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A theoretical study is made of the propagation properties of a suspension of viscous
liquid droplets in a fluid medium with low viscosity. The droplets are of the form of
oblate ellipsoids; the values of the material, structure and compositions parameters of the
suspension are that of human blood. From the presented results of the analysis it can be
seen that the propagation velocity and attenuation of ultrasound strongly depend on the
blood composition, mechanical properties of the blood components as well as the ultrasonic
frequency.

1. Introduction

In many areas of research and in engineering application are of interest the effective
dynamic properties of some types of suspensions and emulsions. These properties are
related to the acoustic (ultrasonic) wave velocities and attenuation (propagation param-
eters) in the materials being of interest and their structure. Therefore, some dynamic
properties and structure parameters of suspensions and emulsions can be estimated on
the basis of ultrasonic measurements. For ultrasonic waves to be used for this purpose,
it is necessary to establish the factors which influence ultrasonic propagation in these
inhomogeneous media and to relate the measurable ultrasonic propagation parameters
as well as effective dynamic elastic constants of the media to the physical properties
of medium components, their concentrations, size and shape. There are a variety of
theoretical formulations that describe ultrasonic propagation in heterogeneous media.
These differ from one another by the mathematical approaches used in their deriva-
tion and their underlying physical assumptions. However, analytical studies on the wave
propagation through such composite materials, if they are closely related to the wave
scattering theory, do not achieve formulae explicitly expressing the propagation proper-
ties in terms of physical properties of the constituents of the medium considered and its
structure. Even in the best situation such analytical studies often lead to more or less
complicated systems of algebraic equations for complex quantities which, although they
have perfectly clear physical meanings, can not in general be calculated analytically from
these equations. Consequently, results obtained in the form of the equation systems are
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not as satisfactory as could be hoped for; nevertheless they are of value because they
can be thought of as supplying an algorithm for a numerical estimate of the propagation
properties of the inhomogeneous material. Such a situation is presented in this paper
where ultrasonic scattering was considered in the long-wavelength approximation and
the BERRYMAN’S [1] self-consistent method of estimating effective dynamic elastic con-

stants was used to identify the factors which influence ultrasonic propagation properties
of blood.

2. Theoretical preliminaries

In the mathematical development which follows, it has been assumed:

1. That the effective propagation properties of blood can be deduced, in the long-
wavelength approximation, from the Navier-Stokes equation of motion for a homogene-
ous isotropic viscous liquid called the equivalent homogeneous liquid.

2. That the dynamic properties of the equivalent liquid can be characterized by the
effective dynamic material parameters: the density o*, and viscosities n* (the dynamic
viscosity) and £* (the “second viscosity”).

According to the two-phase model, blood may be regarded as an isotropic suspension
consisting of the plasma liquid with low viscosity, in which are dispersed inclusions in
the form of oblate ellipsoids (red cells) with random orientation made of a liquid with
high viscosity. Throughout the paper, the effective material parameters of the suspension
(blood) as a whole are labelled by the asteriks. Similarly, all the abbreviations with the
sub- or superscripts f and p denote quantities referred to the isotropic suspending and
suspended material, respectively. Finally, the sub- or superscripts s denote quantities
referred to an isotropic solid material.

Due to the presence of acoustic field in the blood there exists a displacement field,
which can be expressed as

= 71—-v56i°”t, (2.1)
w
where w is the angular ultrasonic frequency and v} is a complex quantity.
Then the velocity v* and the acoustic pressure, Ap*, is given by

v =viet  Apt= 5K*divv*, (2.2)

where K* is the effective bulk modulus (adiabatic compressibility). If the above rela-
tions are applied to the description of the ultrasonic wave propagation in blood being
represented by the homogeneous equivalent liquid, the equation of motion for blood
(Navier—Stokes equation) will then become

—v* = (k;) " 2graddivv* + (k})"2(Av* — graddivv®), (2.3)

where
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The second viscosity £ occurs as an effect of the internal degrees of freedom which are
absent in the case under consideration. Thus, we put

£=0. (2.5)

At this point we turn our attention to the similarity of the equations of motion
which describe the wave propagation in a homogeneous viscous Newtonian liquid (f, p)
and isotropic solid (s). All these equations are subtantially identical in appearance, being
obtained from Eqs. (2.1)—(2.4) after inserting £ = 0 and replacing each of the asterisks
by the superscripts f, p and s, respectively.

On taking into account the known relation

2
K =M+ Eus (2.6)
and after extending it formally to the phases %, f and p, Egs.(2.4) arrive us at the
following relations:

M =Ki— %iwnj, W= dwn, i ==, f,p,8, (2.7)

where K°, X\* and p® are the bulk modulus (adiabatic compressibility) and Lamé con-
stants, respectively, u® being the shear modulus.

The material parameters p*, K* and p* determine the propagation properties of
the suspension (blood) for the plane ultrasonic waves propagating and being polarized
along the directions of the reference axes Oxz;, j = 1,2, 3 of the macroscopic Cartesian
coordinate system. In this case

1

* . A S *(b
U=y o =—wZ', (2.8)
Lk A
0
Z* = * 3 (2'9)
(Fﬁ)
where
4 .
TG = T i gur il = (2.10)
e = irsp for i# . (2.11)

v}; and o}; denote the propagation velocity and amplitude attenuation coefficient, re-
spectively, of the plane wave propagating in the direction of the axis Oz; and being
polarized in the direction of the axis Oz;. Throughout the paper, the real and imagi-
nary parts of complex quantities are denoted by the subscripts (a) and (b), respectively.
Therefore, the problem considered in the paper consists in establishing the dependence
of the quantities o*, K* and u* on of, K/, u/, o?, KP, P, w and some structure param-
eters. In other words, this problem consists in predicting the propagation parameters of
the suspension on the base of knowledge of the dynamic properties of the suspension
components and some parameters of its structure.
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Evidently, if the hyphothesis of the possibility of finding the homogeneous equivalent
medium is reasonable and the effective response of the medium is a plane attenuated

wave with propagation parameters vj; and aj;, then

i = Ba-2, ;Y =28z, (2.12)
aX.
B = (U:j)2g*(1+z,2)—2! P (f) 'u;‘j. (2.13)

Formulae (2.12) and (2.13) enable the effective complex moduli I of the suspension to
be determined from the measurements of the macroscopic parameters of the ultrasonic
wave propagation, v; and aj;, in the medium under examination.

In contrast to the simplicity of the above macroscopic relationships, which suggest
the experimental assessment of the structure and frequency dependences of the prop-
agation and material parameters of two-phase media, theoretical attempts of finding
these dependences always involve problems of great complexity. The dynamics of the
multi-phase media with non-spherical inclusions is so complicated that, for a wide range
of the volume concentrations c of the inclusions, we would be content with performing
a computational analysis of the problem of the propagation of ultrasonic waves in such
media. The computational investigations, some results of which are presented in the next
section of this paper, enable us to establish the desired dependences. To perform such
numerical analysis we make use of the self-consistent approach proposed by BERRYMAN
[1]. It should perhaps be noticed here that in Ref. [1] the self-consistent approach is pre-
sented in a generalized form to be applicable also for materials with complex material
parameters.

BERRYMAN [1] arrived at an algorithm for computational investigation of N-phase
media with ellipsoidal inclusions, with all the phase materials being characterized, in gen-
eral, by complex Hooke’s (stiffness) tensors. Of course, NV is a natural number. Adopting
Berryman’s concept to the two-phase media in the form of suspensions with ellipsoidal
inclusions, will achieve the below given algorithm, which is employed in our computa-
tional analysis. The adopting is possible due to the above mentioned similarity of the
equations of motion which describe the wave propagation in the homogeneous viscous
Newtonian liquid (f, p) and any isotropic solid (s). As it was stressed, all these equations
are subtantially identical in appearance.

The numerical results of these calculations are presented in the next section. For
making clear the physical meaning of the numerical results, it seems to be reasonable to
point out shortly the adopting of the BERRYMAN’S [1] concept to the two-phase suspen-
sions under considerations. For this purpose, consider a sphere of the volume V occupied
by the suspending fluid f in which are dispersed numerous ellipsoidal inclusions made of
the liquid p with very high viscosity as compared with that of fluid f. The ellipsoids are
assumed to be randomly oriented. The volume concentrations of the both phases are ny
and ny, respectively. The sphere, in turn, is imbedded in a homogeneous liquid whose
acoustic properties may be varied freely in a controlled manner. The imbedding liquid
and the liquids ny, and n, are assumed to be immiscible in each other. If the elastic and
propagation constants of the suspension are identical to those of the imbedding liquid,
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there is no scattering from the composite sphere. Then we can say that the imbedding
liquid is identical to the effective (homogeneous equivalent) liquid, say, the liquid of type
*, which is to be determined. Now, continuing the thought experiment, replace the true
composite sphere with a sphere composed of the matrix (suspending) liquid of type *
and of ellipsoidal inclusions of both type-f and type-p material in the same relative
proportion as in the original suspension. Then, if the frequency is sufficiently small en-
abling the multiple scattering to be neglected to the lowest order of approximation, the
equations for the effective material parameters o*, K* and u* can be derived from the
condition:

<u(x); >* =0. (2.14)

< u(x)¥ >* denotes the ensemble average of the of the displacement field fluctuation,
u(x)i, given by

u(x)! = u(x); — u(x)g. (2.15)
u(x)§ denotes displacement field scattered by a single scatterer, u(x)§ denote the incident
field. The left-hand side of Eq. (2.14) denotes the net scattered displacement field due to
the scattering in the above described suspension with the self-consistently determined
matrix liquid of type-*. Relation (2.14) states that the self-consistent effective medium is
determined by requiring the net scattered, long-wavelength displacement field to vanish
on the average. To calculate u(x); in the single scattering approximation we must first
perform the summation of the scattering effects over all the single scatterers which are
present in the bulk sample of the composite. This summation and averaging lead to
the following relations, enabling us to calculate numerically the effective material and
propapagation parameters of the two-phase composite under study:

npKPP*? + n;KIP*/

K* = 2.16
npP*? + nyP*f . ( )

i = TR G (2.17)
np@Q*? +nyQ* ’

The formulae for P* and Q* are listed in the Appendix of [1]. These formulae are not
rewritten here.

3. Numerical results

Numerical calculations were performed for frequencies f = 4, 8, 12 and 16 Mc/sec.
The following values were taken for the material parameters of the emulsion under
analysis:

g _ ) =

Kf = ﬁm“ Pa, KP = 54%—110“ Pa, nf =1810"%Poise. (3.2)

Some results of the numerical calculations are presented in Figs. 1-3. These results
visualize how the propagation velocities and attenuation coefficients of the ultrasonic
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dilatation and shear modes depend on the dynamic viscosity of the ellipsoidal inclusions
and the frequency of an ultrasonic mode. The calculalations were carried out for oblate
(a = b > ¢) spheroids under the assumption that the shape of each inclusion in the
suspension under examination is to be characterized by the same value of the shape
factor Z = a/c = 3.2, independently of the inclusion size and orientation. a, b and
c denote the principal axes of a spheroid. The shape factor is here a measure of the
oblateness of an oblate pore.
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Fig. 1.

Figure 1 presents the dependency of the amplitude attenuation of the dilatation
mode on the frequency and n?. In Fig. 2, the propagation velocities of dilatation and
shear modes are denoted by Cd and C's, respectively. Similarly, in Fig.3 the amplitude
attenuation of dilatation and shear modes are denoted by AT's and AT'd. The general
tendency of the attenuation is to increase as frequency and n? increase.

Although all the results presented above have been obtained under the assumption
that the long-wavelength condition enables the single-scattering approximation to be
used and that the non-spherical inclusions are randomly oriented in a macroscopic vol-
ume occupied by the suspension, it can be stated that the results show that the BERRY-
MAN’S [1] self-consistent method of estimating the effective dynamic elastic constants,
if is applied to estimating the overall dynamical properties of the suspension, leads to
rather strong dependence of the overall dynamic properties of the two-phase liquid on
its composition, mechanical properties of the components as well as on the ultrasonic
frequency.
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