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The on-axis cumulative growth of nonlinear effects resulting from a monochromatic excitation
of a circular source mounted in an infinite rigid baffle is analyzed by perturbation analysis. The
first order (linear) signal is the summation of two propagating planar waves: one emanating from
the center of the source and the other originating from the source boundary. The mutual non-
linear interaction and propagation of these two waves are analyzed on the basis of the nonlinear
wave equation governing the velocity potential. Nonuniform validity of the pressure expression is
corrected by the method of renormalization and thereby obtaining uniformly accurate expression
in the near as well as far fields. Asymptotic trends at long range are derived which resulted in
a Fourier series description for the pressure signal. The results yield a computationally efficient
model that can predict the spectral components as well as the temporal waveform. The predicted
results are compared favorably with experimental observations over a wide range of variable
parameters.

1. Introduction

The subject of this paper first came to our attention when considering the problem
of distortion of two planar waves interacting at arbitrary angles [1] and the problems
of nonlinear interaction and dispersion of higher order modes in waveguides [2-3].
We recognized that the linear signal on axis of symmetry of a harmonically vibrating
circular plane transducer is a linear superposition of two simple planar waves of opposite
amplitudes. One of these waves is propagating parallel to the face of the piston and
its propagation distance is measured from the center of the piston along the axis of
symmetry. The other wave propagates in a direction that makes a nonzero angle with
the propagation direction of the first wave and its propagation distance is measured from
the edge of the piston. The significant aspect of this exact simple representation for the
linearized solution of the acoustic field on-axis provides a convenient frame work from
which one may workout the second order potential.

The radiation problem of the harmonically, vibrating, plane circular transducer moun-
ted in an infinite rigid baffle is one of several canonical problems in acoustics. Its linear
solution is the most well known and the most fundamental one. The analytical efforts
devoted to this problem is extensive. Although hundreds of paper are cited in literature,
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this problem still requires more work to obtain a simple and complete description of the
acoustic field.

There are two basic formulations for the linear problem: the Rayleigh surface integral
and the King integral [4—5]. The Rayleigh integral treats the signal as superposition of
spherical wavelets which are generated by infinitesimal sources on the piston face. The
King integral results from a Hankel (Fourier - Bessel) integral transformation transverse
to the axis of symmetry. The acoustic medium in such formulation becomes a waveguide
of infinite diameter, The Rayleigh surface integral is transformed into the ScHocH line
integral [6] by using observer related coordinates. Schoch solution is essentially a sum of
the plane wave and diffraction integrals. Although these formulations ar straightforward,
the basic difficulty with the linearized piston problem remains, i.e., while these exact
integral forms are simple in appearance, they can not be written in other exact simpler
forms which can be easily evaluated except by numerical integration.

The treatment of nonlinear effects which arise when the transducer is driven sinu-
soidally at a high amplitude has been analysed by several investigators. INGENITO and
WiLLiams [7] employed a perturbation series for the potential function in which the
leading term was described by the Rayleigh integral. Their solution was not uniformly
valid from the view point of the perturbation theory corresponding to a limitation to the
field close to the transducer (Fresnel zone). In addition, it is only valid for situations
where the axial wavelength is very small compared to the transducer radius (ka > 100).
Aside from these restrictions, their formulation does not address higher harmonics and
depletion of the fundamental. Consequently, it does not provide sufficient information
to predict waveform.

GINSBERG [8-9] described the linearized signal by the King integral and used an
asymptotic analysis to find the expression for the velocity potential. Only the cumulative
part was retained in that analysis since the expression for the second order potential was
quite intricate.

AANONSEN et al. [10] have used a finite difference method to calculate the harmonic
contents of an axially symmetric acoustic beam by solving the parabolic wave equation
in the frequency domain. The main limitions introduced by the parabolic approximation
are the frequency should be high (ka > 1), the angle off-axis must be small and the
distance from the source must not be small. BAcon and BAKER [11] and BACON et al.
[12] have compared the measured nearfield pressure with the numerical predictions of
the parabolic approximation of the nonlinear wave equation. The numerical scheme is
quite time consuming since the conditions required for step sizes and the number of
retained harmonics to get a stable accurate solution are rather sever.

Recent work by Too and GinsBERG [13] has modified the nonlinear progressive
wave equation (NPE) and the associated computer code, which has been originally de-
veloped by McDonaLD and KUPERMAN [14], to describe the axisymmetric sound beams
in the paraxial approximation. The basic assumption introduced in the derivation of this
equation is that the particle velocity is in the direction in which the signal propagates.
Therefore, like many previous models, NPE is inappropriate to the domain inside the
Fresnel zone. Apart from this shortcoming, a suitable computer scheme is needed to
initialize the window that is convected by NPE as the wave advances. The output results
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are dependent on the scheme used as well as on the choice of the boundaries for that
window. The computational cost to implement NPE is deemed to be excessive.

Based on the quasi-linear approximations of the solution of Khokhlof- Zabolotskaya-
Kuznetsov (KZK) equation for a Gaussian source, COULOUVART [15] has derived a uni-
form expression of the nonlinear effects in the sound beam by renormalizing the retarded
time. The KZK equation is a modified Burgers-type equation which often referred as the
paraxial parabolic equation. As alluded previously, several approximations must be made
to derive the parabolic equation. Accordingly, the KZK equation is only suitable in the
vicinity of the axis of the sound beam. Comparison between the experimental measure-
ments on a circular transducer generating short pulses in water and the numerical solution
of the KZK equation has been carried out by BAKER and HuMPHERY [16]. They used
the computer code developed previously by AANONSEN et al. [10].

In this paper a perturbation analysis has been adopted to describe the distortion of
the sound beams on axis of symmetry of a circular, plane, piston mounted in an infinite
rigid baffle and driven sinusoidally at a high amplitude. The analytical model presented is
derived from the prescribed boundary conditions on the source and the baffle, and from
the nonlinear wave equation governing the velocity potential. The analysis consistenly
accounts for the nonlinearity and diffraction. Dissipative effect has been discarded in the
present analysis. The perturbation method of renormalization is invoked to eliminate
secular terms from the pressure expression. The solution obtained is valid for the near,
as well as the farfield, provided that the location is closer to the source than the shock
formation distance.

Asymptotic trends, when the field point is distant compared to the radius of the trans-
ducer, are derived. The computational algorithm is simple and effecient. The predicted
results are in good agreement with experimental works of several investigators over a
wide range of variable parameters.

2. Formulation

Consider a circular plane transducer source of radius a lies in the plane z = 0 and
centered at z = y = 0. The rest of the source plane is a rigid baffle. The transducer is
driven continuously at a monochromatic angular frequency w and radiates a sound beam
symmetric about the z-axis into a dissipationless fluid half-space z > 0. Denote the
nondimensional time variable as ¢. The corresponding dimensional position coordinates
(z/k, z/k) and the dimensional time is t/w, where k = w/co is the wavenumber of
a nominal planar wave. cg is the small signal speed of sound in the linear theory. The
dimensionless velocity potential ¢ is related to the particle velocity components such that
v, = co(0p/0z), v, = co(O¢/0z). The continuity of the particle velocity at the interface
must be imposed at the displaced location of the transducer in the direction normal to
the deformed surface. By making use of the Taylor series expansion
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one transfers the boundary condition to a stationary boundary at z = 0. Therefore,
for axisymmetric constant amplitude displacement of the transducer (uniform velocity
distribution), the boundary condition can be written as

00 _ouw 0%
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where the dimensionless displacement w is given by

= +0(w?) at z=0, (2.1)

0 = —%e“ +c.c. (2.2)

For weakly nonlinear waves, the acoustic Mach number ¢ is a finite parameter with
le] < 1. In general, c.c will denote the complex conjugate of the preceding term. The
nonlinear wave equation governing ¢ is [17]

2
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where [, is the coefficient of nonlinearlty. For ideal gas By = (v + 1)/2, where 7 is the
ratio of specific heats. The acoustic pressure is related to the velocity potential by the
Bernoulli equation which can be written in a binomial expansion as follows
P a¢ 9¢ 3
QO_C%— 8t+ VqS V¢——(at)}+0(¢») (2.4)

In addition to Eq. (2.1), the other boundary condition on ¢ is that the signal should
appear to be coming from the source, not travelling towards it. The other requirement
imposed on ¢ is that the physical state variables, such as the acoustic pressure or particle
velocity, derived from it should be bounded for large 2.

In accord with standard procedures, one expands ¢ in a straightforward perturbation
series. A slight modification of such an expansion leads to a sequence of equations
that more prominantly displays the role of g in the formation of nonlinear distortion.
Specifically, one lets

6= cor+e |3 30D+ i +0E), 25)

The equations governing ¢; and ¢, are found by collecting like powers of ¢ in Eqs. (2.1),
(2.2) and (2.3). The first order equations are
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The resulting second order equations are
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It is a straighforward matter to solve the linearized Egs. (2.6) by the Rayleigh integral or
King integral [5] with the following simple results for the on-axis signal
1

b1 = . [ei(t—z1) et ei(t—z)] + c.c, (2.8)

where
2 = (22 + k)", (2.8
Equations (2.8), (2.8') represent the exact first-order solution as a linear superposition
of two planar waves of opposite amplitudes. The time delay of the first wave corresponds
to the propagation time from the edge of the projector to the spatial point, while the time
delay of the second wave corresponds to the propagation time from the center of the
projector to the spatial point. This simple representation of the linarized solution on-axis
is of crucial importance because from this solution one may work out the second-order
potential.

3. Evaluation of the second order potential

The first step in deriving ¢, is to use Eq.(2.8) to form the inhomogeneous terms in
Eq. (2.7);. This is easily performed by considering the first wave that emanates from the
edge of the transducer equivalent to a planar wave emanating from its center (similar
to the second wave) with propagation direction making an angle § = tan~'(ka/z) with
the z-axis (see Fig.1). Accordingly, the observation point is considered as x = (ka, 2).

2ka

(x=ka z)

Fig. 1. Geometry of the superposition of the center wave and the edge wave.

Therefore Eq.(2.8) can be expressed in Cartesian coordinates. For example, let ny-x =
zsinf + zcosf and ny-x = z, where n; is the unit vector in the direction of the propa-
gation of wave 7. n;-x = z; when z = ka. The resulting equation governing the second
order potential is given by

2 . X
v2¢2 L 88;}:2 — ___I_agg e2ilt—21) e‘Zi(t—z) _ 26:(21:—2—2,) +c.C. (31)
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The first two exponentials in Eq. (3.1) excite second harmonics. Such signals propa-
gate parallel to the two waves forming ¢; which are the homogeneous solutions of the
linearized wave equation. The last inhomogeneous term is due to the nonlinear inter-
action of the two waves forming ¢;. It excites a second harmonic whose propagation
direction makes an angle /2 with the z-axis.

The solution of Eq.(3.1) consists of the complementary solution and the particular
solution. The form of the right-hand side of this equation suggests that the latter solution
is the superposition of the solutions associated with each of these inhomogeneous terms.
These solutions may be obtained by the method of variation of parameters, in which the
amplitudes of the homogeneous solution is considered to be unknown functions. Thus
let

¢ = u(2)e¥ +c.c,
u = Ci(2)e™%% + Cy(2)e 2 + Cy(2)e~"¢1*2).

It should be noted that the unknown functions C; depend on the axial distance only.
The harmonic nature of the excitation eliminates the dependence of these functions on
t. Similarly, the second order potential should depend on z through the phase variable
21 since one only seeks the on-axis expression. This restriction could not be satisfied if
C; were functions of z.

The result of requiring that Eqs. (3.2) satisfy Eq. (3.1) is a set of uncoupled differential
equations for the amplitude functions. These equations are found to be

(3.2)

CY —4icos6C) = —2po,

Cy —4Cs = 5o, (33)
C% —2i(1 + cos0)C§ + 2(1 — cos 0)C3 = if,

where the prime denotes differentiation with respect to z. The particular solution of
Eq. (3.3); is readily found to be

cP = ﬁﬂcose (34
The corresponding complementary solution is
CP = Ay + Aze®* ™4, (3.4)2
Therefore the amplitude C is given by
= -ﬂg 5+ Ay Agpecrst, (3.5)
Similarly
C, = é Boz + As + Age¥®. (3.6)

The particular solution of Eq. (3.3)3 is given by

_ ifo
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It is convenient to let CT appear explicitly in the complementary solution which is there-
fore written as

C} = : %;m [Ase*® + Age™*?], (3.7)2
where A; and A; are the roots of the characteristic equation
—2i(1 + cos@)A + 2(1 — cos §) = 0. (3.8)1
These roots are found to be
Az =i [(1 + cosf) F (3 + cos? 9)1/2] . (3.8),
Combining Egs. (3.7); and (3.7); yields
Cy= ﬁ [1+ Ase? + Ager?] . (3.9)

The expresion for ¢, obtained by substituting Eqs. (3.5), (3.6) and (3.9) into Egs. (3.2)
must satisfy the condition that ¢, represents an outgoing wave in the z-direction. Con-
sequently, ¢, must only contain negative imaginary exponentials in the z-variable. Satis-
faction of this condition requires that A, = A4 = Ag = 0. The remaining terms yield

_ [ 1Pz s 1oz —242
m () (1)

mi—ﬁg‘&‘gﬂ [1+ Ase™] e~ (3.10)
where A is redefined as the modulus of Ay (A = Aq/%).

Letting § — 0 (ka/z — 0) in Eq.(3.10) results in a singularity in the coefficient of
the last term. This is similar to the behaviour obtained in the course of investigating the
near resonant solution of the one-degree of freedom harmonic oscillator as discussed
by GINSBERG [18]. When the forcing frequency approaches the natural frequency for
this system, the amplitude of the particular solution increases as does the portion of
the homogeneous solution that cancels the initial value of the particular solution. The
combination of these two solutions is a temporal beating response that rises from zero
at the initial time. As the difference between the forcing frequency and the natural
frequency decreases further, the period of each beat increases, until ultimately, when
the two frequencies are equal, only rising portion survives. The corresponding resonant
response is a harmonic whose amplitude grows linearly with time.

In a similar manner, the singularity of Eq.(3.10) at # — 0 may be removed by appro-
priate selection of the coefficient of the homogeneous solution As. First, A is expanded
in a Taylor series for small (1 — cos #)

2(1—0059]1/2_ 1—cosf
(1+cosf)2] ~ 1+cosf 7’

ok 1—cosf | _ 1(1 — cos )z
CXP(EAZ) = exp [—%—Z:I =1- W +

A= (1+cosf)— (1+cost) [l+
(3.11)
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Threfore the corresponding asymptotic form for the last term in Eq.(3.10) is

_ b i(1 - c058)2) | iger4s)
U3—2(1_0059{1+A5[1— T e . (3.12)
The singularity for § — 0 is cancelled if one chooses the leading term in As = —1.

Thus let As = -1 + A;, where the coefficient A; may depend on (1 — cosf) in any
manner such that it is not singular as # — 0. The second order potential is now found
from Egs. (3.2) and (3.10) to be

5 (ngg:g M A1) Q2ilt=21) 4 (WTOZ +A3) e2it-2)
iBo

e 2(1 — cos®)

[1 -(1- A;)ei’\z] €@ yce. (3.13)

The foregoing expression for ¢, should satisfy the boundary condition given by
Eq.(2.7)2. This could be achieved by the appropriate selection of the coefficients Aj,
Az and A;. Each of them describes a homogeneous solution of the wave equation as-
sociated with the second order potential. Thus, they represent effects that O(?) at all
locations. In contrast, observable distortion phenomena are associated with the second
order terms that grow with increasing distance. However, the bounded O(c?) effects
might be significant near the transducer. Therefore, satisfying Eq. (2.7), and combining
the resulting expression for ¢, with the linearized solution given by Eq. (2.8), according
of Eq. (2.5), one arrives at the following expression for the potential

¢ = _% [ei(t—zl) _ ez’(t—z)] i 5_;_ {(ﬂoo_:s_g i 21') Rilt=21)

+ (ﬁoz = 3—22 — i) e2i(t-2) 4 44 [ﬁ%@j (1 _ ei)\z)

+ (1 - %) (Bo - 1)] ghdtori—a) . 22} +cc+ 0. (3.14)

4. Evaluation of the pressure

The pressure is related to the potential function by Eq. (2.4). The quadratic products
in that relation represent effects that are uniformly O(£?) at all locations. These bounded
effects might be significant near the projector. Thus differentiating Eq. (3.14) according
to Eq. (2.4) yields the following expression for the pressure

QPCZ _ 5% gilt=21) _ ei(t—z)] B 52@ [00296(2;(:_21)' + e2it=2)
0Cp
4

+ m (1 - ei)\z) ei(?t—h—-z)] + PNs + c.c+ O(Eg), (41)
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where

PNS = 52 [%621'(:—31) _ %(ﬂﬂ 4 2)6250-2) + Bei(Zt—zl—z)

- %(1 —cos@)eGi=A| . (4.2)

and
= % [(\/5_ 1) Bo + 1] ers — %(3 + cos0). (4.3)

Equation (4.1) reveals that the cumulative growth of the O(?) signal originates from
the first two terms of O(e?). This is manifested by the increase in the magnitudes of
the second harmonics with increasing z. In contrast, the amplitude of the third term of
O(&?) oscillates in the z-direction with period 27 / A. However, this amplitude grows with
increasing z when 6 is very small (ka < z). The nonsecular terms pys given by Eq.(4.2)
do not grow with increasing z and therefore are bounded at all locations. In general they
become unimportant at large z. However, their contribution in the nearfield should be
taken ino consideration.

The basic concern when growth is encountered in a regular perturbation series, such as
Eq. (4.1), is that the second order term might exceed the estimate of its magnitude. Such
behaviour is known as nonuniform validity. In this section we will derive an expression
for the pressure that behaves properly at all locations.

In order to render the pressure expression uniformly valid, the renormalization version
of the method of strained coordinates [19] will be employed. Therefore, one seeks a
coordinate transformation whose form is

5 = ai+e [Slei(t—cn) + Szei(t—ae) + C-C] ’ (4 4)

z = m+e [Sge"(““’) + Sgeilt—en) 4 c.c] .

In accord with standard procedures, the above coordinate transformations are sub-
stituted into Eq.(4.1), and a Taylor series in ascending powers of ¢ is employed. The
undetermined functions S;, j = 1,4, are then selected on the basis of removing the
nonuniformly accurate terms. This procedure yields the following expression for the pres-
sure

P _ Y [Litt-an) _ gi(t—aa) 3
o 52[6 eit=o3] + pys + O(E). (4.5)

The coordinate transformations are given by

Z1 = a1+ E%q‘ [zle’:("“‘) -~ 1_—%0W (1 - EMO{B) Bi(t_az) + C.C] 5
: (4.6)
- — ﬁg i(t—ag) _ 2 _ pidag) Li(t—an)
% = i&—eg [ze T—ooeg 1= )¢ g -

Evaluation of the pressure at a selected location z and time ¢ requires simultaneous
solution for the transcendental equations for the coordinate straining transformations,
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Eqgs. (4.6). This can be accomplished by using a numerical procedure such as the New-
ton-Raphson’s method. The frequency content of the pressure waveform may be eval-
uated from the Fourier analysis. It is to be remarked that the terms in Eqgs.(4.6) that
couple the strained coordinates a; and « do not show explicit growth with increasing
z. However as 6 — 0, the magnitudes of these terms increase and in the limit they have
explicit dependence on z as can be shown in the next section.

5. Asymptotic trends

Equations (4.5) and (4.6) are generally valid. Examination of the behaviour at the
limiting value of § — 0 (ka/z — 0) provides important insights when the field point
is distant compared to the radius of the transducer. For small ka/z, Eq.(2.8); can be
expanded in a Taylor series

z1§z+lﬁ+.... (5.1
2 2z

Substitution of Eq.(3.11); in the argument of the exponential functions (e**) in
Eqgs. (4.6) followed by expansion in a Taylor series in (1 — cos #), making us of Eq. (5.1),
simplifying by deleting higher order terms and then converting the results to real forms by
accounting for the complex conjugate of each term, yields the following common forms
for the coordinate transformations

21 ~ ay —efoz [sin(t — ay) — sin(t — az)]

= oy + 2¢3pz cos (t o8 ; az) sin (al ; (,152) , (5.2)

z ~ ay+ 2¢3pz cos (t— al;a2>sin (a1;a2>.

From which it follows

g1 —x ~ 01— 0y,

+ —
z1+ 2z ~ (a1 + ag) + 4efpz cos (t— e 3 az) sin(a1 5 az)_

(53)

As alluded previously, Pys can be neglected at large distances and the pressure expres-
sion Eq. (4.5) is written in a real form as

P ¢ [sin(t — @) — sin(t — az)] + 0(52)

o0¢}
= 2¢ cos (t s £ ; az) sin (al ; a2> . (5.4)

1 kz 2 )
The next step is to replace z; — = by 3 Ta by making use of Eq.(5.1) and then

substitute the first of Eqs. (5.3) in Eq.(5.4), and use the resulting expression for p to
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eliminate a; + a; between the second of Egs.(5.3) and (5.4). The pressure expression
that is derived in this manner is

242
2 aesin (3 55 ) cos (1- 2+ oLy )

2oCy QDC()

= ¢ Dcos (t—z-ﬂ@gz%) SR -
2 00CH

where
D =sin M/M,
and 4
= 2
M = PR (5.6)

in which zg is the Rayleigh distance nondimensionalized by the scale factor k.

Except for the fact that z and ¢ are nondimensional here and the amplitude shows
spherical spreading, Eq. (5.5) is identical to Earnshaw’s implicit closed form solution for
the finite amplitude planar wave [20] in the case of harmonic excitation at a boundary.

In order to obtain the spectral analysis of the pressure signal, one could implement
procedures that are similar to that used in [21-22] and will not be repeated here. Specif-
ically, the spectral representation for the pressure is

o0

Z nl (me)sin[m(t — z +7/2)], .7
where o
¢ = 2efpzsin ( 1 ) . (5.7

and J,,, are the Bessel functions of the first kind of order m.

The description given by Eq.(5.7) is valid if no shock form. That is up to the place
where discontinuity of the pressure wave profile occurs. The smallest value of z at which
multivaluedness of the waveform occurs is obtained when |c| = 1. That is

1
i S o (5.8)
This result is the same as that for the one dimensional nonplanar wave except that 3 is
replaced by 2(3. In otherwords, the shock formation distance for the piston problem is
half that of the planar finite amplitude wave.

Expanding the sine function in Eq.(5.5) in a Taylor series expansion for a small

argument and deleting higher order terms yields

L neZoos (t—z +ﬁgz-1°—) (5.9)
QOCU z QOC[}

Like in the linear theory, Eq.(5.9) shows that the pressure signal appears as though it
was coming from a spherical sound source of radius z.
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6. Results and discussion

Well documented exprimental data describing nonlinear effects in the nearfield is
quite sparse. GOULD et al. [23] measured the field generated by a transducer vibrating
at 2.58 MHz when cq = 1475 m/s which corresponds to k£ = 10990m~1. The geometrical
radius was 0.0101 m, but subsequent analysis of the linearized field caused INGENITO
and WiLLIAMS [7] to suggest that ¢ = 0.01042m is more appropriate. The results were
presented in Gould’s paper as selected traces of the amplitudes of the fundamental and
second harmonic either along or transverse to the axis of the beam. Such traces were
obtained by photographing an oscilloscope screen. So they are difficult to read accurately.
However travelling microscope readings of the axial distribution of the second harmonic
were reported by INGENITO and WiLLIAMS [7]. Figure 2 compares the measured axial
distribution of the second harmonic with the predicted results. The transducer was driven
at source pressure level of 5 atmosphers (506.6 KPa). The nondimensionalized Rayleigh
distance is 6657 which corresponds to 0.5966 m, whereas ka = 114.52. The overall agree-
ment between theory and experiment is good. It is to be noted that the prediction for
the farthest dip, near the nondimensional z = 1300, is somewhat less deep than that was
predicted by INGENITO and WiLiams (Fig.2 in Ref. [7]), while the dip near z = 600 is
deeper than their prediction and the one near z = 800 is substantially deeper.
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Fig. 2. Axial variation of the amplitude of the second harmonic in the Fresnel region. f = 2.58 MHz,
k = 10990m—1, « = 0.01042m, source pressure = 5atm (506.6 KPa) — : predicted, o: measured
values (Ref. [23]).
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The experiments recently reported by BAKER et al. [12] for propagation in a water
tank provide useful data for validating the analysis in the Fresnel region. The average
pressure across the transducer face was 100 KPa, the transdueer radius was a = 0.019m
and the frequency was 2.25 MHz. This corresponds to ka = 180.7 when ¢y = 1486 m/s.
The Rayleigh distance is 1.717m whereas the last axial pressure maximum ocurred at
0.5462m. Comparing the exprimental and computed results will, therefore, indicate how
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well the nearfield propagation properties are predicted. Figures 3 -5 show the variations
of harmonic amplitudes obtained by analyzing the waveform at numerous axial locations.
In Figs. 4 and 5, the experimental data have been smoothed slightly near the transducer
due to the difficulty in following small-scale fluctuations when published curves were
digitized in order to be presented here.
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Fig. 3. Axial variation of the first harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~!,

a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).
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Fig. 4. Axial variation of the second harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~t,
a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).

The theoretical prediction is compared to Moffett’s farfield measurements (Fraun-
hofer region) [24] of the fundamental and second harmonic in a fresh water lake. The
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Fig. 5. Axial variation of the third harmonic amplitude in the Fresnel region. f = 2.25MHz, k = 9514m~1,
a = 0.019m, source pressure = 100KPa — : predicted, o: measured values (Ref. [12]).

transducer in that experiment vibrated at 450 KHz and its diameter was 0,102 m; the cor-
responding Rayleigh distance is 2.59 m. The small signal speed of sound is ¢y = 1418 m/s.
The nondimensional Rayleigh distance is 5171 which corresponds to 2.593 m whereas
ka = 101.7. The source level S Ly is 215dB/1pPam. The theoretical predictions shown
in Fig. 6 compare favorably with Moffett’s measurements.
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Fig. 6. Axial variations of the amplitude of the first and second harmonic in the Fraunhofer region.
f =450KHz, k = 1994m~1, o = 0.051m, source pressure = 0.447atm (45.25 KPa). First harmonic;
—— : predicted, o: measured; second harmonic; - - - - : predicted, A: measured (Ref. [12]).

At ranges z = 0.4005m and 0.6007m Figs.7 and 8 exhibit the time waveforms for
BAKER’s [12] data. In comparison to the linearized signal, the wave distorted with the



AXIAL NONLINER FIELD

73

PRESSURE(NONDIM.)x1E4

Fig. 7.

PRESSURE(NONDIM.)x 1E4

Fig. 8. Temporal waveform at z = 0.6007m, f = 2.25Mhz, k = 9514m~"!, a = 0.019m, source
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pressure = 100 KPa — : nonlinear signal, - - - - : lincar signal (Ref. [12]).
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Temporal waveform at z = 0.4005m, f = 2.25MHz, k = 9514m™', a = 0.019m, source
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pressure = 100KPa — : nonlinear signal, - - - - : linear signal (Ref. [12]).

1.0

compressional phase being steeper than the rarefaction. The waveform has also developed
a marked top-bottom asymmetry with a positive peak being higher and sharper than the
negative one.
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7. Conclusion

An analytical representation of the on-axis finite amplitude continuous wave signal
radiated by a baffled transducer undergoing monochromatic excitation is derived. The
face velocity at the transducer is restricted to be constant. A uniformly valid description
that is suitable at any location up to shock formation distance is obtained. An asymptotic
analysis yields a simple expression for the long rang approximaton that is easy to evaluate.
The results form an efficient model that can predict the waveform and the harmonic
contents.
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