and performance
of noise barriers, particularly, for the reduction of traffic noise, has received considerable
attention [1]. An effective way of reducing the noise is to use absorbing linings. Absorbing
linings have also been used on noise barriers to improve their efficiency. The rationale
for such a noise barrier design is given in RAWLINS [2].

In 1970, it was shown by Frowcs-WILLIAMS and HALL [3] that the aerodynamic
sound scattered by a sharp edge is proportional in intensity to the fifth power of the flow
velocity and inversely to the cube of the distance of the source from the edge. Thus, the
edge is likely to be the dominant sound source, especially when the source is very close
to the edge. Their findings were however based upon the assumption of a potential flow
near the sharp edge with velocity becoming infinite there. Instead of that if one wishes
to prescribe that the velocity is finite, there are two possible points of view. One way is
to abandon lighthill’s theory and use linearized Navier-Stoke’s equation with a source
term as employed by ALBLAS [4]. Before discussing the second option, it is better to
introduce the Kutta—Joukowski condition.

JonEs [5] adopted this approach and introduced the wake condition to examine to
effect of the Kutta—Joukowski condition at the edge of the half-plane. He calculated
the field scattered from & line source and observed that for the moving medium the
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imposition of the Kutta—Joukowski condition does not have much influence on the scat-
tered field away from the diffracting plane. Near the wake this condition produces a
much stronger field than elsewhere even when the source is not near the edge. Thus
the wave acts as a convenient transmission channel for carrying intense sound away
from the source. This problem was further extended to the point source excitation by
BALASUBRAMANYAM [6].

Keeping in view the importance of the Kutta—Joukowski condition, diffraction of a
cylindrical acoustic wave by an absorbing strip is considered in this paper. It is found
that the field produced by this condition (Kutta-Joukowski) will be substantially larger
than the field produced in its absence when the source is near the edge. The results
for rigid and soft strips can be obtained as special cases of this problem by taking the
absorbing parameter § = 0 and 3 = oo, respectively.

2. Formulation of the problem

We shall consider small amplitude sound waves diffracted by a strip. An absorbing
strip is assumed to occupy y = 0, —! < 2 < 0 as shown in the Fig. 1. The strip is assumed
to be of negligible thickness and satisfying absorbent boundary conditions [7]

P—unz =0, (2.1)

on both sides of its surface. Here p is the acoustic pressure of the surface, u, is the
normal component of the perturbation velocity at a point on the surface of the strip
and z is the acoustic impedance of the surface. We shall restrict our consideration to
a harmonic time dependence, with the time factor e=** (w is low angular frequency)
being suppressed throughout.

y‘r

absorbing
AAAAAAAA - oo
-l finite plane 0

Fig. 1.

The perturbation velocity u of the irrotational sound waves can be expressed in terms
of the total velocity potential ¢;(x, y) by u = grad ¢;. The resulting pressure in the sound
field is given by p = iwpo¢e(z,y), where g is the density of the initially undisturbed
ambient medium. The primary source is taken to be a line source which is located at the
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position (2o, %o), yo > 0. Thus, the wave equation satisfied by the total velocity potential
¢ in the presence of the line source is
92 a? 2
(5 + 3 +#) 8 = 8z = aw)dty - o, (2.2)
where k(= w/c) is the free space wave number and c is the speed of sound. For analytic
convenience k is assumed to be complex and has a small positive imaginary part.
The effect of the strip is described by the boundary conditions

a .
(3_y + zkﬁ) oz, 0%) (=l <z <0), (2.3)

where #(= goc/z) is the small absorbing parameter and for acoustic absorption Re (3) >
0. We remark that 3 = 0 corresponds to the rigid barier and 2 = co corresponds to the
pressure release barrier.

In order to satisfy the Kutta-Joukowski condition at the edge, JONES [5] introduced
a discontinuity in the field at 0 < x < oo and postulated the existence of a wake
condition. According to him, ¢, is discontinuous, while d¢;/dy remains continuous for
y =0, z > 0. With the same analysis as used by JONES [5], the boundary conditions
can thus be expressed as

3]
ey = @) @<l 2>0, y=0) (2.4)
and
¢t(z1 y+) - ¢t(ﬂ7, U_) = aeipﬂ: (l’ > 01 Yy = 0)1
(2, y") — de(z,y”) = ae™® (x<=l, y=0).

In Eq. (2.5), @ and p are constants. The constant yu is regarded as known and we shall
write

(2.5)

u=kcosdy, (2.6)

where 0 < Red; < m, Imv; > 0. While & has a positive imaginary part we shall take
0 < Re?; < 7 and Im1); > 0; eventually we shall be concerned primarily with the case
Red, =0, Imd; > 0. In Eq. (2.5), a can be determined by means of a Kutta—Joukowski
condition. We note that o = 0 corresponds to a no wake situation. It is appropriate to
split ¢; as

¢t($’y) - ¢0($1 y) =+ ¢(I: y)? (27)
where ¢p is the incident wave which accounts for the inhomogeneous source term and
¢ is the solution of the homogeneous wave Eq. (2.2) that corresponds to the diffracted
field. Thus ¢o and ¢ satisfy the following equations

32 32 2
('59:—2 M ) po(2,y) = 8(z —20)d(y — vo), (2.8)
A ;
(; 2 ;;.2 +k2) ¢(z,y) = 0. (2.9)

In addition we insist that ¢ represents an outward travelling wave as r = /22 + y? = oo
and satisfies the normal edge condition at the boundary discontinuity [8].
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3. Solution of the problem

We define the Fourier transform pair by

1 7 .
E[@S(ﬂ?,y)eiuzdl',

T .
(z,y) = ﬁ_] B,y dv,

I

E(Vsy)o
(3.1)1

where v is a complex variable. In order to accomodate three part boundary conditions
on y =0, we split ¢(v,y) as

b(v,y) =y (1Y) + e o_(v,y) + 61 (v, y), (3.1)2

where

il 1 i '

¢4 (v,y) = \/—g—wﬂfﬂwyy)ewzdm,

=)

P = L iv(z+l)

d)_(u,y) o \/2—7?—[ ¢(:c,y)e d:L',
and

0
- 1 g
51(m0) = = [ dapeieda.
i

In Eq. (3.1)s, ¢, is regular for Inv > —~Imk, ¢_ is regular for Inv < Imk and &, (v, y)
is an integral function and is therefore analytic in ~Imk < Imv < Imk. For this we
recall that k is complex and ¢ represents an outward travelling wave. The solution of
Eq. (2.8) can be written in a straight forward manner as

-1 1/2
do(x,y) = EH(SI) (k [(x = 20)* + (¥ — v0)?] . ) 5
1 e—»‘ill(;l‘*wu)'%i(kg_l’g)‘/2|y'y0|
= — dv. 3.2
4m [ VEk2 =12 Y (32)
—00
Making change of variables
xg = ro cos g, Yo = o sindyg (0 <9 < ),

in Eq. (3.2) and letting ro —+ oo, we obtain using the asymptotic form for the Hankel
function

¢0 = be—ik(z cos Ug+y sin 190}’ (33)
where

-1 B
i(kro—m/4) 4
B 44 T k?‘o 5 i (3 )
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and Vg is the angle measured from the z-axis. Now taking the Fourier transform of
Eq. (2.9), we obtain

(55+2°) B =0, (35

where 7 = vk — 12 and the v-plane is cut such that Im~ > 0. The solution of Eq. (3.5)
which satisfies the radiation condition is

o Awem (y>0),
d(v,y) = { M) (y <0). (3.6)
Transforming the boundary conditions (2.3) to (2.5), we have
1 (v,0%) = Fik3, (v, 0%) F ikB(v,0) — Fo(1,0), (3.7)

e (v,0%) = B (1,07) = F.(v,0), (3.8)
= T -y — i
¢’+(‘V1 0 ) ¢+(U1 0 ) \/2—71_(1} i #) i (39)
= T _y _  —iae™
d)_(v,O ) (f)_(V,O ) - \/2—“_(”_“)5

where ' denotes differentiation with respect to y. From Egs. (3.1)2, (3.6) and (3.8), we
can write

G, (1,0) + 3 (v,0)e™™! + 3, (v, 0%)
= 1y [$+(V: 0+) +$-(V7 0+)e_iyt + 51(”1 O+)] ’
8,(1,0) + 3_ (1,0 + 8, (1,07)
= —iy [¢,(,07) + o_(v, 07)e ™ +6,(v,07)],
After elimina,tinggl(u, 0%) from (3.7); and (3.10),, 5‘1(:/, 07) from Eqgs. (3.7)2 and (3.10),
and adding the resulting expressions, we arive at

. (1,0) + ¢_ (1, 0)e ™ — iy N (v) 1 (v,0)
<5 —i(v—p)l
) o (( 1 2 ) (3.11)

(3.10)

wer \(v+u)  (v—p)
where kg J
N¥)=1+ F Ji(v,0) = 5 [6,(¥,0%) = ¢, (v,07)].

In a similar way by eliminating ,(v,0%") from Egs.(3.7); and (3.10)1, ¢, (»,07) from
(3.7)2 and (3.10)2, and subtracting the resulting equations, we obtain

N(v)Ji(v,0)
kB

= 50('/1 0) %+

5+(V1 0+) + 5_(”’, 0+)e—iut e

i 1 e~ iv—ni

o4 , 3.12
24/2r (v+p  v—p (3.12)
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where
Ji(v,0) =

LV

[3:0,0%) = 31 ,07).
From Egs. (3.3) and (3.11), we have

84 (1,0) + 3 (»,0)e™ — iyN(v).1i(v,0)
+a7N(v>{ 1 e—ffv—mf] akﬁ[ 1 e—i(v—p):]

02r lvtpu  v—p | 2mlvip  v-up
—kbsindg

T V27 (v — k cos )

For the solution of Eq. (3.13), we make the following factorizations

[1 _ e—ilv—kcos au)l]_ (3.13)

v=(k+ )2k - v)"? = K, (v)K_(v), (3.14)

and
N(v) = Ny(v)N_(v), (3.15)

where N (v) and K (v) are regular for Im» > —Imk and N_(v), and K_(v) are regular
for Im v < Im k. The factorization (3.15) has been discussed by NOBLE [9, p. 164] and is
directly quoted here as

Moo= 1 ? (kY = 1) o1 (w fR). (3.16)
Thus, substitution of Egs. (3.14) and (3.15) in Eq. (3.13) yields

6, (1,0) + ¢_(v,0)e™ + S, (v)S_(v)J1 (v,0)
Sy (v)S_(v) 1 e—ilv—p)l akB 1 e—ilv—p)l
2/2r vtp  v—p ]_2\/2_1r v+p  v—p ]
v —kbsindg
"~ V2r(v — ksind

In Eq. (3.17), S4(v) [= K4 (v)N4(v)] is regular for Imv > —Imk and S_(v) [= K_(v)
N_(v)] is regular for Inv < Imk. The unknown functions $+(u,0) and 3_ (»,0) in
Eq. (3.17) have been determined using the procedure discussed by NOBLE [9, p. 166] and
are given by

: [1 o e—i(v—kcosﬂo)i]. (3.17)

7.010) = T2 (S, (6L 0) + TIS ()C1)
v (i Rl R ] 19
3 (,0) = % (S—(V)Ga(=v) + T(=v)S_(¥)Cs) .
v (o ™ e+ )
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In Egs. (3.18),
Si(v) = VE+vNe(v), S_(v) = ™2y —kN_(v),
_ S4(k)
C = L= T2(k)SZ(R)] [G2(k) + G1(k)T (k) S+(k)],
_ S
C: = e Tz(k)S?,_(k)] [Gl (k) + GZ(k)T(k)S-i-(k)] ’
_ —iSy(w)Se(k) :
Cs = ToTagosz ey TSR -],
1 1 1 ikl cos 99
Gilp) = v — kcosdy [S.,.(u) a S+(kcosq90] ~ Ru(p)e o=, (3.19)
el (U) — 1 [ 1 _ 1 ]eiklcusﬂo =B (v)
: v+kcosd | Sy (v)  Sy(—kcosdp) 2
_ E_[W_i{—i(k =+ kcosdp)l} — W_,{—i(k+ v)l}]
Ria(v) = 2mi(v F kcosg)
T(v) = 2—111_—2,E_1W_1{—-i(k+y)l},
E—-l s 2\/ieikl—3i1rf4’
W_i(m) = I (%) em/z(m)_3/4W—1/4,—1/4(m)1
[m = —i(k + v)l and W; ; is a Whittaker function].
Now from Egs. (3.1) and (3.6), we obtain
Ai(v) — As(v) = e ™ [$_(1,0") — $_(1,07)] B
+ ‘_El(yw 0+) i ;51(‘40_)] + [34_(1/, 0+) = ¢+(U,0_)] 1 (3 20)

+ [$+(V|0+) -$+(u, 0_)] + [6‘_(1},0“') -25'_(,,, 0—)] e-iu:}_ _

Using Eqgs. (3.8) and (3.9) in Egs. (3.20) and then adding and subtracting the resulting
expressions we get

)+ 4a0) = {[3,0:09) - F0,07)

i 1 e~ iv—mll J! (v, 0)
A(v) = = +Ji(p,0) + 22122 3.21)
) = = [~ S| w0 :
—ia 1 e“'(”"‘)’] Ji(v,0)
As(v) = ~ =gy, 0) + 2%, 3.22
2(”) 2\/5;1_- [V+ﬂ v—p 1( ) iy ( )
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Substituting the values of J; (v, 0) and J] (v, 0) from Egs. (3.11) and (3.12) into Egs. (3.21)
and (3.22), we obtain

M) =5 |- e_,,“:_:”] e S[7 0+ 50
A )
3 % [@(v, 0%) +B_ (1,0 )e™ — Fo(1,0)
s —i(v 1
BT .

— [e%% 1 e—i(v—p)[ }]
= .0) + -

Bolv,0) + 5 ,_%{Hp u_u
ikf

507 4B 0

i 1 —i(v—p)l
- - . 3.24
AVETS {V +u B }} W

Nw)~1+0(B), ikB/N(v)=O0(B),
and assert that (k3/v) is very small provided that |v/k| is not too near 1. This can be
justified under small absorbing parameters 3 and low frequency of the acoustic wave.
Thus using this Egs. (3.16), (3.23) and (3.24) gives

Ni(v) = 1:Fﬁ

¥ 1 /= = vl (3'25)
AW) = ) = (34,0) + 3 (1,00 ~ 531, 0))..
Note that in writing Eqs. (3.25), we have retained the terms of order O(3/v) and ne-

glected the terms of O(k3/7).
Substitution of Eqs. (3.3) and (3.18) in Eq. (3.25), yields

‘We note that

A = —Ay(v) = kbsindg { Selw) =i - S+(_y)e—i{U—kcosﬂo)1}
1w =—A; V2riy(v — kcosdg) | S+(kcosdo) Sy (—kcosdp)
kbsindg

e \[2;17 {S-I-(V)T(V)Cl — S-{—(V)Rl (I/)eikt ¢ 0o

+ S+(—V)R2(—U)e"iu‘ + CzT("V)SAi_(—‘y)e—"Uf}

a 1 L"”‘ - S, (v) e‘i”‘S+(—u)]
" 2\/2—7?i7{kﬁ [Vﬂt " u—V] S+ ) [(Vﬂt) LT

Cs
# Tt )[T(V)S+(U)+e W (—v)S4(— )]} (3.26)
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Now putting the values of A,(v) in Eq.(3.6) and taking inverse Fourier transform the
field #(z,y) can be written as

¢($,y) = ¢*P(2,y) + ¢int(I5y)a (327)

where

kb sin dg i S (v)etrv—ive
Sep (. ) —
#= (@) 2m fi’y(v—kcosﬂg)8+(kcosﬂg)dy
_ kbsindg /' g-iv—keoadlig (_ 3 ghri—iva
2 iy(v — kcosdg)S4(—k cosdp) v

—o0

a 71 s e ) 7 St(v)
+4W[kﬁfiv{V+ﬂ+u—v}_%S+(m/ﬁ{u+n

eS8, (-v)

e }:lei7y“”mdu, (3.28)
. kbsindg [ 1 :
int . ikl cos g
¢ (@ y) = —— [ = [S.,.(U)Rl(u)e

— Sy (—V)Ry(-v)e™™ = 84 ()T (v)C1 = T(~v)Sy (~v)e™™! 02] siu=ive g,

0 = i ! =iy iyy—ivz
* 47r(c;c_iﬂ)/ i [T()S4+(v) + e™T(—v)Sy(—v)] e **du. (3.29)

In order to solve the integrals appearing in Egs. (3.28) and (3.29), we put = rcos?,
y = rsin ¥ and deform the contour by the transformation v = —k cos(9+:£), (0 < 9 < m,
—oc < £ < 00). Hence after using Eqs. (2.6) and (3.4), we have for large kr
sop ieik(f‘+f'o) i 2
¢ (27,3,') - 471"6((:0519-{-COS'!?())(TT(])I/2f1(_ COos )
ikl cos ¥
+ e | Bt/ : T o }
2(2mkr)1/2 (cost¥; —cos?d)  (cosdd; + cosd)

—ir/4 wll ikl cos 9 ;
4 € Si(kcosdy) {(.S'+( kcos?) 4 ¢ S+(kC0519)}]e:kr, (3.30)

k costl; — cos) (cos v + cosd)
- ieik(‘?'-i-f'o) i p aei(kr+1r/4} i P g
o™ (2,y) = sz(— cos?) + Wfa(— cosJ). (3.31)

In Egs. (3.30) and (3.31)

e ikl(cos ¥+cos ¥p)
fi(—kcos¥) = —sindg [5+( k cos ) e S4 (kcosd)e ],

Sy (k cosdp) S+(—k cosvp)
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fa(—kcosd) = sin?d [S+(—k cos¥) Ry (—k cos 9)e’k! cos 9o
— S4(kcos9) Rz (k cos )t cos?
— S84 (=kcos9)T(—kcos?)Cy — Sy (kcos?)T (k cost)Cae'* °°‘“9],

Cs

- Tostid) e (k + kcosd,)

[T(—k cos)Sy (—kcos1)
+ 9P (L cos9) S, (k cos 19)] :

From Egs. (3.27), (3.30) and (3.31), we obtain

i oik(r+10) L
il = ie o fi(—kcos)
47 (rro)1/2k | (cos? + cosvp)
aei(kr+1r/4) 1 piklcos?
* 2(2nkr)l/2 [B { (cosdy — cosd) i (cos¥; + cosd) } +a(~keoad)
_iS4(kcosdy) [ Si(—kcosd) | etteos?g, (kcosd) }
k (cosd; — cos?) (costy + cosd)

+ kfa(—k cos 19)]

(3.32)

In the limit » — 0, Eq. (3.32) shows that

ikru k
oz, y) ~ 2r!/? [_Efm {fl(—-kcosﬂ) + Efz(—-kcosﬂ)}
iaein/‘lk ikl cos
S i {ﬁ (1 4 FrFem®)
o w (S+(—kc0319) 4 eiktcosﬂs_i_(k COS{?)) + fs(—kzcos'?) }] ,

where we have neglected the terms which are constant and O(r). Therefore, the velocity
will remain bounded at the edge if and only if the co-efficient of r'/2 vanishes. Hence
the Kutta-Joukowski condition requires that

gikro—3im/4

a= ng(—kcosﬂ), (3.33)

where
Gi(—kcosd) = {fl(—kcosﬂ) + gfz(—kcosﬂ)} {6‘(1 it cond)

_ iS4 (kcosdh) f3(—kcos19)}_1.

- (S4+(~kcosd) + e S, (kcosv)) +

2
Using Eq. (3.33) in Eq. (3.32) the far field is given by

d=¢, +d,, (3.34)
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where ¢, denotes that part of ¢ that arises when there is no wake and ¢,,, the part that
arises when there is a wake. They are explicitly given by

jeik(r+ro)
Py = ng(—kcosﬂ), (3.35)
jeik(r+ro)
Ow = 4ﬁ(rm)1f2kgg(-kcos19). 530
In Eqgs. (3.35) and (3.36)
fi(—kcosd)

Ga(—kcosd) = [

(cosd + cosy) + kf-;(——kcosﬂ)] '

Gs(—kcosd) = —G; (—kcos?) [fg(—k cos 1)

1 eiktcosﬁ
g { (cos vy — cosd) + (cos ¥y + cos?) }
iS4 (kcosty) [ Sy(—kcosd) et cs?S, (kcosd)
k (cos; — cosd) (cos1; + cosd) ’

4. Conclusion

We have solved a new diffraction problem using a method invented by Jones. As far
as we know, this is the first new problem to be solved by this method. We also note from
Egs. (3.30) and (3.31) that ¢°P consists of two parts each representing the diffracted
field produced by the edges at = 0 and 2 = —I respectively, as though the other edges
were absent while ¢'™ gives the interaction of one edge upon the other. Further, from
Eq.(3.34), it is observed that the field caused by the Kutta—Joukowski condition will be
substantially in excess of that in its absence when the source is near the edge. The results
for no wake situation can be obtained by taking a = 0. Finally, the results correspond
to the rigid barrier if we put 3 = 0 in Eq. (3.34). Thus the consideration of absorbing
strip with wake presents a more generalized model in the theory of diffraction.
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