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The aim of the paper is a theoretical analysis of propagation of high-intensity acoustic waves throughout
a bubble layer. A simple model in the form of a layer with uniformly distributed mono-size spherical
bubbles is considered. The mathematical model of the pressure wave’s propagation in a bubbly liquid
layer is constructed using the linear non-dissipative wave equation and assuming that oscillations of
a single bubble satisfy the Rayleigh-Plesset equation. The models of the phase sound speed, changes of
resonant frequency of bubbles and damping coefficients in a bubbly liquid are compared and discussed. The
relations between transmitted and reflected waves and their second harmonic amplitudes are analyzed.
A numerical analysis is carried out for different environmental parameters such as layer thicknesses and
values of the volume fraction as well as for different parameters of generated signals. Examples of results
of the numerical modeling are presented.
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1. Introduction

The nonlinear wave generation inside layers plays
a very important role in practice of production of
parametric sonars, where the key problem is the effi-
ciency of their nonlinear generation. The known math-
ematical models of this problem consist of a set of
two differential equations. The first of them, the lin-
ear non-dissipative wave equation, describes acoustic
pressure changes in the bubble layer (see, for exam-
ple, Druzhinin et al., 1996; Vanhille, Campos–
Pozuelo, 2008). The second one is an equation, which
allows to predict the bubble radius changes, or equiv-
alently, the bubble volume variations. To complete
their models, some authors use the Zabolotskaya and
Soluyan approach, in which the bubble volume varia-
tion changes are applied (see e.g., Hamilton, Black-
stock, 1998; Vanhille, Campos–Pozuelo, 2008).
Another option in the theoretical analysis is the appli-
cation of the Rayleigh–Plesset equation which allows
to analyze radius changes of a bubble (see, for exam-
ple Leighton, 2008). Our model of bubble oscillations
is based on the Rayleigh–Plesset equation. It is worth
noting that in the Vanhille and Druzhin models and
similar ones, it is assumed that the differences between

values of density in the bubble layer and outside of it
are small. Moreover, they take into account only the
viscous damping constant. The model proposed by the
author of this paper (Baranowska, 2011) allows to
analyze the problem in a more general form. For exam-
ple, it permits to include not only the viscous damp-
ing constant but also the total damping coefficient and
different values of the sound speed and density inside
and outside the bubble layer. In this paper, we assume
that the density differences are small and the model
presented in Sec. 2 takes into consideration this fact
and, as a consequence, we obtain a simplified version
of the general model.
It should also be mentioned that a correct choice of

physical parameters is very important in the process
of theoretical investigations as they influence the accu-
racy and the correctness of the results. One of them is
the sound speed. It is possible to find many papers on
modeling and measurements of this parameter in dif-
ferent media (for example Hamilton, Blackstock,
1998; Perelomova, Wojda, 2010). There exist a few
formulae for the prediction of the behavior of this pa-
rameter in a bubbly medium. Among others there is
a model proposed by Ye and Ding (1995) where the
influence of multiple scattering of waves on the sound
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speed is incorporated. Another one, simpler but nev-
ertheless very popular and commonly used, is a model
proposed by Commander and Prosperetti (1989).
However, it does not include higher-order bubble inter-
actions and can be used rather when the gas volume
fraction is small or the frequencies of sounding signals
are far from the resonance of the bubbles.
In this paper we present the results of a numer-

ical study of the nonlinear propagation of high in-
tensity waves in a bubbly liquid layer. The trans-
mitted and reflected waves as a function of the inci-
dent wave frequency in relation to the bubble’s res-
onance frequency as well as their concentration and
layer thicknesses are studied. The efficiency of the gen-
eration of second harmonic components is examined
and examples of computations are presented. In our
work, we have considered two cases of bubble layers.
In the first one, the layers are filled with bubbles of
size which assures that they are at resonance with the
sounding signals. In the second case, the bubble’s res-
onance frequency is far from the sounding signals. We
used the Commander and Prosperetti model to com-
pute the phase sound speed in the bubble layer. The
values of this parameter obtained by this model for
higher values of the volume fraction and resonance
frequency differ from those obtained by using the Ye
and Ding model. However, this fact did not influence
the final results of the numerical calculations signifi-
cantly.

2. Mathematical model

We assume that a liquid layer (region II) of single
size spherical bubbles distributed uniformly is placed
between x = 0 and x = L. Figure 1 sketches out the
problem studied in this paper. The density and sound
speed inside the bubble layer are ρL and cL, corre-
spondingly. These parameters outside this layer are ρ0
and c0, respectively. Because of small differences be-
tween the density of water at the equilibrium state
and in the medium with bubbles we can put ρL = ρ0.
The media outside the layer are considered to be lin-
ear liquids. In region I the acoustic field is the sum of
the incident wave pi and reflected one pr. In region III
propagates only the transmitted wave pt.

Fig. 1. Sketch of the problem.

The equation for the acoustic pressure p in the bub-
ble layer is given in the following form (Druzhinin
et al., 1996;Hamilton, Blackstock, 1998;Karpov
et al., 2003; Baranowska, 2011):
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where β is the local fraction of the volume occupied by
the gas. Assuming a constant number N of air bubbles
per unit volume, the volume fraction is given by

β(x, t) =
4

3
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where R is the instantaneous radius of the bubbles.
The instantaneous bubble radiusR(t) driven by the

incident signal acoustic pressure P (t) is calculated us-
ing the Rayleigh–Plesset equation:
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where pv is the gas and vapor pressure inside a bubble,
pstat is the ambient static pressure, R0 is the equilib-
rium bubble radius, ω is the angular frequency, γ is
the polytropic exponent of the gas, σ is the coefficient
of surface tension, pg = 2σ/R0 + pstat − pv and δt is
the damping coefficient for the bubble. It should be
noted here that the bubble radius R and pressure P in
the Rayleigh–Plesset equation (3) are only functions of
the time variable t. In fact, we consider them as func-
tions of two coordinates: the time coordinate t and the
one-dimensional coordinate x putting p(x, t) instead
of P (t).
To complete the formulation of our problem, ini-

tial and boundary conditions are defined. The initial
conditions for x 6= 0 are as follows:

p(x, 0) = 0,
∂p

∂t
(x, 0) = 0,

R(x, 0) = R0,
∂R

∂t
(x, 0) = 0.

(4)

The boundary conditions are defined in the following
way. The medium outside the layer is regarded as lin-
ear and non dispersive, therefore we can assume that
the incident, reflected and transmitted waves have the
forms

pi(x, t) = pi(t− x/c0),

pr(x, t) = pr(t+ x/c0),

pt(x, t) = pt(t− x/c0).

(5)

At the layer boundaries the pressure should be contin-
uous, which, at x = 0 and x = L, gives

p(0, t) = pi(0, t) + pr(0, t),

p(L, t) = pt(L, t).
(6)
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Taking into account the continuity of velocity or,
equivalently, the pressure gradient, for x = 0, we have

∂pi
∂x

(0, t) +
∂pr
∂x

(0, t) =
∂p

∂x
(0, t). (7)

Taking the time derivative of (6), using (7) and the
relation ∂pr/∂t = c0∂pr/∂x together with the anal-
ogous relation for the incident wave pi, we eliminate
the reflected wave. Finally the boundary condition for
x = 0 is

∂p

∂t
(0, t)− c0

∂p

∂x
(0, t) = 2

∂pi
∂t

(0, t). (8)

A similar consideration at x = L leads to

∂p

∂t
(L, t) + c0

∂p

∂x
(L, t) = 0. (9)

Assuming a harmonic incident signal, we define for
x = 0

pi(0, t) = PA sin (ωt) . (10)

We are looking for the solution of the system of
Eqs. (1), (3) with initial and boundary conditions (4),
(8), (9) for x ∈ [0, L] and t ∈ [0, Tmax]. The finite-
difference method was employed to solve equation (1),
while Eq. (3) was solved using the classical fourth or-
der Runge–Kutta method. As the result of numerical
calculations we obtain the acoustic pressure pi,n =
p(xi, tn) and the bubble radius Ri,n = R(xi, tn) at the
nodal points xi = i∆x, tn = n∆t, where ∆x = L/Nx,
∆t = Tmax/Nt, i = 0, 1, . . ., Nx and n = 0, 1, . . ., Nt.
After the calculation of pi,m and Ri,m for m ≤ n, we
can compute Ri,n+1 and the pressure pi,n+1, i.e. we
can compute the bubble radius and the pressure at
time t = tn+1 if we know the values of these functions
for t ≤ tn.

3. Phase sound speed, resonant frequency

and damping coefficient

The phase speed of acoustic waves cL is calculated
on the basis of the dispersion relation including the ef-
fective complex wave number κ in a gas-liquid mixture.
To describe the procedure of calculation, first we write
the square of the complex wave number using the Ye
and Ding formula (Ye, Ding, 1995):

κ2 = k2 + 4πA

(
1− i

2πB

k

)
, (11)

where
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(12)

and k = ω/c0 is the acoustic wave number, ω0 is the
resonance angular frequency of a bubble, n(a) is the
number of bubbles per unit volume with radii a in the
da = 1 µm range.
Now, we set

κ

k
= u− iv, (13)

where the quantities u and v are obtained using
Eq. (11). Finally, the phase speed cL is given by

cL =
co
u
. (14)

If the higher order term 2πB/k in Eq. (11) is ignored,
we obtain the Commander and Prosperetti formula
(Commander, Prosperetti, 1989):

κ2 = k2 + 4π

∞∫

0

n(a)a da
ω2
0/ω

2 − 1 + iδ t

. (15)

In this paper we consider a bubble population with the
same equilibrium radius R0, i.e. n(a) = Nδ(a − Ro)
where δ denotes the Dirac delta function. After some
calculations we obtain:

κ2 = k2 +
3β0/R

2
0

ω2
0/ω

2 − 1 + iδ t

, (16)

where the gas volume fraction at equilibrium is
given by

β0 =
4

3
πR3

0N. (17)

The phase sound speed depends on the bubble size
distribution, the frequency of the sounding signal, the
bubble resonance frequency and the bubble damp-
ing coefficient. The resonance angular frequency ω0 of
a bubble with radius R0 can be determined using the
formula (Commander, Prosperetti, 1989):

ω2
0 =

p0
ρ0R2

0

(
ReΦ−

2σ

p0R0

)
, (18)

with

Φ =
3γ

1− 3(γ − 1)iz[(i/z)1/2 coth(i/z)1/2 − 1]
, (19)

where z = D
/
(ωR2

0) and D is the gas thermal diffu-
sivity. The quantity p0 is the undisturbed pressure in
the bubble and is given by p0 = P0 + 2σ/R0, where
P0 denotes the equilibrium pressure in the liquid. The
damping coefficient δt is the sum of three components:
the viscous damping constant, the damping constant
due to thermal effects and the acoustic radiation damp-
ing constant:

δt =
4µ

ρ0ωR2
0

+
p0

ρ0R2
0ω

2
ImΦ+

ωR0

c0
, (20)

where µ is the coefficient of molecular viscosity of sea-
water.
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a) b)

Fig. 2. The phase sound speed as function of signal frequency normalized by the bubble resonance frequency for different
values of bubble radii and volume fractions: a) R0 = 40 µm, b) R0 = 100 µm.

We have analyzed signals which frequencies f are
in the region from 20 kHz to 40 kHz. The results of
the numerical investigations presented here are for two
values of the bubble radius. In the first case, the bub-
ble population is not resonant with the incident wave
(R0 = 40 µm) and in the second one this population
is resonant with the incident wave (R0 = 100 µm).
Figure 2 depicts the phase sound speed as function of
signal frequency normalized by the bubble resonance
frequency. The curves show the results obtained for dif-
ferent values of bubble radius and volume fraction. For
the frequency f = 30 kHz and radius R0 = 40 µm, the
resonance frequency equals f0 = 73.1 kHz. Similarly,
for R0 = 100 µm we obtain f0 = 31.9 kHz. We put
here c0 = 1500 m/s, ρ0 = 1000 kg/m3, P0 = 100 kPa,
σ = 0.07 N/m, µ = 0.001 Ns/m2 and γ = 1.4. The
sound speed changes are large when the source fre-
quency is not far from the resonance one. Near the
resonance frequency of the bubbles, when the sounding
frequency increases above or decreases below the res-

a) b)

Fig. 3. The first and the second harmonic amplitudes of the transmitted waves normalized by the pressure PA for
volume fractions β0 = 10−7 (solid line) and β0 = 10−6 (dashed line): PA = 40 kPa, R0 = 100 µm; a) L = 0.1 m,

b) f = 30 kHz.

onance frequency of a single sized bubble population,
the acoustic impedance in the layer becomes essentially
different from that obtained in the case of a pure liq-
uid. One of the results is an increase of the reflection
coefficient.

4. Results of numerical investigations

The first step of our theoretical analysis was the
study of influence of frequency and layer thickness on
the transmitted and reflected waves. Figure 3 depicts
the first and second harmonic amplitudes of transmit-
ted waves normalized by the pressure PA = 40 kPa
calculated numerically assuming that a harmonic wave
is propagated in the bubble layer. We put the sound
speed c0 = 1500 m/s and density ρ0 = 1000 kg/m3.
The values of the speed cL, which depend on the sound
frequency were calculated using the Commander and
Prosperreti model. The numerical calculations were
made for different values of volume fraction assuming
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that the bubble radius is R0 = 100 µm. The pressure
amplitudes of the transmitted wave as function of
signal frequency normalized by the bubble resonance
frequency for the layers of thickness L = 0.1 m are
presented in Fig. 3a. The result obtained for the same
pressure amplitudes as a function of layer thickness
for the incident wave frequency f = 30 kHz is given in
Fig. 3b. The pressure amplitudes of the reflected wave
obtained for the volume fraction β0 = 10−7 are pre-
sented in Fig. 4. The values of the remaining physical
and numerical parameters are the same as used earlier.
The values of the volume fraction have a great in-

fluence on the pressure distribution inside the layer.
For this reason, the effect of this parameter on the
nonlinear generation was more thoroughly examined.
Figure 5 shows normalized amplitudes of the first and
second harmonics in the transmitted wave as function
of volume fraction calculated for different values of the
bubble radius. Figure 5a shows the result obtained

a) b)

Fig. 4. The first (solid line) and second (dashed line) harmonic amplitudes of the reflected wave normalized
by the pressure PA = 40 kPa, R0 = 100 µm, β0 = 10−7: a) L = 0.1 m, b) f = 30 kHz.

a) b)

Fig. 5. The first harmonic amplitude (solid line) and the second one (dashed line) of the transmitted wave
normalized by pressure PA as functions of volume fraction for f = 30 kHz, PA = 40 kPa and L = 0.1 m:

a) R0 = 100 µm, b) R0 = 40 µm.

for R0 = 100 µm. In this case the amplitude of the
first harmonic decreases very quickly, while the ampli-
tude of the second one increases for small values of the
volume fraction and then it stabilizes. An example of
the results of calculations obtained for bubble radius
not resonant presents Fig. 5b. Figure 6 presents the
first and the second harmonic amplitudes of the trans-
mitted and reflected waves normalized by pressure
PA as functions of volume fraction for R0 = 40 µm,
L = 0.1 m, f = 30 kHz and PA = 20 kPa.
The distributions normalized by pressure PA of the

first and the second harmonic amplitudes of the trans-
mitted and reflected waves at frequency f = 30 kHz,
amplitude PA = 20 kPa and bubble radiusR0 = 40 µm
for different layer thicknesses and different values of
volume fraction are represented in Fig. 7. Figure 8
shows similar results obtained for R0 = 100 µm.
The last step of our theoretical investigations was

devoted to a theoretical analysis of the relationship
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between the first and second harmonic amplitudes of
the transmitted and reflected waves, respectively. Fig-
ure 9a presents the second harmonic amplitudes of the
transmitted wave normalized by their first harmonic
amplitudes as functions of volume fraction obtained for
f = 30 kHz, different values of the incident wave am-
plitude and fixed values of the bubble radius. Similar

a) b)

Fig. 6. The first harmonic amplitude (solid line) and the second one (dashed line) of the transmitted wave (a)
and the reflected one (b) normalized by pressure PA as functions of volume fraction; f = 30 kHz, PA = 20 kPa,

L = 0.1 m, R0 = 40 µm.

a) b)

c) d)

Fig. 7. The space distribution of the first and the second harmonic amplitude of the transmitted
and reflected waves normalized by pressure PA: f = 30 kHz, PA = 20 kPa, R0 = 40 µm.

results obtained for the reflected wave depicts Fig. 9b.
Figure 10 shows an example of distribution of the sec-
ond harmonic amplitude of the transmitted wave nor-
malized by the first harmonic amplitude. The calcu-
lations were made for different layer thicknesses and
different values of volume fractions at f = 30 kHz,
PA = 20 kPa and R0 = 40 µm.
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a) b)

c) d)

Fig. 8. The space distribution of the first and the second harmonic amplitudes of the transmitted and reflected
waves normalized by pressure PA; f = 30 kHz, PA = 20 kPa, R0 = 100 µm.

a) b)

Fig. 9. The second harmonic amplitude of the transmitted (a) and reflected (b) waves normalized by their
first harmonic amplitudes as functions of volume fraction; f = 30 kHz, L = 0.1 m.

Fig. 10. The space distribution of the second harmonic am-
plitude of the transmitted wave normalized by the first har-
monic amplitude; f = 30 kHz, PA = 20 kPa, R0 = 40 µm.

5. Conclusions

The problem of the efficiency of the higher har-
monic generation in a bubbly liquid layer was consid-
ered and its mathematical model was constructed on
the basis of two presented differential equations. Some
results of the numerical investigations were discussed.
The linear non-dissipative wave equation was solved
numerically by employing the finite-difference method.
The Rayleigh–Plesset equation describing the bubble
oscillation was solved using the classical fourth order
Runge–Kutta method. The changes of the transmit-
ted and reflected waves were examined. Numerical cal-
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culations were carried out using a computer program
specially designed for this problem by the author.
The purpose of the paper was to conduct numeri-

cal investigations of the nonlinear generation by a bub-
ble layer. Many different environmental and sounding
signal parameters have an influence on the nonlinear
waves propagation over the bubble layer. The influ-
ences of fixed environmental and sounding signal pa-
rameters on the second harmonic amplitudes of the
transmitted and reflected waves were analyzed. First
of all, the numerical calculations were made for dif-
ferent values of the layer thickness and volume frac-
tions, as well as for different values of frequency and
pressure amplitudes of the generated signals. A de-
tailed analysis carried out for different sizes of bubbles
shows how significant influence on the nonlinear gener-
ation efficiency has the gas void fraction. For example,
when the frequency of sounding signal is fixed, we ob-
serve a larger attenuation of the first harmonic ampli-
tude of the transmitted wave in case of resonant bub-
bles, than in that of bubbles with different radii. Near
the resonance frequency of the bubbles, the acoustic
impedance in the layer becomes significantly different
from that obtained in case of a pure liquid and as a
consequence the reflection coefficient increases. The re-
sults of numerical investigations show also that when
the bubble population is not resonant, it is possible to
find values of the layer thickness or the volume frac-
tion for which the ratios of the second harmonic ampli-
tudes of the transmitted wave to their first harmonic
amplitudes are the greatest and, in consequence, the
nonlinear generation efficiency is the best. It is much
more difficult to find such values of these parameters
when the bubbles frequency is resonant.
All the results presented in this paper were

obtained assuming that the single bubble layer is
surrounded by media with contrasting physical proper-
ties. Although this paper deals with the harmonic wave
propagation only, it is not difficult to extend this model
to the case of more than one layer having different
features. It is also possible to develop computer pro-
grams for biharmonic waves as well as for continuous
signals and impulse signals with different envelopes.
This model can be useful in studying the wave propa-

gation in a bubbly environment, for example, it can be
employed in the simulation of the efficiency of paramet-
ric sonars operating in different forms of the nonlinear
layer.
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