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This article refers to the changes of spectral features of Acoustic Emission (AE) signal. The AE
signal is generated during drainage process concerning a foam made of detergent solution. The
subroutines to extract the AE events and its spectral features from the real AE signal recordings
are described. The effectiveness of classifying procedures based on two linear and one nonlinear
algorithms used to recognition different AE patterns is also discussed.

1. Generation of Acoustic Emission during the foam drainage process

In this paper the changes of spectral features of an AE signal generated by the foam
formed from the liquid phase are described. The theoretical model of this effect was pre-
sented in [1, 2]. The foam investigated in this article was made during a local pressure
fluctuation processes occuring when the liquid detergent was poured into the experimen-
tal vessel. The movement of the detergent resulted in the formation of a population of
bubbles on the surface of the liquid. The diameters of the bubbles gradually increased.
The multiphase complex described above tended to achieve a dynamic equilibrium in
approx. 15-20 min. after the foam formation. During this process, beside the bubble
diameter increase, a thinning of the bubble walls caused by the drainage and a gradual
approach of the bubble junctions to the walls of the experimental vessel was observed.
The thinning of the bubble walls led to collapsing and incorporation of the weakest struc-
tures while the AE signal was generated. It was evaluated in [3] that the mechanically
excited bubbles behave as resonant vibrators with specific pulsation wy:
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where 7 - ratio of the specific heat under constant pressure to that at constant volume,
P. - pressure of the bubble in the absence of vibrations, ¢ — specific density of the
medium surrounding the bubble, R — diameter of the bubble at the equilibrium between
external and internal pressures.
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The pressure of the bubble depends of its diameter R and the pressure of the sur-
rounding medium £ according to the Laplace’s formula:

P.=Py+20/R, @)

where o - surface tension of the bubble coat.

In the investigations described a 0.142 M/dm® solution of the nonionic detergent,
Triton X — 100 was applied, which stabilizes the foam composition. The structure of the
detergent molecule is presented in Fig. 1.
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Fig. 1. The structure of the detergent molecule used in the investigation.

The procedure of generation of the foam was similar to that used in the Ross-Miles
test for foaming properties of surfaces [4]. The experimental found amount of the de-
tergent (9.4 ml) was pouring from the height of 400 mm to the 55 mm diameter glass
test-tube. A small broadband sensor of type Nano 30, Physical Acoustic Corp. was glued to
the external surface of the test-tube. The AE signals were amplified and high-pass-filtered
(over 20 kHz) using a EA200 Acoustic Emission Processor, made at the Institute of
Fundamental Technological Research. An IWATSU DS 6612C storage oscilloscope was
connected to the output of the AE processor to capture the AE waveforms. When the
amplitude of the AE signal (after 93 dB amplification) was greater than 1 V, the trigger
of the oscilloscope enabled the capturing of 2 miliseconds of the AE signal at a sampling
rate of 500 kHz. More than 700 of such waveforms were stored in the disk logged in a
PC computer applying the procedure described above.

2. Classification of the recorded AE waveforms

The authors of the papers concerning the strategies of the processing of AE signal
generated at the presence of the liquid phase [5-7] recommend AE signal descriptors
derived in the frequency domain as an efficient signal characterization method. Therefore,
the following procedure was applied to determine the different classes of the recorded
signals, caused by separate phases of the drainage process. AE waveforms were registered
in 50 bytes and formed after Fourier transformation 25 bytes long feature vectors, where
the consecutive bytes corresponded to the power of the signal within the 10 kHz band.
Thus the entire feature vector covered the 250 kHz band of the registered spectra.

During recording the AE waveforms it was found that the AE activity fades and
reaches the noise level after approx. 1000 seconds after the initiation of the process. Ac-
cording to this, the following scheme was used to generate feature vectors corresponding
to the different phasees of the investigated process:

L. ten real 25-byte vectors were averaged to form the average feature vector,
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2. the first averaged vector was formed of the signals registered within the first 100
seconds of the process, the one was formed of the signals registered within the next 100
seconds of the process, the third vector corresponded with the signals registered within
the period 200 - 300 seconds after the beginning of the process and the fourth one within
400- 600 seconds after the beginning of the process,

3. the reference noise vector was formed of the signals recorded after 1000 seconds
of the process,

4. the intensity of the signal related to the 10 kHz spectral bands was discretized in
such way as to obtain 8 intensity levels, corresponding to the 3 db signal increase,

5. the certain averaged signal level was confirmed by registering its ocurrence in more
than 50 % averaged vectors.
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Fig. 2. Four binary average feature vectors reflecting four (A, B, C, D) phases of the drainage process
and the average noise feature vector (X).

The four binary average feature vectors, labelled A, B, C, D and the reference average
noise feature vector, labelled X, are shown in Fig, 2. The comparison of the image of the
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consecutive vectors let us to conclude that at the beginning of the foam drainage process
the lower frequencies, probably generated by the collapsing of the largest bubbles, are
dominant. In the next periods higher frequencies are registered. During the final signal
decrease the high frequency domination was continued. The time dependence of the AE
signal intensity, evaluated with the use of the averaged feature vectors described above,
is shown in Fig.3.
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Fig. 3. The time dependence of the AE signal intensity registered during the foam drainage process.

Three classifying procedures were used to perform the pattern recognition process
with application of the described above average feature vectors and a group of recored
signals. The first procedure was the scalar product P of the components taken from the
evaluated patterns and those of the investigated signal samples:

P =(zir1+ o+ orn) /(@ + .+ 22)V202 + L+ r2)2, (3)

whrere P - linear classifier based on the scalar product made of tested and reference
feature vectors, z1, ..., , — tested feature vector, rq,...r, — reference feature vector.
To find the lowest value of the scalar product used as the acceptance limit to classify
the investigated signal sample as similar to the certain feature vector, the set of 50 signal
samples, used previously in the averaging procedure, was classified.
As the second linear classifying procedure the smallest Euclidean distance [ between
the tested and reference vectors was used [8]:

D= ((1—r)*+ ...+ (zn - Tn)z)llz, 4)

where D - distance to classify the relation between the tested and reference feature
vectors, z1,..., T, — tested feature vector, rq, ..., r, — reference feature vector.

To find the highest value of this classifier as the acceptance limit to classify the inves-
tigated signal sample as similar to the certain feature vector, the set of 50 signal samples
was used in the same way as in method (3) described above.

As the third classifying procedure the nonlinear neural network was prepared. Neural
network was modelled in the computer memory as the structure consisted of multi-input
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vs. single output elements (neurons) connected in several chains called layers [9, 10]. Each
neuron output (except the output layer) was connected with all the neurons consisting the
next layer. The relation between the element input and output signal for such structures
can be expressed as:

vi(t + 1) = 0(X; wijz; (1) — i), (5)

where y;(t + 1) — neuron output signal after signal processing cycle, f — neural activation
functions (in this paper assumed as 1/(1 + exp(—z)), w;; — a weighting coefficient which
expresses the bonding strength between the connected neurons labelled j and ¢, z;({)
— neuron input signal before the signal processing cycle, p; — process parameter called
threshold level.

The computer model of the neural network consisted of a table of weight coefficients
being modified in the learning process. This process was carried out to vary the synaptic
weights to obtain a desired network output signal when a certain signal was fed to the
input of the network. The aim of the research work presented in this paper was to form
the network output signal as a measure of the association with one of the five reference
feature vectors. Each weight was changed according to a widely used iterative procedure
called “backpropagation of error”. The idea of the procedure is to make weight changes
proportional to the difference between the temporary network output and the desired
(optimal) output:

Awf}) = m(db(E:)/dE)z;of + mam™D, ©)
where
6 — activation function,

Awgf) — weight coefficient between the neuron labelled : in the layer k£ and the

neuron j in the layer (k — 1),

11 — parameter called learning rate, in this work experimentally equal to 0.01,

72 — momentum, a parameter optimising the learning process, in this work
equal to 0.008,

E; - total excitation of the j-th neuron in the layer k, equal to X;w

z; — desired signal at the :-th output of the network,

y; — temporary signal at the i-th output of the network,

m;; — change of the weight coeff. used in the previous iteration,

6 _ z; — y; for the output layer or Ezw(?“)a(“l) for the other layers.
i P 1 vl
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For the purpose of the research work described here, the following assumptions have
been made for the data processing procedure:

1. the used neural network consisted of 200 binary inputs to analyse the components
of the feature vectors,

2. the vector components were analysed in the first layer consisting of 62 neural units,

3. the second layer consisted of five neurons to generate five output signals due to
association between the currently analysed vectors and five learned patterns.
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3. Comparison of the effectiveness of the classifying methods

The five spectral patterns refferred to the five phases of the foam drainage process
were used to compare the effectiveness of the classyfying procedures described in the
previous Chapter. The process of classification was performed on five groups of the nine
test spectral feature vectors. The latter groups of vectors were preparred as follows. They
were derived from the AE signal recorded 25 miliseconds after the signal samples used to
form spectral patterns. The idea of this scheme was to obtain the signal samples similar
but significantly different with respect to the applied patterns. To find the limit values
forming the acceptance ranges to classify the certain vectors to one of the five classes,
all the feature vectors once used to form the averaged patterns, were classified. The
results of the classification of the test spectral feature vectors by applying the procedure
described above are shown in Table 1.

Table 1. The results of the classification of the test spectral feature vectors by applying the three procedures
described in Chapter 2.

method of classification the acceptance range the percentage of succesfully
of the classifier classified vectors
scalar product (Eq.(3)) > 0.85 47 %
Euclidean distance (Eq. (4)) < 6.6 58 %

class A: > 0.225
class B: > 0.171
class C: > 0.206
class D: > 0.165

neural network (Eq. (6)) 44 %

Each of the presented methods alone was able to recognize about 50 % of the pre-
sented feature vectors. Both linear methods recognized generally the same vectors but
the effects of the application of the neural network showed the individual way of classifi-
cation. Utilizing the neural network method, among the 16 correctly classified vectors of
the total population of 36 seven were missed by the linear methods. An example of the
differences in the classification process is shown in Fig. 4. The right side of this Figure
presents one of the tested vectors of type B (the averaged pattern of this type is drawn
on the left side of the Figure). The linear classifiers have recognized this test vector as
a type B one. However, in this case, there is some likeness to the types A and C, so the
neural network method indicated equal similarity to the three types mentioned.

Important problems related to the propagation of the acoustic emission signal in
different media are caused by the attenuation of this signal. Figure 5 presents the averaged
pattern of type A (on the left side) and the same pattern after 6 dB attenuation (on
the right side). It was proved experimentally that the linear methods were unable to
recognize the attenuated feature vector, presented in the described Figure. The same
problem was succesfully solved by using the neural network method because the absence
of the “traces” of likeness to the concurrent vectors, The ability of the recognition of the
vectors derived from weak signals may be explained with respect to the specific signal
processing used in the neural network method. The linear methods generate a result
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Fig. 4. Binary average feature vector of class B (left) and an example of the member vector of that class
succesfully recognized when processed with linear methods and unrecognized when the neural network
method was used (right).
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Fig. 5. Binary average feature vector of class A (left) and a modification of this vector after 6 dB attenuation
of the Acoustic Emission signal (right).

of comparison increasing the coefficient of likeness for each pair of the fitting elements
of the two vectors. The agorithm of the neural network is more complex. Among the
positive components forming the likeness coefficient related to the actually processed
vector, there are the negative components related to the other memorized vectors.

4. Conclusions

Three methods applicable for classifing the real feature vectors derived from the
Acoustic Emission signal were presented in this article. They allow for automatic pro-
cessing of large sets of signal samples. Each method alone was able to classify correctly
about 50 % of processed vectors. According to the assumed criteria, the scalar product
method classified 11 % vectors less than the Euclidean distance method.The applica-
tion of linear methods causes problems of recognition of the weak signals. The neural
network method is less effective when there is signifficant likeness of the investigated
signal to more than one class. Due to the different classification strategy applied by the
neural network method, it is reasonable to use the latter method additionally to one
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of the linear classifiers. According to the investigation described above, both linear and
non-linear strategies resulted in approx. 78 % of right vector recognition, which seems to
be sufficient for the source identification and the related classifying procedures.
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