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REFRACTION - THE SIMPLEST CASE
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At longer ranges of outdoor sound propagation, refraction due to temperature and wind vari-
ations results in ray paths that are curved. Under the assumptions of the linear effective sound
speed and nearly horizontal propagation, the ray path in the form of parabola is used. The shape
of the ray and the position of the shadow zone, in the presence of a negative gradient, is stud-
ied. In the converse case of a positive gradient, the analysis of the additional reflected rays is
performed. This is the most simple case of the theory of refraction.

1. Introduction

Sound propagation outdoors involves a number of wave phenomena, among them,
refraction. It is assumed that the atmospheric surface layer is stratified, therefore the
sound speed, ¢, and the speed of wind, V' (blowing along the z-axis), are functions of
height z. For simplicity we ignore the crosswind, so that rays from the source stay within
a vertical plane, ¢ = const (Fig. 1). Thus, a ray undergoes refraction as if it were moving
in the atmosphere with no wind, but with an effective sound speed [10],

c(z) =c+V(2): cos®. (1.1)

In other words, the effective sound speed, c, is the sum of the local sound speed and
the component of the wind speed in the direction of propagation. Within the scope of
geometrical acoustics, many functions have been suggested to model the real profile of
c(z) [4, 6, 8, 13]. Among them, the linear function,

c(2) = ¢(0)-(1 + az), (1.2)
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Fig. 1. Geometry of source, S, and receive, O. The wind is in the direction of the z-axis.

with ¢(0) expressing the sound speed on the ground, outlines the most salient feature of
the effective sound speed: either it increases (a > 0) or decreases (¢ < 0) with height.
Note that the above equation is theoretical assumption that yields the average outcome of
both sound speed and wind speed variations. Therefore, the coefficient a is the equivalent
sound speed gradient. The results obtained by EMBLETON et al. [2], HIDAKA et al. [5],
Rasmussen [11], and most recently, by L’ESPERANCE et al. [7], show that the linear
profile explains some field data quite satisfactorily.

For the source on the ground (Fig. 1 with H, = 0), the linear function c(z) yields the
ray path in the form of a circle [3, 9, 10, 12]. It can be rewritten in the following form:

z=tan¥,-R - a-(R? + 2%)/2, (1.3)

where ¥, expresses the angle of emission, and R is the horizontal distance. If sound
propagates near the ground,
z4& R, (1.4)

and the source is above the ground surface (H, > 0), then Eq.(1.3) takes the form of
parabola, )
z=H,+tan¥,-R—a-R?/2. (1.5)

A long time ago BarTon [1] has proved that the ray path obeys parabola, when the veloc-
ity profile is approximated by linear function. Starting from his result given by Eq. (1.5),
we derrived expressions for the ray’s vertex, angle of reflection (Sec. 2), shadow zone
(Sec. 3), and multiple reflections (Sec. 4).

2. Ray path geometry

For a homogeneous atmosphere with a = 0, Eq.(1.5) yields a straight line,
z(R) = H, +tan¥, R, ’ (2.1)

with a constant slope, tan ¥,, as expected. For a negative, a < 0, and positive value of
the equivalent gradient, a < 0, the ray leaving a source at the angle, ¥,, is bent upward
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Fig. 2. For negative (a < 0) and positive value of the equivalent gradient (a > 0), the ray is bending upward
and downward, respectively (Egs. (1.5)-(2.2)).

and downward, respectively (Fig. 2),
z(R) = zo(R) — a- R?/2. (2.2)
The vertex of the parabola defined by Eq. (1.5) occurs at,

tan ¥, tan? ¥,
R = a’, Zn = H, + 5
Figure 3 shows that both the emission angle and the equivalent gradient are simultane-
ously negative (¥, < 0, a < 0) or positive (¥, > 0, a > 0), so the horizontal distance to
the vertex from the source remains positive, R,, > 0. The value of z,, determines the
ray’s height above the ground at the zenith (R = R,,).

: (2.3)

Fig. 3. The ray’s height above the ground at the zenith, zr, Eq.(2.3), depends upon the equivalent gradient, a.

The emission angle of a ray, ¥,, that reaches the receiver at R = Ry and 2 = Hy,

can be calculated from,
Ho—H

s, @
tan¥, = 7y + E'RO' (2.4)
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The equation of the corresponding parabola is,

e a Ho—- H, a 5o
Z—H,+(2R0+T) R—'E'R, (25)
with the vertex at,
R, = B0 Ho-H,
2 aRy (2.6)
o = Ho+Hy aRf (Hy—H,) '
m 2 8 2aR}

Considering a nearly horizontal propagation, we set H, ~ Hy ~ H (Fig.3) and

obtain, ’

R, ~ % : Zm~ H + GTRO :
It is clear that the vertex occurs halfway between source, S, and receiver, Q. For a small
value of the equivalent gradient, a, the ray is deflected slightly upward (z,, > H) or
downward (z,, < H), depending upon the sign of a. The situation changes when the
value of a becomes greater (See Secs. 3 and 4).

Although it is beyond of the scope of this paper, let’s calculate the angle of reflection
from the ground surface, ¥, (Fig.4), which is used for the calculation of the sound
pressure over a finite impedance ground [7]. When a ray strikes the ground, the angle of
reflection can be calculated from the derivative dz/dR (Eq.(1.5)),

2.7)

tan ¥, = %—* + %Ro. (2.8)

R,

a

Fig. 4. Reflected ray originates at (R, 0) at emision angle ¥, and reaches the receiver (Ry, Hp).

3. Effect of a negative gradient

For a negative value of the equivalent gradient, a < 0, the critical ray may grazes the
ground (¥, = 0, z,, = 0) at some distance, R., from the source (Fig.5). Substituting z
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by Hy in Eq. (1.5) we get equation of the critical ray,

R:E(\/JT,—\/Z), 0<R<R., (3.1)
R=E(\/F,+ﬁ), R.< R < , (3.2)

where (Eq. (2.8)),

2R,
Rn« = T ¢ (33)
Setting z,,, = 0 in Eq. (2.3) the emision angle of the critical ray emerges,
tanW, = —/—2aH, . (3.4)

Finally, this result, in conjunction with Eq. (1.5), yields the alternative equation of the
critical ray,

z=H,—\/—2aH,-R—%-R2, 0< R < . (3.5)

For R > R, the critrical ray separates the insonified and shadow zones (Fig. 5). To obtain
the distance to the shadow zone from the source, we substitute z = H into Eq. (3.5),

RD=\/§(¢E+¢H—O). (3.6)

Note, that for 2 = Hp and R = R, expression (3.2) yields identical result.

 Z

R.

RO

Fig. 5. The boundary of the shadow zone is defined by Eq. (3.6) with 0 < Hg < oo.

4, Effect of a positive gradient

In the presence of a positive equivalent gradient, in addition to the direct path,
there can be paths involving one or more reflections at intermediate points between the



56 R. MAKAREWICZ and R. GOLEBIEWSKI

source and receiver. As illustrated in Fig. 6, there are three rays that strike the ground at
horizontal distances R;, B> and R3. From elementary geometry one can show that Ry,
R and Rj are determined by roots of the cubic equation,

z

Fig. 6. There are three possible rays that have one reflection at the ground.

The shape of the reflected ray that originates at the source (0, H,) and reaches the
receiver (R, Ho; see Fig. 4), is given by Eq.(1.5), with the emission angle, ¥,, replaced
by the angle of reflection ¥, (Eq.(2.8)). Setting z = H, we obtain,

H0=tan!Ilg-(Ro—R)—%-(RQ—R)Z, 0< R< Ry, (4.1)
and finally, by applying Eq. (2.8) we arrive at this cubic equation,
2a-R® - 3aRy-R* + (2H, + 2Ho + aR3)- R — 2HyRy = 0. 4.2)

If the atmosphere is homogeneous (@ = 0), then only one reflection takes place at the
distance, i
s

R = mRU . (43)
In the case of a # 0, three reflections occur when the cubic equation (4.2) has three real
roots. To examine the meaning of these roots in more detail, we make the simplifying
assumption that source and receiver heights are equal, i.e. H, = Hy = H. With this
assumption three distances emerge,

_ Ry R*\?
M= [ 1_(30) ’
Rz = &, (4.4)
2
_ Ry R 2
B - Rl (5],
where,
B e (4.5)



REFRACTION - THE SIMPLEST CASE 57

The root R, represents the obvious ray that intersects the ground halfway between source
and receiver. The other two roots, Ry and R3, are symmetrically displaced from R;. The
first corresponds to the ray that strikes the ground near the source (R = 0) and the
second describes the ray striking the ground near the receiver (R = Ry). If the distance
between the source and receiver is not sufficiently large, Ry < R*, ie,,

Ry <24/ % 5 (4.6)

then the two roots, R; and R3, become complex and only one reflection takes place at
Ry = Ry/2, as if the atmosphere were homogeneous (a = 0).
A related analysis of this problem for a circular ray path is reported in Ref. [2].

5. Conclusion

Under the assumptions that,

« the atmosphere is stratified, i.., the sound speed, ¢, and wind speed, V, depend
upon the height above the ground,

o the crosswind is ignored, so refraction can be described as if the atmosphere were
at rest and characterized by the effective sound speed, ¢(z) (Eq. (1.1)),

o the effective sound speed is approximated by the linear function (Eq. (1.2)),
the sound ray path has a form of parabola (Eq. (1.5)). For nearly horizontal propagation
(Eq. (1.4)), parabola portrays a realistic shape of a ray.

Making use of Eq. (1.5) we have derived the expressions for the ray’s vertex (Eqs. (2.3)
and (2.6)), angle of reflection (Eq. (2.8)), the border of the shadow zone (Egs. (3.1), (3.2)
and (3.5)), and the horizontal distances for multiple reflections (Egs. (4.1)-(4.6)).

Corresponding formulae for the ray’s vortex, angle of reflection, etc., derived for a
circular, or any other path ray, are more complicated than mentioned above equations.
Therefore one can say that parabola yields the simplest ray theory.

The results presented in this paper can be useful for noise propagation problems.
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