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In this paper, a new feature-extraction method is proposed to achieve robustness of speech recognition
systems. This method combines the benefits of phase autocorrelation (PAC) with bark wavelet transform.
PAC uses the angle to measure correlation instead of the traditional autocorrelation measure, whereas
the bark wavelet transform is a special type of wavelet transform that is particularly designed for speech
signals. The extracted features from this combined method are called phase autocorrelation bark wavelet
transform (PACWT) features. The speech recognition performance of the PACWT features is evaluated
and compared to the conventional feature extraction method mel frequency cepstrum coefficients (MFCC)
using TI-Digits database under different types of noise and noise levels. This database has been divided
into male and female data. The result shows that the word recognition rate using the PACWT features
for noisy male data (white noise at 0 dB SNR) is 60%, whereas it is 41.35% for the MFCC features under
identical conditions.
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1. Introduction

Speech recognition can be approximately divided
into two stages: feature extraction and classification.
Feature extraction is a crucial step of the speech recog-
nition process. If vital information is lost during this
stage, the performance of the following classification
stage is inherently defective (Majeed et al., 2012).
Most conventional features that are designed for

speech recognition are based on the power spectrum
or the magnitude spectrum of the speech signal, such
as the mel frequency cepstrum coefficients (MFCC) al-
gorithm (Rabiner, Juang, 1993). Power or magni-
tude spectra blindly represent the spectral content of
the signal. Hence, with an external noise, the spectral
content of the noise is also included, which can make
the feature vectors notably sensitive to external noise
and cause a bad performance of the speech recogni-
tion systems in noisy conditions (Ikbal et al., 2012).
Thus, the researchers attempted to find solutions to
overcome the weaknesses of feature extraction in noisy
speech.
Many methods have been proposed to improve

the feature extraction. These methods can be cat-

egorized into three groups. The first group is the
speech enhancement techniques, working at the sig-
nal level. This stage precedes the feature extrac-
tion process. However, these approaches improve the
speech signal by eliminating or reducing the impact
of noise on the speech spectrum immediately be-
fore extracting features from it. The best examples
of speech enhancement techniques are Spectral Sub-
traction (Boll, 1979), Nonlinear Spectral Subtraction
(Yapanel et al., 2001), Wiener filter (Vaseghi, 2008),
Kalman filter (Paliwal, Basu, 1987), and Adaptive
noise cancellation (Sambur, 1978; Jie, Zhenli, 2009).
The second group is the robust feature extraction
which improves the feature extraction algorithm by
changing or modifying some inner processes to ob-
tain the feature vectors. Good examples of the ro-
bust feature extraction techniques are mel frequency
teager cepstral coefficients (MFTCC) (Nehe, Ho-
lambe, 2009) and autocorrelation MFCC (AMFCC)
(Shannon, Paliwal, 2006). The last group contains
feature compensation or feature enhancement tech-
niques at the feature level, which follows the fea-
ture extraction process. When these techniques are
implemented, a transformation is directly placed on
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the feature vectors to compensate the noise effects on
the extracted features. Good examples of these tech-
niques are cepstral mean normalization (CMN) (Liu
et al., 1993) and principal component analysis (PCA)
(Jolliffe, 2005).
The most popular features in the modern speech

recognition systems are most likely the mel frequency
cepstral coefficients (MFCCs) (Rabiner, Juang,
1993; Shannon, Paliwal, 2006). The steps to com-
pute the MFCC feature extraction from the speech
signal are as follows (Davis, Mermelstein, 1980):
(1) Implement short-time Fourier transform (STFT) to
the speech signal with a finite-duration window (e.g.,
a 32 ms Hamming window) and apply the periodogram
technique to compute the power spectral estimation of
the speech signal; (2) the power spectrum is passed
through a mel filter bank to obtain the filter-bank en-
ergies; and (3) the discrete cosine transform (DCT) is
applied to the log filter-bank energies to obtain the
MFCCs. In clean speech, the MFCC features perform
well; otherwise, their performance rapidly degrades.
However, MFCC extracts only the magnitude of the
spectrum. The phase information is usually discarded
because we traditionally believe that the human au-
ditory system is phase-deaf (Zhu, Paliwal, 2004).
In addition, using the DCT, which is a linear trans-
formation, gives equal weights to all logarithmic en-
ergies (Nasersharif, Akbari, 2007). Equal weight-
ing of DCT and discarding the phase spectrum make
MFCC features highly sensitive to noise. As it will be
shown later, the phase is defined as a nonlinear trans-
formation of the dot product and its use as a measure
of correlation results in relative emphasis of the peaks
over valleys in the spectral domain. This leads to an
improved noise robustness, since the spectral peaks are
considered to constitute the noise robust components
of the spectrum.
In this paper, a new feature extraction method has

been proposed to overcome the limitation of MFCC
in noisy speech. This method attempts to achieve ro-
bustness based on an alternative measure of autocorre-
lation, which is known as phase autocorrelation (PAC),
and the bark wavelet transform (Zhang et al., 2005;
Ikbal et al., 2012), where PAC uses the phase (i.e.,
angle) difference of the speech signal frame over time
to measure the correlation. Conventional autocorrela-
tion computes the correlation coefficients as the dot
product of the time-delayed speech vectors. In ad-
dition, the bark wavelet transform, which has good
time and frequency resolutions, has been used instead
of the Fourier transform to alleviate the previously
stated issues. We refer to this new feature extraction
method as phase autocorrelation bark wavelet trans-
form (PACWT).
The remainder of this paper is organized as fol-

lows: Sec. 2 provides a brief overview of the phase
autocorrelation. The bark wavelet transform is ex-

plained in Sec. 3. In Sec. 4, we introduced our pro-
posed method, the phase autocorrelation bark wavelet
transform (PACWT). Section 5 describes the recog-
nition experiments and their results. The paper ends
with a conclusion in Sec. 6.

2. Phase autocorrelation

The inspiration to use an angle to measure the
correlation depends on the belief that with external
noise, the angle changes less than the dot product
(Mansour, Juang, 1989). The conventional autocor-
relation method is computed as the dot product of the
time-delayed speech vectors. Lately, a different mea-
sure of autocorrelation, which is known as phase au-
tocorrelation (PAC), has been introduced. This mea-
sure depends on the angle between the vectors in the
signal vector space (Ikbal et al., 2012). Here, a brief
overview of the phase autocorrelation algorithm is pro-
vided. For any speech recognition system, the speech
signal is divided into a sequence of frames:

s = {s[0], s[1], . . . , s[N − 1], (1)

where N is the frame size. Suppose there are two vec-
tors x0 and xk as:

x0 = {s[0], s[1], . . . , s[N − 1]} ,

xk = {s[k], . . . , s[N − 1], s[0], . . . , s[k − 1]} .
(2)

Applying the dot product, the autocorrelation coeffi-
cients of the speech frame are calculated using:

R[k] = xT0 xk. (3)

R[k] can also be written as:

R[k] = |x|2 cos (θk), (4)

where |x|2 refers to the energy of the frame, and θk
denotes the angle between vectors x0 and xk in the
N -dimensional space. The new set of correlation coeffi-
cients P [k] is created by using the angle θk as the mea-
sure of correlation instead of the dot product. These
coefficients P [k] are computed as:

P [k] = θk = arccos

(

R[k]

|x|2

)

. (5)

Based on the above equations, the PAC coefficients
P [k] only depend on θk, which is less susceptible to
the external noise than R[k] (Ikbal et al., 2012). The
inverse cosine transformation can improve the spectral
peaks out of spectral valleys and add less weight to
some high-frequency information of the spectrum as
described in (Ikbal et al., 2012).
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3. Wavelet transform

The wavelet transform uses short windows to de-
termine the high-frequency information in the sig-
nal, whereas the low-frequency content of the sig-
nal is measured using long windows. This character-
istic makes the wavelet transform better than the
short-time Fourier transform and Fourier transform
(Tufekci, Gowdy, 2000). Consequently, the wavelet
transform has been commonly used in speech and im-
age processing.
Whereas the short-time Fourier transform (STFT)

provides a fixed resolution at all frequencies, the
wavelet transform applies a multi-resolution technique,
where different frequencies are analyzed with various
resolutions. The continuous wavelet transform (CWT)
of a signal s(t) is described as (Addison, 2010):

S(a, b) =
1√
a

∫

s(t)ψ∗
(

t− b

a

)

dt, (6)

where ψ∗
a,b(t) is the analyzing function, which is the

scaled and time-shifted version of the wavelet func-
tion ψ∗(t), b is the time-shifting parameter, and a is
the scaling parameter. Equation (6) can be easily in-
terpreted in three ways. First, it can be viewed as a
scalar product of the signal s(t) and ψ∗

a,b(t) analyzing
function. Therefore, the signal details can be analyzed
with different resolutions (scales) at the time instant
t = b.
Based on the second interpretation the signal s(t)

can be analyzed by a series of linear systems with im-
pulse responses of the form 1√

a
ψ(−t/a), therefore a

wide variety of signal changes in s(t) can be acquired
from the slow (a > 1) to the rapid (a < 1) ones.
Equation (6) can be calculated in frequency domain
through the use of inverse Fourier transform (Rioul,
Duhamel, 1992; Addison, 2010):

S(a, b) =
√
a

+∞
∫

−∞

S(ω)Ψ∗(aω)ejbω dω. (7)

It leads to a third interpretation because the argu-
ment of Ψ∗(aω) is in direct proportion to the fre-
quency at a given scale a. Consequently, using the
ratio of the bandwidth ∆ω and the centre frequency
ωc, the ratio ∆ω/ωc remains constant, thus (6) simply
is a constant relative bandwidth (constant-Q) analysis
(Pintér, 1996). For sampled signals the computations
can be achieved with inverse DFT at different scales or
with direct evaluation of an acceptable approximation
of (6):

S(n, a) =
1√
a

∑

k

s(k)ψ∗
(

k − n

a

)

. (8)

The wavelet transform is merged with MFCC feature
extraction algorithm to obtain robust features. Tufekci

and Gowdy applied the discrete wavelet transform
(DWT) to the mel-scaled log filter-bank energies of a
speech frame to achieve good time and frequency local-
izations (Tufekci, Gowdy, 2000). The bark wavelet
transform was used with MFCC by Zhang et al. The
bark wavelet is particularly designed for speech sig-
nal, and it depends on the psychoacoustic bark scale
(Zhang et al., 2006).

3.1. Bark wavelet transform

The human auditory system has a nonlinear map-
ping relation with the actual frequency and a linear
relation with the bark frequency. Equation (9) shows
the relation between the linear frequency and the bark
frequency (Traunmüller, 1990):

b = 13 arctan(0.76f) + 3.5 arctan

(

f

7.5

)2

, (9)

where b is the bark frequency, and f is the linear fre-
quency. The fundamental concept of designing a bark
wavelet is usually as follows. Because of the equal im-
portance of the time and frequency in the speech anal-
ysis, which are lead to the optimality in Gabor sense,
the function of (approximately) minimum uncertainty
and unity bandwidth is essential for this optimality. As
it is well known, this function is the Gaussian (Gabor,
1947; Reid, Passin, 1992) and it can be expressed as:

W (b) = e−c1b
2

. (10)

Constant c1 is selected as 4ln2, when the unit band-
width is defined as 3 dB. The bandwidths of the
mother wavelet are all unit bandwidths on the Bark
scale, i.e., 1 Bark. In order to make alterable wavelet
windows, Wk(b) can be defined as:

Wk(b) =W (b − b1 − k∆b),

k = 0, 1, . . . ,K − 1,
(11)

where

∆b =
(b2 − b1)

K − 1
,

is the translation step-length of Wk(b), k is the scale
parameter, K = 24 is the total number of sub-bands,
b2 is the highest bark frequency number of the speech
signal, and b1 is the lowest bark frequency number of
the speech signal. Then, by substituting (9) and (11)
into (10), the bark wavelet function in the linear fre-
quency can be written as:

Wk(f) = c22
−4[13 arctan(0.76f)+3.5 arctan( f

7.5 )
2−a∗]2 , (12)

where
a∗ = (b1 + k∆b).
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The value of c2 can be found at a given frequency band
with the condition below for the perfect reconstruc-
tion:

c2

K−1
∑

k=0

Wk(b) = 1, 0 < b1 ≤ b ≤ b2. (13)

Because of the strict equality in [b1, b2] in Eq. (13),
initially we place one unity bandwidth Gaussian at b1.
Then, starting from a small value of ∆b, by its sys-
tematic increasing the interval [b1, b2] is covered,
and the resolution of the unity holds in [b1, b2].
In the end, the normalizing constant c2 is com-
puted as the reciprocal value of the overall sum in
Eq. (13).
Then, bark wavelet transform in linear frequency

can be expressed:

Sk(t) =

∞
∫

−∞

S(f)Wk(f)e
j2πft df, (14)

where S(f) is the frequency spectrum of the speech
signal.

4. Phase autocorrelation bark wavelet transform

(PACWT) feature extraction method

In this section, the phase autocorrelation bark
wavelet transform (PACWT) feature extraction
method and its difference from the conventional MFCC
feature extraction method are discussed. Figure 1 il-
lustrates the block diagram of the PACWT feature ex-
traction method.
Initially, the speech signal is pre-emphasized using

H(z) = 1 − 0.97z−1 to increase the signal energy at
high frequency given that the low-frequency band is
filled by useless/harmful sounds for speech recognition.
Frame blocking and frame shift are performed with 200
and 100 samples per frame, respectively. The Ham-
ming window is used on the pre-emphasized signal of

Fig. 1. Block diagram of the PACWT feature extraction algorithm.

a given frame. By applying Eq. (5), a phase autocor-
relation sequence Pn[k] is obtained with 25 ms long.
Then, the bark wavelet transform is simply applied to
the Pn[k] as:

Sk(n) =

N−1
∑

l=0

Pn(l)Wk(l)e
j2πnl

N , (15)

where Pn(l) is the frequency spectrum of signal Pn[k],
and Wk(l) is the discrete form of Wk(f) in Eq. (10).
Then, the signal S(n) passes through the mel filter

bank, which can smooth the frequency spectrum, min-
imize the harmonic, and emphasize the main formant
of the speech signal. Thus, the feature coefficients do
not include the tone and the pitch of the speech sound.
However, the speech recognition system should not be
interfered with by a different pitch of the input speech
signal. Finally, 12 PACWT feature coefficients are ob-
tained by applying Eq. (16) as follows:

PACWT features =
M−1
∑

m=0

Wk(m)D(m), (16)

where

D(m) = log

(

N−1
∑

n=0

|S(n)|2 .Hm(n)

)

,

D(m) is the log of the mel filter bank output energies
m = 1, 2, . . .,M , and Hm(n) represents the response
of the mel filter banks, 1 ≤ m ≤ M , M is the total
number of filters.
Additionally, the log energy of the windowed signal

is calculated and added to the 12 PACWT feature
coefficients to obtain 13 base features. The first and
second derivatives (delta and delta-delta) of the time
sequence of each base feature are also calculated. These
derivatives are concatenated to the base feature set to
have the final PACWT feature coefficients set (with
39 features). The MFCCs are the most widely used
features for speech recognition, and the block diagram
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Fig. 2. Block diagram of the MFCC feature extraction algorithm.

of the MFCC feature extraction method is shown in
Fig. 2.
The main differences in these two methods are the

process to estimate the power spectrum of the speech
signal and the decorrelation of the spectral vectors. In
the MFCC scenario, the power spectrum is estimated
by applying a STFT to the Hamming windowed speech
signal; the Discrete Cosine Transform (DCT) is used to
decorrelate the mel-spectral vectors. In the scenario of
the PACWT feature coefficients, the power spectrum
is estimated by calculating the bark wavelet transform
of the phase autocorrelation, which is derived from the
Hamming windowed speech signal, whereas the bark
wavelet transform is used instead of the DCT. These
differences can be observed in the block diagrams in
Fig. 1 and Fig. 2.

5. Experiments and results

In this section, the recognition performance of the
PACWT features is evaluated at different SNRs using
the TI-Digits database. To obtain the noisy speech, the
speech signal is corrupted using three different types
of additive noises: pink, white, and babble noises, and
are added to both training and testing sets.

5.1. Database

The TI-Digits database is used as a benchmark
dataset for isolated word recognition. It was collected
at Texas Instruments in the early 1980’s to develop and
evaluate algorithms for speaker-independent recog-
nition of the connected digit sequences (Leonard,
1984). The version in the experiments is down sam-
pled to 8000 samples per second. Each speaker pro-
nounces each digit twice. The dataset was divided into
a training set and a test set and into male and female
speakers. The “o” digits will not be used; to represent
a zero, the “zero” digits are used, which creates 10 digit
classes from 0 to 9.

5.2. Experimental setup

In the experiment, the speech sampling frequency
is 8000 Hz, and the frame length and frame shift are
200 and 100 samples per frame, respectively. Hamming
window is used as the window type. The bark wavelet
transform, which has the property of multi-resolution,
is used to process the speech data.
An MFCC feature is computed using the melcepst

function in the Voicebox toolbox of Matlab. A similar
window length and a similar function are used for the
spectrogram experiments. 12 coefficients are extracted;
furthermore, the log energy, delta, and delta-delta co-
efficients are computed.
For the classification, the support vector machine

(SVM) is used. For a set of training samples, each of
which is labeled as belonging to one of the ten classes,
an SVM training algorithm builds a model that pre-
dicts whether a new sample belongs to one class or
the other. In this work, the LIBSVM (Chang, Lin,
2011) library is used. This library supports multiclass
classification.

5.3. Results

The recognition performance of the PACWT fea-
ture extraction method is compared with that of the
MFCC method. We evaluate the recognition perfor-
mance of the PACWT method using the speech that
is corrupted with three types of noises, two of which
are stationary: white noise, which is artificial, and pink
noise, which is real. The last type of noise is non-
stationary noise, which is real babble noise. Further-
more, we divided the speech data into male and female
data, and the word recognition rate results for male
and female data are listed in Tables 1 and 2, respec-
tively.
From these tables, it is obvious that white noise is

the worst type of noises because it includes all audi-
ble frequencies. To make the comparison between the
MFCC and PACWT features more convenient, we plot
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Table 1. Word recognition rate of male data in MFCC and PACWT.

PACWT features MFCC features

SNR, in dB
Word recognition rate, in %

SNR, in dB
Word recognition rate, in %

White Babble Pink White Babble Pink

Clean 91.43 91.43 91.43 Clean 98.57 98.57 98.57

20 92.86 91.00 91.43 20 93.18 95.80 95.20

15 91.43 90.71 91.14 15 86.52 93.06 92.46

10 87.86 90.00 91.09 10 77.99 84.63 84.03

5 77.86 82.14 90.71 5 58.00 69.32 67.43

0 60.00 68.57 82.86 0 41.35 45.95 44.92

Table 2. Word recognition rate of female data in MFCC and PACWT features.

PACWT features MFCC features

SNR, in dB
Word recognition rate, in %

SNR, in dB
Word recognition rate, in %

White Babble Pink White Babble Pink

Clean 82.14 82.14 82.14 Clean 97.86 97.86 97.86

20 78.57 81.43 82.14 20 92.32 96.41 96.22

15 73.57 76.43 77.14 15 86.45 93.88 92.01

10 68.57 72.86 66.43 10 74.39 86.40 83.41

5 61.43 65.00 63.57 5 60.23 71.49 69.57

0 51.43 56.43 60.43 0 47.14 51.71 54.07

the recognition accuracies for the male and female data
that are corrupted by white noise as a function of SNR
in Figs. 3 and 4, respectively.
The PACWT feature extraction method is gener-

ally more noise-robust than the MFCC, particularly in
high-noise (low-SNR) environments. However, MFCC
has a higher recognition rate than the PACWT fea-
tures in clean speech (high SNR) because of the non-
linear transformation used to compute the angle θk in
PACWT, which deemphasizes the noise sensitive com-
ponents that otherwise would have been useful during
the clean speech recognition.

Fig. 3. Performance comparison of PACWT and MFCC
features for white noise of male data.

Fig. 4. Performance comparison of PACWT and MFCC
features for white noise of female data.

In contrast, the female data have lower PACWT
performance than the male data possibly because of
the differences among males and females in voice qual-
ity. Female speakers have higher formant frequencies
and breathier quality than male speakers, and female
speakers speak faster on average than male speakers.
The PACWT is more evident at high-noise conditions.

6. Conclusion

In this paper, a new method of feature extrac-
tion has been introduced for robust speech recogni-
tion. This method applies the phase autocorrelation
technique and the bark wavelet transform. The speech
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recognition performance of the PACWT features has
been evaluated using the TI-Digits database. Com-
paring with MFCC, the PACWT features perform
much better in low-SNR conditions, and the recogni-
tion performance was significantly better for male data
than for female ones. To further improve the PACWT
method in female data, we will analyze in-depth the
characteristics of speech and the factors that affect
the speech recognition performance in females. Fur-
thermore, we will attempt to find a good method to
enhance speech recognition in environments with low
noise (high SNR).
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