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The aim of the presented work was to train a neural network in order to recognize a class of
a chosen musical instrument. As problems related to analysis of sounds are related to human
subjective perception abilities, then it seems that such tools of analyses as neural nets should
be used for recognition processes. On the other hand, an artificial neural network should not
be trained directly with subsequent samples of a sound, thus the feature extraction procedure is
needed at first. As, there is no consensus regarding the selection of parameters for feature vector
extraction, thus the experiment aimed to check whether calculated parameters are sufficient
for creating a set of sound patterns used for neural network training. Some neural nets were
investigated in the experiment, they were trained with so-called ELEVEN and FOURTEEN
vector types. After the learning procedure was executed, other examples of the previously created
database (but not seen by the neural network) were presented to neural nets. Results show that
NNs (neural networks) are able to generalize information included in feature vectors. Therefore,
when presenting data to NN inputs, there is no problem with variation of parameters within data,
and consequently with data clustering, because a NN has the ability to generalize information
during the learning phase. In the paper, an analysis of experimental results will be carried on,
and conclusions derived from the performed tests will be presented.

1. Introduction

Despite the development of contemporary computer systems and growth in their pro-
cessing power, there still exists a certain class of problems that have not been assigned the
solving method. This class includes, among others, musical instrument sound recognition
tasks. From the viewpoint of sound engineering the effectiveness of sound recognition is
still imperfect even in well designed systems based on learning algorithms. Neural net-
works are one of the most frequently used learning algorithms. Systems that are based
on these algorithms have become especially significant in the process of recognition of
images, speech, also applications of musical sounds classifications have appeared [1, 2,
3]. It is the latter field that belongs to the most interesting aspects of musical acoustics.

One of the main advantages of artificial neural networks is the ability to generalize,
that is the ability to correctly classify when the network comes across a new object at
the input. The neural network processes the input object using the knowledge acquired
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during the training phase. Therefore a neural network is applicable to solving all types
of classification tasks and to recognition, that is difficult to be described algorithmically.
The effectiveness of processing of input objects depends on the quality of the training
phase progress. If the network is imprecisely taught, it may fail to learn how to generalize,
hence its effectiveness in the recognition phase will be small. On the other hand, if the
network gets taught too excessively it will lose the ability to generalize and will process
correctly only elements of the training set. It is difficult to determine the moment at
which the training of the network should be terminated as it depends on the character
of the training set, the selected structure of the network, initial conditions, parameters
of the network and the selected training method.

Artificial neural networks have found extensive application in many fields. Despite,
however, a big number of various methods of training and the structures of the networks,
the most often used are multi-layer networks of the feedforward type that are taught using
the error back-propagation method (EBP) [4, 5].

The goal of this research work was to design a neural network for the purpose of
classifying musical instruments patterns, and then to determine the effectiveness of its
processing. The basis for the below research was a parametrized basis of musical sounds
developed at the Sound Engineering Department of the Gdansk University of Technology.
In the article, out of necessity, the issues related to searching for parameters that would
best represent distinctive features of sound of various classes of musical instruments were
narrowed down to a presentation of parameters that were examined previously [6, 7, 8].

2. Architecture of the neural network — descripiton of the algorithm

2.1. Model of the artificial neuron

Each artificial neural cell consists of a processing element with n + 1 synaptic input
connections attached to it and with a single output coming out of it. Additionally, one
connection, a so-called threshold, is distinguished. Its input is permanently fed by value
of —1.

The output signal of the neuron is given by the following relation:

0= f(w'x), @)

where w is the vector of weights and x is the input vector. Because of the presence of
the threshold, they are augmented by w,+1 and —1, respectively, and are defined as:

T T
w= w1w2...wnwn+1] \ x=[a:1:zg oo, =11 . (2.2)

Function f in the formula (2.1) is referred to as a neuron activation function. Its
domain is represented by the set of activation values expressed as [4]:
net = w’ x. ’ (2.3)

Since the error back-propagation method using the delta learning rule requires a dif-
ferentiable function, that is why the commonly used activation functions are of sigmoidal
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type (unipolar, bipolar, hyperbolic tangent, etc.) [4]. The unipolar continuous activation
function defined in (2.4) is presented in Fig. 1.
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Fig. 1. Diagram of the unipolar function.
1
f(net) = (2.4)

1+ exp(—A-net)’

where net is given by the expression (2.2), whereas A > 0 is proportional to the network
gain and defines the steepness of the activation function. The function defined in formula
(2.4) is very convenient to use since its derivative is expressed using simple expressions.
Assuming the coefficient A = 1, the derivative f'(net) adopts the form [4]:

f'(net) = f(1-f). (2.3)
2.2. Structure of the two-layer network of the feedforward type

The structure of the two-layer network of the feedforward type is one of the most
commonly used structures. The consecutive layers are the input layer x, hidden layer
y and output layer o. The number of neurons for the consecutive layers is respectively:
x—1I,y—J, o— K. The input and hidden layers may have additionally one dummy neuron
each. The output value of the neuron is constant and equals to —1, whereas the value of
the weight may change. The dummy neuron is therefore an equivalent of the threshold
synapse for all neurons in the next layer. Matrices V(J + 1 x I + 1), W(K x J + 1) are
sets of synaptic weights respectively: from the input layer toward the hidden one and
from the hidden toward the output layer,

2.3. Delta learning rule as the basis of the EBP algorithm

The error back-propagation method is based on the delta learning rule [4] which
determines how the vector of weights should be updated in the successive step of the
training. The increment of the vector of weights in the step s + 1 is expressed in the
following way:

wtl=w +Aw'], (2.6)

where s signifies the number of the training step.
In the course of training the increment in the weight vector Aw requires a change in
the direction of the negative gradient in the error space. This is the general concept of
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the delta learning rule [4]:
Aw'tl = gV E(wW), 2.7

where 7 is the constant that determines the rate of learning, whereas the error F is
given by the definition (2.8). It signifies the squared error between the current value at
the output of the network o and the required response of the network d [4]:

1
E=3lld-olp, 28)

where o and d signify K -element vectors, while K is the number of neurons in the output
layer.

2.4. Algorithm of the error back-propagation method

In order to simplify the notation of the error back-propagation method [4], it was
adopted that the layers: output and hidden ones were extended by a neuron with a
constant value at the input equal to —1. Therefore it was assumed that the number of
neurons in the input layer equals I, in the hidden J, and the output one K.

Due to the above assumptions there are two matrices of weights V(J x I'), W(K x J),
whose values change in the course of the training phase:

11 V12 e vr w11 Wiz i wiy
v v ‘o Var w W m w Wy

V= 21 22 , W= 21 (2-9)
Vrir Vy2 ... Vjg WK1 W2 ... WgyJg

and 3 vectors x(I x 1), y(J x 1), o( K x 1) denoted as the outputs of the particular layers:

X = [.'1:1 O :c;_l—l]T, y= [y1 Yo o yJ]T, o= [0102 OK]T. (2.10)

Considering the simplicity of the matrix notation of the EBP method, vectors: f,
f, are defined. Their elements are derivatives of neuron activation function defined in
the formula (2.5) and refer to neural nodes in the output layer and in the hidden one,

respectively: layers o and y. The vectors: f7, f, are as follows:

) = [fi(nety) fy(nets) ... fi(netx)]”, )
£, = [fimets) fynets) ... f;(nety)]”.
Moreover, let linear diagonal operator ®[q] and nonlinear one I'[q] be defined as below:
g 0 ... 0 fi(q) 0 0
sq=|° 2 - 0| pg=| 0 L@ - 0 1 5y
0 0 ... gq 0 0 ... ffg)

where fi, fa,..., fo — neuron activation functions as defined in the formula (2.4).
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If the layers responses are as follows:
y =T[Vx], o =I'[Wy] (2.13)
then error signal terms fm" respective layers are defined:
8, = —VE(o), for the output layer o,
8, = —VE(y), for the hidden layer y.

After having performed required calculations, the vectors for the error signal terms
are expressed as follows:

(2.14)

6, = ®[d—o]-f,
6, = wj -8,-f,,

According to the delta learning rule (2.6)-(2.7), the update of weights V, W in the
k +1-th step is calculated as in the formulae:

VL = VE 4+ by xT,
wk+1 s wk +n60yT,

(2.15)

(2.16)

In order to accelerate the convergence of the EBP training process, a momentum
method is often applied by supplementing the current weight adjustment with a fraction
of the most recent weight adjustment [4]. The momentum term (MT) in the k +1-th
iteration is expressed by the relationship:

MT 4! = o AwF, (2.17)

where a - user-defined positive momentum constant, typically from the range 0.1 to 0.8,
Aw* — increment of weights in the k-th step.
And thus, the final equations for the updates of matrices V, W with the momentum
terms are computed as below:
Ve = VE 4 b, xT + oAV,
Wi = WE 4 pb,yT + AW,
The dataflow of the EBP algorithm is diagrammed in Fig. 2.
The more detailed description of the algorithm from Fig. 2 is presented below:

(2.18)

Step 1 — weights of matrices V, W are initialized at small random values, which is
recommended in the literature [1, 4]. In the majority of cases the variability of the
weights values should range from —1 to 1.

Step 2 — cumulative cycle error F is set for 0. The goal of the training is to adjust the
weights of the neural network in such a way that the value of the cumulative cycle error
drops below the arbitrarily set value Ema. Therefore parameter E is increased by the
value computed using the expression (Eq.(2.8)) for each pattern from the training set.

Step 3 — an element is selected from the training set. It is recommended for vector x

to be selected at random. At the same time the vector of required responses of network
d gets updated.
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Fig. 2. Algorithm of the EBP method for a two-layer neural network.

Step 4 — responses of the particular layers are computed: y, o.

Step 5 — error signal terms are computed for the consecutive layers: §,, 8, according
to the equation (2.15).

Step 6 — if training process is performed with the momentum correction, matrices of
weights V, W are updated based on the formula (2.16), otherwise on the equation (2.18).

Step 7 — error of the network is determined for the given pattern, whereas this value
is added to the value of the cumulative error E.
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Step 8 - if it is not the last pattern in the training set, then a consecutive object is
selected at random and the processing goes back to Step 3. At the same time the object
that was used is removed from the training set and does not take part further within one
cycle of training.

Step 9 - in the contrary case if it is the last element in the training set, cumulative error
E is compared to the condition of stop providing an arbitrarily assigned threshold value
Emax. If the neural network processes all patterns in the training set with a satisfactory
error (E < Fnx0), the algorithm stops.

Step 10 — in the contrary case (E > FEnay), one cycle of training is completed. The
value of parameter F is reset to 0, the training set is reconstructed and another training
cycle begins.

3. Experimental phase — training of the network

The goal of the experiments was to study the possibility of identifying selected classes
of instruments by a neural network in order to verify the effectiveness of the extracted
parameters of sounds. In the study a database, containing vectors of parameters of musical
sounds that was prepared at the Sound Engineering Department of the Gdansk University
of Technology was used [6, 7]. The basis for the created database was digital recordings
of musical instruments on CD records, released by McGill University Master Samples
(MUMS) and partly the SHARC basis developed at the Sussex University [6]. However,
as the SHARC database contains only FFT information of musical instrument sounds,
therefore additional spectral parameters, such as brightness, energy of even and odd
harmonics, the Tristimulus [9] parameters etc were calculated [6, 7, 8]. Additionally, some
time-related parameters were extracted from sound patterns and added to the database.

The sounds of the instruments were represented by vectors of parameters, The train-
ing of the network and its testing was carried out on the basis of 2 types of vectors of
parameters, called respectively: ELEVEN and FOURTEEN. The first one contained 11
parameters of steady-state and an initial transient, the latter additionally encompassed
3 parameters of steady-state on the basis of the SHARC database [6]. Since a stereo
sound constituted the basis for calculating the parameters of musical sounds, so the same
parameters were calculated separately for the left channel and the right one. Below for-
mats of vectors and mathematical relations on the basis of which the parameters were
calculated are shown.

Table 1. Formats of feature vectors, namely ELEVEN and FOURTEEN.
ELEVEN:
(F[a[n[a]a[na]A[A]|R|~[A]

FOURTEEN:

|F|T2|T3|P1|PZIP3IP4|P5|P5|P1IPQIB|Od|Ev|
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where [8]
F' — normalized frequency,
Ti - energy of the first harmonic (the first modified Tristimulus parameter):

N
Ty= A3y A2, @.1)
n=]

where A,, — amplitude of the n-th harmonic, NV — number of all available harmonics;
T, — the second modified Tristimulus parameter:

4 N
T2=ZAi/ZA3,. (3.2)
n=2 n=1

T3 — the third modified Tristimulus parameter:

N N
L=y 4 /Y4, (33)
n=5 n=1

P, — rising time of the first harmonic expressed in periods of the signal,

P, - T at the and of the attack divided by T} for the steady-state (so-called overshoot)
(see Eq.(3.1)),

P; - rising time of the second, the third and the fourth harmonic expressed in periods
of the signal,

P, — T at the and of the attack divided by T for the steady-state (see Eq.(3.2)),

Ps — rising time of the remaining harmonics expressed in periods of the signal,

Ps — T at the and of the attack divided by T3 for the steady-state (see Eq.(3.3)),

P; — delay of the second, the third and the fourth harmonic in relation to the first
harmonic during the attack,

Py — delay of the remaining harmonics in relation to the first harmonic during the
attack,

B — brightness,

N N
B=Zn-An/ZA,,, (3.4)
n=1

n=1

Od - contents of odd harmonics without the first one in spectrum:

L N
Od = JZA%;,_I/JZA%, (3.5)
k=2 n=1

where L = Entier(N/2 + 1);
Ev — contents of even harmonics in spectrum:

M N -
Ev=\jZA§k/JZA3,, ‘ (3.6)
k=1 n=]1

where M = Entier(N/2);
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These parameters were normalized, i.e.:
Ti+ T2+ T3 1. (3'7)
Ty + EV +0d* = 1. (3.8)

A multi-layer neural network of the feedforward type was used in the experiments.
The number of neurons in the initial layer was equal to the number of elements of
the parameters vector, hence it was respectively: 11 or 14, In turn, each neuron in the
output layer was matched to a different class of the instrument and so their number
was equal to the number of classes of instruments used in the experiment. The given
network contained a hidden layer, too. The number of hidden neurons was arbitrarily
adopted at 15. The first stage of the experiments encompassed the phase of training of
the neural network. The training of the neural network was carried out using the error
back-propagation method several times: 2 for the vector type ELEVEN, 3 - for the
vector type FOURTEEN for the same training set. Each time different initial conditions
were adopted as well as training parameters: the training process constant (7)) and the
momentum term (o) were changed dynamically in the course of the training. They were
used later to evaluate the progress of the training process. Additionally the number of
iterations was observed necessary to make the value of the cumulative error drop below
the assumed threshold value.

To train the neural network, parameters vectors of 4 classes of instruments were se-
lected: BASS TROMBONE, TROMBONE, ENGLISH HORN, CONTRA-BASSOON.
In general, 2 types of training sets were formed: one encompassed all parameters vec-
tors for the given channel (type ALL), while the other one contained about 70% of all
vectors for the given (left or right) channel (type 70_PC). The vectors that were included
in the set type 70_PC were chosen at random, however, it was attempted to maintain
a uniform distribution. To make the results comparable, sets of type 70_PC consisted
of vectors of the same indexes in the database, irrespective of the type of parameters
vectors (ELEVEN or Fourteen). Below in Table 2 the number of parameters vectors for
the given class of instruments in the training set type 70_PC in regard to the size of the
class is shown. Additionally, this relation is presented in per cent, and also mdexes of
vectors that were excluded from the set type 70.PC are mentioned.

Table 2. Representation of the training set type 70_PC.

Instrument Size of the class | Size of the class | Vectors excluded from the set
70PC 70PC in [%] type 70_PC
BASS TROMBONE 18/25 72% 2, 7,10:°14. 18, 21,23
TROMBONE 22/32 68.75% 1, 4, 7, 10, 15, 18, 22, 26, 29, 30
ENGLISH HORN 21/30 70% 3,5,8, 12,16, 19, 22, 27, 30
CONTRA-BASSOON 22/32 68.75% 3,6,8, 11, 14, 19, 22, 25, 28, 31

The training set type ALL included 119 parameters vectors, while the set type 70_PC
encompassed 83 vectors (69.75%).

For the selected phases of the training process, graphic presentations were made
of dynamic changes of the parameters of training: 7 and a, respectively. Additionally,
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the relation between the number of iterations and the maximum admissible value of
cumulative cycle error is shown. The values of this error are at the same time the condition
of discontinuing the process of training. The diagram of the above relation illustrates an
increase in the number of required iterations along with an increase in accuracy of the
training, Data matching this relation are presented in appropriate tables.

3.1. Training of the network on the basis of vectors type ELEVEN

In the case of training using vectors type ELEVEN, one training set was formed with
parameters for the left channel. The set was type 70_PC. The training was continued
up to the moment when the value of the cumulative error in the EBP method dropped
below 0.005. This value was adopted arbitrarily in order to observe a possible case of
network over-training. The diagram of the research is presented graphically in Fig. 3.
The adopted descriptions have the following respective meanings: 70_PC - type of the
training set, while variables range_}' and range W give information on the range of
values of elements of matrix V and W. In the first case (1), matrices of network weights
were initiated at random, however, these values did not exceed the range of (—0.2,0.2),
while in the second case (2) this range decreased to values within (—0.1,0.1).

LEFT-

70_PC y range_V=range_W=0.2 70_PC ¥y range_V=range_W=0.1

Fig. 3. Diagram of the training phase for the parameters of the left channel.

3.1.1. Training process — LEFT.1_70PC (ELEVEN). For this type of the training set
(LEFT.1.70PC), the following initial conditions were adopted: unipolar activation func-
tion of the neuron, random initialization of values of elements of matrices V and W rang-
ing from —0.2 to 0.2, training with the momentum method applied, 7 = 0.6, « = 0.4. In
Fig. 4 the dynamic change of training parameters is shown. Additionally, in Table 3 the
convergence of the training phase is presented.

, O
s 0.8 3
0.6 Ho
0.4
0.2
o ' “ cycle
0 32 68 311 538 yE
none 11.953 7.484 1.585 0.284

Fig. 4. Dynamic change of training parameters.

Table 3 lets one draw a conclusion that the network did not have any problems with
training parameter vectors. Up till the value of the cumulative error 0.02 the training
process proceeded quickly and relatively uniformly. Then the progress of training was
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Table 3. Convergence of the training phase.

Emax | Number of iteration
0.05 714

0.04 783

0.03 897

0.02 1137

0.01 1902

0.005 3430

significantly curbed. It is worth noticing that all dynamic changes (see Fig.4) of training
parameters took place before the accuracy of training increased below 0.1.

3.1.2. Training process — LEFT.2_70PC (ELEVEN). For this type of the training set
(LEFT.2_70PC), the same initial conditions were adopted as in the case of the training set
type (LEFT.1_70PC). However, random values of elements of matrices V and W ranged
from —0.1 to 0.1. In Fig.5 the convergence of the training phase is presented. On the
basis of diagram in Fig. 5 it is possible to see that up to the value of 0.05 of the cumulative
error, the network training proceeded uniformly. Further growth in the required changes
of values of weights should be small (because the maximum admissible error was small).
It is also worth noticing that the last dynamic change of training parameters took place
at error 0.1.

cycle

6000
4000
2000

0

0.1 0.09 008 007 006 005 0.01 0.005 Emax

Fig. 5. Convergence of the training parameters.

3.2. Network training on the basis of vectors type FOURTEEN

For the purpose of training on the basis of vectors type FOURTEEN, 4 training
sets were formed, 2 for each channel: the network was trained on all available vectors
(100%) — type ALL and on about 70% (69.75%) of vectors from the database — type
70_PC. The training was proceeding up to the moment when the value of the cumulative
error dropped below 0.01. This value was selected to be arbitrarily small so that a possible
state of network over-training could be achieved. Twelve network training processes were
conducted, 6 for each channel. A diagram of the training phase is presented in Fig. 6.
The descriptors are analog to those that were presented in Fig. 3.

The ranges of random initialization of weights of matrices V and W for expenments
marked as (1) and (2) are the same as for training sets type ELEVEN, as the objective
was to observe the effects of initial conditions in the training process for both types
of training sets. While training diagrams, marked as (3) (for both channels), have an
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RIGHT

range_V = range_W= 0.2 range_V = range_W=0.1

70_PC ALL  70_PC ALL  70_PC ALL

LEFT

range_V = range_W=0.2 range_V = range_W=0.1

70_PC ALL  70_PC ALL  70_PC ALL
Fig. 6. Diagram of the training phase conducted for parameters of both channels: Left and Right.

identical range of random weight initialization as diagram (2). However, these routines
differ from one another because each time the values of the weights during random
initialization are different. The purpose of such diagrams (2) and (3) is to compare the
process of training convergence within the same type of a training set.

The network training according to adopted training routines is shown in detail on the
basis of the left channel.

3.2.1. Training process — LEFT.1.70PC (FOURTEEN). For this type of the training
set (LEFT.1.70PC), the following initial conditions were adopted: unipolar activation
function of the neuron, random initialization of values of elements of matrices V and
W ranging from —0.2 to 0.2, training with the momentum method applied, 7 = 0.05,
a = 0.45. In this training routine the network learned quickly to the level of error at
0.07—0.06. Further growth of required accuracy (decreasing the assigned threshold value
of error) caused a drastic prolongation of the training period. It is due to a small value
of the training coefficient. It is worth emphasising that in the proximity of the error
value at 0.02 and 0.01 the term 7 was increased many times which caused the previously
mentioned high error oscillations and finally attainment of required accuracy.

3.2.2. Training process - LEFT.1 ALL (FOURTEEN). The initial conditions were
the same as in the case of training set (LEFT.1.70PC), however values were selected
differently, namely: 7 = 0.01, @ = 0.4. The network training was proceeding very slowly.
Starting from a maximum admissible error of the network at the level of 0.05, increasing
the accuracy by 0.01 required additional 10 000 — 15000 iterations. When the error gen-
erated by the network was equal to 0.0195, then the value 7 was increased from 0.004 to
0.03. Next 77 was being decreased gradually which caused the error to drop in consecutive
iterations. This was happening at the expense of the speed of convergence. The end effect
was a case when the training process stopped at a certain flat local minimum, which was
observed in the proximity of error at 0.0101 — 0.01. That was why 7 was increased by
100 which caused rapid oscillations in the proximity of 0.01 and the result was that the
training terminated with the final error below 0.01. The values of the n were adjusted at
a relatively low level so as not to reduce the magnitude of the oscillations that arose.
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3.2.3. Training process — LEFT.2_.70PC (FOURTEEN). The following initial condi-
tions were adopted in the case of the LEFT.2_70PC training set, namely: unipolar ac-
tivation function of the neuron, random initialization of values of elements of weight
matrices covering the range (—0.1,0.1), training with the momentum term, = 0.05,
a = 0.4. In Fig. 7 the dynamic change of training parameters is presented. Additionally,
in Fig. 8 the convergence of the training process is shown.

cycle
80000

60000

40000

20000

0
0.1 009 008 007 006 005 004 003 002 0.01 Emax

Fig. 7. Convergence of the training process.

n, o

0 238 3877 4303 4871 55666 55757 56010 76625 80925 cycle
none 7.034 0.0962 0.0826 0.0781 0.0204 0.0204 0.02 0.0101 0.0104 E

Fig. 8. Dynamic change of training parameters.

The data from Fig. 7 and 8 show clearly that the training process was sharply stopped
because the value of admissible error was decreased below 0.05. Initially the training
proceeding very rapidly and attained the assigned boundary error of 0.1 — 0.7 within
only several thousand of iterations. As the accuracy of training was being increased, the
number of necessary iterations was growing. It was due to the fact that the speed of
training 7 was very low (~ 0.005) and at the same time the momentum term « was
reaching a high value (~ 0.5). It can be observed that close to the value of the error at
0.02 the value of 7 was increased ten times to evoke higher error oscillations. The result
was such as that after about 250 iterations the accuracy of the training dropped below
0.02. On the other hand, close to the value of 0.01 (0.0101) the speed of training was
reduced twice (0.01 — 0.005) in order to reduce the error generated, to go below the
boundary value of 0.01. However, it did not succeed, the error generated increased and
only by evoking higher error oscillations (7 was increased twenty times) was the training
terminated.

3.2.4. Training process — LEFT.2 ALL (FOURTEEN). In the training routine used
next — LEFT.2_ALL the training was proceeding quickly and without interferences. The



40 B. KOSTEK and R. KROLIKOWSKI

following initial conditions were adopted: unipolar activation function of the neuron, ran-
dom initialization of values of elements of weight matrices covering the range (—-0.1,0.1),
training with the momentum term, n = 0.03, a = 0.45. Less than 10000 iterations were
needed to obtain training accuracy below 0.03. What could be observed was that the
training was paused at the admissible error of 0.02 and 0.01. However, such regularity
was also oresent in other trainine routines.
cycle
100000 |

80000 +
60000

o AIJ lﬂl :

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Emax
Fig. 9. Convergence of the training process.

3.2.5. Training process — LEFT.3_70PC (FOURTEEN). The following initial condi-
tions were adopted: unipolar activation function of the neuron, random initialization of
values of elements of weight matrices covering the range (—0.1,0.1), training with the
momentum term, 7 = 0.05, a = 0.5. Despite initial fast convergence of network train-
ing, the value of parameter 7 was reduced to 0.003 at app. 0.08 error. This small value
excluded big magnitude of error oscillations during the training, however, this happened
again at the expense of the training speed. It was also tested if this parameter could be
increased, but it turned out that the training process in this case was unstable. It was
only at 0.02 accuracy that n could be increased several times, which decisively speeded
up the final termination of the training,

3.2.6. Training process — LEFT.3_ALL (FOURTEEN). In the case of the LEFT.3_ALL
training set the following initial conditions were adopted: unipolar activation function of
the neuron, random initialization of values of elements of weight matrices ranging from
—0.1 to 0.1, training with the momentum term, = 0.05, @ = 0.45. The training process
was the longest of the experiments conducted. From the beginning the process was slowly
converging and the assigned values 77(~ 0.02) turned out to be too high. It is worth ob-
serving that the attempt to increase n from 0.002 to 0.003 (for iteration equal to 23 865)
did .not succeed and therefore the network was learning with a training coefficient at
0.001. The changes introduced pertained only to the momentum term, responsible for
damping of undesirable error oscillations (because as it would turn out — the network
was in a very unstable state and had great difficulty in learning). Increasing the value of
7 happened close to the threshold error of value at 0.03. By adopting this value of 7 it
was possible to speed up the training process.

3.3. Recapitulation of the training phase

It is possible to observe a huge difference in the training process between vectors
type ELEVEN and FOURTEEN. In the first case the training was proceeding quickly,
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uniformly and it reached the error value 0.01 after a relatively small number of iterations
(3000 — 5000). Besides, dynamic changes of training parameters were not required often.
Also the values of these parameters could be adjusted at a relatively high level, particularly
the training speed term 7(~0.3).

Training of vectors type FOURTEEN proceeded differently both for the left and
right channel. The conclusions below pertain to network training for both channels in
line with the adopted routines (Fig.6). It can be observed that a quick convergence of
the training process would take place at the beginning of the training until the error
generated by the network was bigger from about 0.07 — 0.05. Next, the process would
stop in a certain area of error space and within several or a dozen thousand iterations
there was no improvement in the quality of the training. The training would usually end
after several dozen thousand iterations (60 000 — 90 000). The value of the training speed
term 7 had to be very small which additionally prolonged the training process, and on
the average it was about 0.001 — 0.005. In some cases, increasing the value would cause a
drastic increase in the error. At the same time quite frequently the dynamic parameters
of training had to be changed. For this type of network, occasionally a training technique
was applied which was to gradually reduce 7 in proximity of a certain boundary value of
the error, the result of which was that the error generated by the network diminished
below this value. Sometimes in similar cases the value of 7 was increased which caused
high error oscillations and consequently a drop in the error below the threshold value,

What seems interesting is the fact that the addition of 3 elements to the vector brought
about such a big change in the quality of the training. Network accuracy of 0.01 for the
vector type FOURTEEN was reached after almost 10 — 20 times more iterations than
for type ELEVEN.,

4. Testing phase of the neural network

After the training phase was over, 14 neural networks were available: 2 were trained
with vectors type ELEVEN and 12 with vectors type FOURTEEN. In the testing phase
the purpose was to test the effectiveness relation of identifying new objects by the network
as it relates to network training accuracy. The neuron whose output value was the highest
showed the winning class and such was the classification done by the network. The number
of correct and wrong responses expressed in per cent (pos/neg [%]) and in numbers
(pos/neg) is presented in the recognition effectiveness table. This record encompasses
recognition both in the particular classes as well as the total effectiveness of the network.
Besides, the numbers of indexes (in the set type ALL) of these vectors are given, that
were wrongly classified.

It is worth observing that the effectiveness of the network does not determine the
quality of the trained network. Good quality can be understood as a feature of the
network that causes that k-th neuron at the output will generate a high value in relation
to the values of outputs of the remaining neurons (e.g. 0.8 to ~ 0.005) for a given vector
at the input, being a member of k-th class. In the case when the values at the remaining
outputs are substantial in relation to k-th output, one can speak about a decreased
quality of the trained network. In order to designate the recognition quality, all outputs
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of neurons were observed when the vectors from the k-th class were being presented.
The values of outputs of neurons were treated as deviations from the expected value of
0. Variance can then be a measure of the quality of the trained network. The bigger the
variance calculated for particular outputs of neurons is, the stronger the classifications for
particular classes are. This parameter is computed on the basis of the following formula:

{
Var;, = -—N—k Z o? 5 (4.1)
i=1

where Var; — value of variance for k-th neuron, N — number of parameter vectors,
members of the k-th class and not present in the training set, o; — output of the k-th
neuron for k-th parameter vector.

In the tables presented in the next paragraph the values of variances for the partic-
ular neurons are listed when the network was activated with vectors belonging to the
consecutive classes. Distribution of variance of network outputs is given in relation to
training accuracy. The purpose for that presentation was to check until what value of the
threshold error the network could be taught to obtain the best quality of recognition for
the given testing set. On the basis of the exemplary tests, the procedure of effectiveness
verification of the given network will be shown.

4.1. Testing a network trained for parameters of the left channel (ELEVEN).

4.1.1. Network test — LEFT 30PC. The test was conducted on a set type LEFT_30PC.
The tested network was type LEFT1_70PC. The recognition effectiveness for the chosen
testing set is presented in Table 4.

Table 4. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg | pos/ | pos/neg pos/ pos/neg | pos/
[%) neg [%] |neg| [%] | neg | [%) neg [%] | neg
PR O T I B T S et TR T DR I R B B B
0 0 10 1 0 0 30 3 11.11 4
o | @ [ 7 [ % [9[ @ [T s [ m A TN
0 0 10 1 0 0 30 3 11.11 4
o7 | @ [ 7 [w [s[ [ 9 [ m 7| B [ %
0 0 10 1 0 0 30 3 11.11 4
ops | @ [ 7 [ % [ [ 9 [ & 5 |96 [ 3
0 0 10 1 0 0 20 2 8.33 3
oo | W [ 7 [% [9[m [ 5 [ & 5|96 |3
0 0 10 1 0 0 20 2 8.33 3
oos| W | 7 | % [9[0 [ 9 [ @ [ & ||
0 0 10 1 0 0 20 2 8.33 3

Indexes of wrongly classified vectors are presented for this type of the testing set:
TROMBONE:
— 10; Emax = (0.1 - 0.005)
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CONTRA-BASSOON:

— 8, 19, 28; Ena = (0.1-0.07)

— 8, 19; Emax = (0.06 — 0.005).
As is seen all vectors representing objects from BASS TROMBONE and ENGLISH
HORN classes were recognized correctly.

For the purpose of presenting the values of variances, two classes of instruments were
selected, namely: BASS TROMBONE (Tab. 5) and TROMBONE (Tab. 6). The first of
these instruments was identified with better effectiveness than the other one.

Table 5. Variances in outputs of neurons upon presentation of vectors of the class BASS TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.9185582 0.0005653 0.0001944 0.0008058
0.09 0.9185272 0.0005191 0.0001844 0.0008058
0.07 0.9180164 0.0003908 0.0001581 0.0007576
0.05 0.9174483 0.0003162 0.0001296 0.0006543
0.01 0.9187201 0.0001693 0.0000340 0.0001537
0.005 0.9163189 0.0001222 0.0000174 0.0000873

Table 6. Variances in outputs of neurons upon presentation of vectors of the class TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.0000060 0.8361880 0.0005759 0.1158222
0.09 0.0000054 0.8387308 0.0005390 0.1175816
0.08 0.0000045 0.8412930 0.0004921 0.1194312
0.07 0.0000043 0.8392953 0.0004291 0.1249455
0.06 0.0000041 0.8412675 0.0003830 0.1277956
0.05 0.0000034 0.8437424 0.0003230 0.1324253
0.01 0.0000013 0.8663360 0.0000854 0.1481672
0.005 0.0000007 0.8721313 0.0000494 0.1511610

The recognition effectiveness increase with changing the accuracy of the network from
0.07 to 0.06. Despite a further increase in accuracy up to the value Emax = 0.005, the
effectiveness remained at the same level. It is to say that the best recognition results were
obtained at 0.06 — 0.05 of the cumulative error Emax.

4.1.2. Network test - LEFT_30PC. The test was conducted also on a set type LEFT-
30PC, but in this case the tested network was type LEFT2_70PC. The recognition effec-
tiveness for the chosen testing set is presented in Table 7.

Indexes of wrongly classified vectors are presented for this type of the testing set:

TROMBONE:

— 10, 18; Emax = (0.05 — 0.005)

CONTRA-BASSOON:

— 8; Emax = (0.05— 0.005).
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Table 7. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg | pos/ | pos/neg pos/ pos/neg | pos/
%) neg (%) |neg| [%) | meg | [%] neg [%] | neg
JURURN ST IR D A R P A A Y RS ¥ )
0 0 20 2 0 0 10 1 8.33 3
oot | 20| L o -8 LEL o lie 1 o a3
0 0 20 2 0 0 10 1 8.33 3
om | @ | 7 | ® [8[ 0 [y [ % N T )
0 0 20 2 0 0 10 1 8.33 3
002 | 0 7 ol & L ? % ? 9167 | 33
0 0 20 2 0 0 10 1 8.33 3
oo | | 7 B0 8| 100 [ 9 [ % N TG EE
0 0 20 2 0 0 10 1 8.33 3
PO 0 T U P T L P PR T i
0 0 20 2 0 0 10 1 8.33 3

The per cent of correctly qualified vectors was equal to 91.67% for all values of the
cumulative error. It is to say also that the recognition effectiveness increase with the
growing accuracy of the network.

4.2. Testing a network trained for parameters of the left channel (FOURTEEN)

4.2.1. Network test - LEFT_30PC. The test was conducted on a set type LEFT_30PC.
The tested network was type LEFT1_70PC. The recognition effectiveness for the chosen
testing set is presented in Table 8.

Table 8. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg pos/ | pos/neg pos/ pos/neg | pos/
[%] neg [%] neg | [%] neg [%] neg [%] neg
R EEEENEEEEE R EEE
0 0 30 3 0 0 80 8 3056 | 11
009 | 0 ! L 2 - 2 e 12
0 0 0 0 0 0 10 1 2.78 1
ag | @ |7 [ || 10 1T T 8 T |
0 0 0 0 0 0 10 1 2.78 1
s | 0 [ 7 w0 [ w0 [ [ %0 R
0 0 0 0 0 0 10 1
oo | @ | 7 [0 [ w0 |9 [ CR N S
0 0 0 0 0 0 10 1 2.78
oo | @ [ 7 [0 [0 s |0 5 | w25
0 0 0 0 ] 0 10 1 2.78 1
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Below, indexes of wrongly classified vectors are presented for this type of the testing
set:

TROMBONE: :

—1, 29, 30; Epax =0.1

CONTRA-BASSOON:

—3, 8, 11, 14, 22, 25, 28, 31; Eqx =0.1

— 8; Enax = (0.09—-0.01).

For the purpose of presenting the values of variances, two classes of instruments were
selected, namely: BASS TROMBONE (Tab. 9) and TROMBONE (Tab. 10). The first of
these instruments was identified with much better effectiveness than the other one.

Table 9. Variances in outputs of neurons upon presentation of vectors of the class BASS TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.3597468 0.0060959 0.0026676 0.0606067
0.09 0.9647862 0.0027156 0.0000044 0.0003433
0.07 0.9672036 0.0025964 0.0000038 0.0002916
0.05 0.9721547 0.0023566 0.0000030 0.0002217
0.03 0.9778430 0.0022333 0.0000021 0.0001452
0.01 0.9856030 0.0032118 0.0000008 0.0000564

Table 10. Variances in outputs of neurons upon presentation of vectors of the class TROMBONE.

Emax | BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON
0.1 0.0059164 0.3968045 0.0432925 0.0353321
0.09 0.0000000 0.8179480 0.0014706 0.0222385
0.07 0.0000000 0.8193167 0.0016362 0.0204443
0.05 0.0000000 0.8198924 0.0019054 0.0180781
0.03 0.0000000 0.8206997 0.0022593 0.0148136
0.01 0.0000000 0.8223629 0.0029912 0.0090919

The visible change of recognition effectiveness happened upon changing the accuracy
of the network from 0.1 to 0.09. Despite a further increase in accuracy, the effectiveness
remained at the same level — 97.22%, that is only one vector was wrongly classified.
Upon the presentation of the vectors of the particular classes it can be observed that the
quality of identifying new objects was slightly growing together with a reduction in the
cumulative error Fog,: variance in values increased at the output of the neuron which
represented the given class, while at the other outputs usually a drop in the variance is
observed.

4.2.2. Network test - RIGHT 30PC. The test was conducted on a set type RIGHT.
30PC. The tested network was type LEFT1_70PC. The recognition effectiveness for the
chosen testing set is presented in Table 11.
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Table 11. Recognition effectiveness.

BASS TROMBONE | TROMBONE | ENGLISH HORN | CONTRA-BASSOON | Total score
Emax | pos/neg pos/ pos/neg | pos/ | pos/neg pos/ | pos/neg pos/ pos/neg | pos/
[%] neg [7%] | neg | [%] neg [%] neg [%] | neg
o | 8 | 2 [BR[3[ 1 [ % [ee| B | 568]|%
12 3 21.88 7 0 0 59.38 19 2437 | 29
100 25 100 32 100 30 96.88 31 99.16 | 118
0.09 — — — = — — — - — | —
0 0 0 0 0 0 3.12 1 0.84 1
oo7 | @ | B |10 [m 100 [ 30 [ %88 | 3 | %16 |18
0 0 0 0 0 0 3.12 1 0.84 1
oos | W | B |10 2100 [ 30 9688 | 31 | 96 |18
0 0 0 0 0 0 3.12 1 0.84 1
o | W [ 3 [0 [2[ 10 [ 3 |9%8 | 31 | %618
0 0 0 0 0 0 3.12 1 0.84 1
oo | 0 [ 3 [%8 310 [ 30 |8 | 3 | %m0
0 0 3.12 1 0 0 3.12 1 1.68 2

Below, indexes of wrongly classified vectors are presented for this type of the testing
set:

BASS TROMBONE:

— 8,9, 16; Emax = 0.1

TROMBONE:

—1,2,3,4,9,29, 30; Epa =0.1

CONTRA-BASSOON:

—1,3,10, 11, 14 - 17, 21 — 29, 31, 32; Enax = 0.1

— 3; Emax = (0.09 — 0.01).

The visible change of recognition effectiveness happened upon changing the accuracy
of the network from 0.1 to 0.09. In that case, 12 vectors of the CONTRA-BASSOON
class, previously wrongly recognized, were classified correctly. It is also possible to observe
the case of the network over-training, when the cumulative error Fpax was reduced from
0.02 to 0.01. In consequence, one vector of the TROMBONE class was wrongly classified.

4.2.3. Network test - RIGHT_ALL. The test was conducted on a set type RIGHT_ALL.
The tested network was type LEFT1_ALL. The recognition effectiveness in this case was
very good. All vectors from the testing set were recognized correctly by the network.

4.3. Recapitulation of the testing phase

The best scores of recognition effectiveness for the particular training routines of
the test were compiled in Table 12 and 13 (separately for sets. of type FOURTEEN and
ELEVEN). The consecutive columns signify: the test routine (name of the training and
testing set), classification effectiveness expressed in per cent and numbers and respective
values of Epay.
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Table 12. Compilation of the best classifications for sets type FOURTEEN.

. p Classification effectiveness
Test routine - Testing set B
) pos/neg [%] pos/neg
RIGHT.1.70PC | RIGHT30PC 98_1;37 _333: (0.1-0.01)
LEFT 95.80 114 0.08; 0.07; 0.01
4.20
RIGHT.1.ALL | LEFT.ALI .40 us (0.1-0.01)
0.84 1
22 35 (0.1 — 0.08);
RIGHT.2.70PC | RIGHT 2.3 3
O i 2.78 1 (0.06 — 0.01)
98.32 117 0.09; 0.08; 0.06;
LEFTALL 1 3 (0.04 — 0.01)
RIGHT2.ALL | LEFT.ALL — ;45 118 (0.1-0.01)
RIGHT.3.70PC | RIGHT.30PC _11'3‘;" 33_3 (0.03 - 0.01)
B 96.64 115 (0.06— 0.01)
3.36 4
RIGHT3ALL | LEFT.ALL ik 17 (0.1-0.01)
1.68 2
LEFT.1.70PC | LEFT30PC —97'7282 = (0.09 - 0.01)
RIGHT.ALL .16 118 (0.09— 0.02)
0.84
LEFT.1.ALL | RIGHTALL % 102 (0.1-0.01)
LEFT2.70PC | LEFT.30PC n.a 35 0.02; 0.01
278 1
RIGHT.ALL oo 17 0.1; 0.09
1.68 2
LEFT.2_ALL RIGHT.ALL % 1T19 (0.1-0.01)
LEFT3.J0PC | LEFT.30PC in P 34 (0.1-0.01)
5.56 2
RIGHT ALL Naz 17 (0.1-0.07)
1.68 2
LEFT.3_ALL RIGHT.ALL =1 % (0.1-0.01)

Tables (Table 12 and 13) show that recognition effectiveness during the experiments
was very high and was always above 90%. Since the testing was done on sets with 36
and 119 elements, these results can be divided into two classes: for the first type of
sets, the score of correct classification ranged from 91.67% to 97.22%, but the number
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Table 13. Compilation of the best classifications for sets type ELEVEN.

Classification effectiveness

Test routine Testing set B
pos/neg [%] pos/neg
LEFT.1.70PC | LEFT.30PC 91.67 33 (0.06 — 0.005)
8.33 3
LEFT.2.70PC | LEFT30PC 98_1'3*;’ % (0.05 - 0.005)

of unrecognized vectors was from 1 to 3. And then for the set with 119 vectors the
effectiveness of the classification was at the level from 95.80% to 100% where the number
of wrongly classified vectors ranged from 5 to 0.

Another fact worth observing is that the change of training vectors from the type
ELEVEN into FOURTEEN contributed to an increase in effectiveness of the classifica-
tion. For vectors type ELEVEN the network attained the recognition score at 91.67%,
while extension of the vector up to fourteen parameters caused the score to reach the
value of 94.44% -97.22%.

In all cases a network trained with the set type 70_PC and tested with a set type ALL
(with data for the second channel) would give worse results than the network trained
on a set type ALL and tested on ALL, too (also with data for the second channel). It
is to observe that unrecognized objects amounted to app. 1-2%, and in the worst case
— app. 4.5%. At the same time it is possible to see that the number of unrecognized
objects is bigger if the network was trained in parameter vectors of the right channel
(RIGHT) than the left one (LEFT) where the biggest variance amounted to app. 1.5%.
One can therefore draw a conclusion that a 30% increase in the training set only relatively
increased the effectiveness of classification.

It is visible that a slightly better effectiveness was observed in networks that were
trained with vectors type LEFT than RIGHT. On this basis it is possible to conclude
that a subspace consisted of vectors type LEFT overlaps to a large extent the subspace
spanned by vectors type RIGHT enclosed in the object space, with the first subspace
giving better generalization possibilities.

It is possible to see that the highest effectiveness was found in networks whose accu-
racy was close to 0.03-0.01. On the other hand, however, there was also a big number of
networks that reached their best recognition at accuracy at 0.1. Tables 1213 do not con-
sider, however, the quality of recognition which was characterized by values of variances
at the network output. Analyzing these values of variances it is possible to assume that
the networks were best at classifying when the value of the error Epa was below 0.05.

Table 14. Numbers of wrongly classified vectors (TROMBONE).

Training set Testing test | Vector number * Emax

LEFT.1.70PC | LEFT30PC | 10 (0.1-0.005)

LEFT.2.70PC | LEFT30PC | 10, 18 (0.05-0.005)
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Additionally, Tables 14— 15 give numbers of those vectors that were wrongly classified
for the particular classes of instruments and test routines limited to training vectors
type ELEVEN. Additionally, the tables show the maximum value of error Ey,. that was
achieved in the course of the training. It also needs to be noted that all vectors of classes
BASS TROMBONE and ENGLISH HORN were correctly identified.

Table 15. Numbers of wrongly classified vectors (CONTRA-BASSOON)

Training set Testing test | Vector number Emax

LEFT.1.70PC | LEFT30PC | 8, 19, 28 (0.1-0.005)
8,19 (0.06-0.005)

LEFT.2_.70PC | LEFT30PC | 8 (0.05-0.005)

5. Conclusions

The result of the experiments conducted shows a high effectiveness of classification
of musical instruments by neural networks. The results obtained show that only in a
dozen of experiments (with various initial parameters of the training) per several hundred
total some vectors were not correctly identified. Hence the presumption that data in
these very vectors may be incorrectly acquired. It is to remember that parametrized
signals were sounds recorded in real conditions, i.e. a free way of a musical performance.
Therefore phenomena such as musical articulation or differentiated dynamic with all
features specific for an individual musician are included in the signal and resulted in
signal modulation, amplitude overshoots, etc. That may cause in some cases a certain
kind of “non-adaptation” to the engineered algorithms in which only three models of the
relation between Attack-Decay-Sustain phases in a sound were assumed. What becomes
evident is a way of testing the correctness of parametrization, if for a statistically big
number of examined networks, the wrongly classified vectors are always the same, then
it is these vectors that should be subjected to verification.

What seems interesting is the relation between the results obtained in the testing
and the course of the training phase. It was possible to observe that the network trained
with 14 element training sets: RIGHT.1_70PC and RIGHT.3_70PC obtained the worst
results. The training of these networks was not easy, it required many changes of values
of raining parameters — the coefficient of training speed (77) and the momentum term
(). At the same time the process of training did last for very long. On the other hand,
when the training phase was short or there were no interferences in the course of the
training process, the results obtained by the network in the test were significantly better.
Presumably it is due to the fact that the network failed to acquire the ability to correctly
classify indefinite cases. High oscillations of error in the course of the training could
have caused relatively slight changes in the values of input vectors to bring about a
wrong classification. Then the network would lose its ability to generalize. There were
also cases (training on some of the LEFT sets) when despite a long training phase, the
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caused a gradual increment in the values of weights. The network had a very high grade
of generalization which eventually provided effectiveness even at the level of 100%.

The research conducted shows that the neural network performs well the task of
identifying classes of musical instruments. The obvious advantage of this type of classifier
is the fact that there is no need for quantization of values of parameters included in
the vector which describes the musical sound. There is no doubt that a certain disadvan-
tage of this type of testing is a huge amount of work needed to complete the training
phase. Further research will focus on testing the effectiveness of a constructed classifier
in terms of identifying other musical instruments. For that purpose in the base that was
constructed at the Sound Engineering Department, Gdafsk University of Technology
[6, 7] sets of feature vectors were included that describe sounds of musical instruments
which belong to other groups. The usefulness of an artificial neural network for this type
of applications seems all the bigger as the feature vectors included in the database en-
compass representations of consecutive sounds in the chromatic scale. In this case a high
instability of designated parameters is observed, the additional element which affects the
lack of stability of parameters is the presence of non-linearity related to differentiated
articulations and dynamics of musical sounds. However, in both cases the network ability
to generalize allows a correct classification of the objects being under the test.
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