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In flow ducts with closed side branches strong acoustic pulsations are often induced. This was
shown by test results performed for systems with a single side branch and co-axial branches with
the same lengths. With growing the flow velocity an excitation of successive resonant modes
was observed. Their frequencies were increased together with the flow velocity but at peaks of
sound pressure there was an excellent agreement between measurements results and theoretical
predictions. A conversion of fluctuating flow energy to energy of resonant acoustic field was
included in theoretical consideration by means of negative resistance in impedance model of
branches. Hence, it was possible to predict a stronger nonlinearity in the case of a duct with
co-axial branches. It was found that a characteristic parameter of the analyzed phenomenon
is Strouhal number. Its values for all modes are within the same range approximately and, in
addition, it determines a change of acoustic inertance at the branch opening,

1. Introduction

In industrial air transport systems a closed side branch of main duct may be a potential
source of strong acoustic pulsations [1, 2]. When dimensions of the branch cross-section
are much smaller than a branch length, an excitation of resonant modes corresponding
approximately to odd multiples of a quarter wavelength along the branch are observed
[6, 18]. A high level of generated sound may induce vibration of the system construction
which can cause serious damage.

The mechanism of sound excitation in the system with a single side branch is similar
to that causing a generation of self-sustained oscillations in deep cavity [4, 10, 14] or
Helmholtz resonator [7, 12, 13] exposed to the grazing flow. An increase of acoustic
energy in the system is the result of interaction between unstable shear layer and resonant
modes of the branch. First, at the point of flow separation the acoustic field in the
branch opening causes a transfer of mean flow energy to shear layer which involves a
transformation of continuous shear layer to large scale discrete vortices. These vortices
are convected with the flow and interact with the downstream corner of the branch
opening. At this point a conversion of fluctuating flow energy to energy of resonant
acoustic field takes place [13].
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On the other hand, in accord with classical acoustics a presence of the closed side
branch in a duct causes substantial reflections of acoustic waves traveling along the duct
at frequencies close to resonant modes [8). This reduces a transmission of acoustic energy
past a junction between branch and duct. The filter property of side branch resonators
is often used in flow duct systems in order to suppress a narrowband noise produced by
machines using atmospheric air as a working medium [15, 17].

From the above it follows that, depending on flow properties such as velocity or tur-
bulence intensity, the side branch in the duct may cause an increase in sound level at
resonant frequencies or may reduces transmission of acoustic energy during resonance.
In this paper these opposite effects will be analyzed by means of simple models of acous-
tic waves transmission in two variants of flow systems: a duct with single side branch
(Subsec. 2.1) and a duct involving co-axial branches (Subsec.2.2). The next part of the
work presents test results including measurements of frequency and pressure level of
pulsations induced in the systems (Sec. 4).

2. Theoretical background

A long circular duct represents an acoustic system which possesses dimensions com-
pared to a wavelength. Therefore, it is not possible to treat the system as one having
lumped constants, and it must instead be considered as one having distributed constants.
When a diameter of the duct is constant, the acoustic inertance and compliance are
distributed uniformly along the duct, and the acoustic motion is wave-like as well as in
unbounded space. If walls of the duct are sufficiently smooth to neglect viscous losses,
then acoustic waves traveling along the duct may be considered as plane waves. In this
case a wave impedance at any cross-section of the duct is

- 25
Rw - W—Tﬁ ) (1)
where p denotes the air density, c is the sound speed and r, is a radius of duct. When
there is a motion of air in the duct with mean velocity U/, an effect of sound waves
convection causes a change of the wave impedance R,,. If the sound waves travel in the
direction of the flow then the wave impedance is following

R} =R,(1+ M), (2)
where M = U/c denotes Mach number. Otherwise
R, = R,(1- M). 3

2.1. Transmission of acoustic waves in duct with single side branch

The presence of a single side branch in the duct causes the acoustic impedance
at the junction differs from the wave impedance which is the characteristic value for a
plane wave, and reflected and transmitted waves are produced consequently. Assume that
an incident plane wave is propagated in the direction of the flow (Fig.1). An acoustic
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Fig. 1. Transmission of acoustic wave beyond junction of duct and single side branch.

pressure produced by this wave is
pi = Aef@t-kre), (C))

where w = 2 f is an angular frequency, k* = k/(1 + M) and k = w/c is a wave
number. At the junction of the duct and the branch, the reflected wave

Py = Brej(wt+k_a:), (5)
where £~ = k/(1 — M) and transmitted wave
p= Atej(w-k+x), (6)

are created. If cross-sections of the duct and the branch are small in comparison to
wavelength, then at the point of junction, chosen in Fig. 1 as the origin of the z coordinate,
the following conditions of continuity of pressure and volume velocity are satisfied:

PitpPr = Db =Dt, (7)

Ui+ U, = Uy + U, ®
where P P P P
; r 5 :

Ui=R—$, Ur=__1;’ Ub=“'Z';'1 Ui:RE’ (9)

ps and U, are a pressure and a volume velocity at a branch opening and Z; is a branch
impedance. An insertion of Egs. (4) - (6) into Egs. (7) - (9) leads to an expression for the
sound power transmission coefficient o

A
Ai
where operator |-| denotes modulus of complex number. As follows from Eg.(10), an

influence of sound wave convection on transmission of acoustic energy beyond the junc-
tion is negligible at low Mach number flows (M? < 1). In this case the transmission

2 \ 27, 2
= =

375 + Ry (1- M?)| °

(10)
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coefficient depends only on the branch impedance Z;,. The general expression for this
impedance is

Zy=R, + j% [kAd — cot(kd)], (11)

b

where ry is a radius of branch, d is a branch length and R, is a resistance due to viscous
action in the branch opening. To evaluate an unknown end correction Ad, the theoretical
value Ady = 8r; /37 derived by Rayleigh [8] is assumed. When viscous losses is negligible,
there is not a dissipation of acoustic energy in the branch. In this case the transmission
coefficient equals zero if the condition of resonance is satisfied

kAdy = cot(kd), (12)
which can be approximated to the form
_ c(2m—1) _
fmmm, m—1,2,3.... (13)

This means that the incident sound wave is totally reflected from the junction and re-
turned towards the source. As may be seen from Egs. (10) and (11), in frequency ranges
between resonant modes f,, the transmission coefficient o, approaches unity. Therefore
the single branch in the duct represents acoustic filter with the highest attenuation at
resonant frequencies.

The analysis presented above is valid under the assumption that both the cross-sec-
tional area of the duct and the flow velocity are small enough to maintain laminar motion
of air in the duct. When a Reynolds number

Re = > (14)
where v is the coefficient of kinematic viscosity, is much greater than 1160 the flow in
the duct becomes turbulent [16]. To adopt the outline model of wave transmission to
this situation, the incident sound wave will be now interpreted as acoustic perturbation
generated by flow disturbances.

As mentioned in Introduction, an existence of unsteady motion in the area close to the
branch opening may cause a conversion of fluctuating flow energy to energy of acoustic
field inside the branch. Finally the high-level acoustic pulsations may be created in the
system. An increase in the system acoustic energy can be incorporated in the theoretical
analysis by putting the negative resistance R, in the impedance model of the branch.
Therefore, at low Mach number flows the equation for transmission coefficient may be

rewritten in the form
R 2
7, tiX
ekl v g e K ()
=+ +7X
w2

where X = (r4/rp)*[k Adp — cot(kd)], It results from Eq. (15), that for values of R,/ R,,
decreasing from 0 to —0.25 the system behaves like an acoustic filter with attenuation
growing at resonant frequencies. When R,,/ R,, = —0.25 the coefficient ¢ is constant and
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equals unity for all frequencies. At values of R,/ R,, smaller than —0.25 the coefficient o
is greater than unity at resonance. This means that initial acoustic perturbations travelling
along the duct are amplified in the system.

As can be seen from Eq. (15), for values of R, /R, close to —0.5 the coefficient o
may possess any high value at resonant frequencies. It corresponds to unbounded growth
of pulsations amplitude. Theoretically this situation is possible in the undamped oscilla-
tor operating as linear system. In real conditions an unbounded increase in amplitude at
resonance is limited by nonlinear effects. In the considered system the nonlinearity in the
branch opening produces an additional loss resistance which increases with the growth of
pulsations amplitude. When a balance between acoustic energy losses and the energy ex-
tracted from flow perturbations is reached, the stable acoustic pulsations with frequencies
close to resonant modes as well as several harmonics will appear in the system,

2.2. Transmission of acoustic waves in duct with co-axial branches
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Fig. 2. Transmission of acoustic wave beyond junctions of duct and co-axial branches.

A distribution of pressures of sound waves in the duct, to which are attached co-axial
branches, is shown in Fig. 2. At a point of junétions the conditions of continuity of pressure
and volume velocity require that

pi+pr = Dot =DPe2= P, (16)
U;+ U, = U},l + U;,z + U, 5 (17)
where ” P P
W=z B = TR thgg
: 5 (18)
Uy = 28 s = I
Zy’ Zia
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and Zy1, Zy, are impedances of branches. After inserting Egs. (4) - (6) into Eqgs. (16)-(18)
the following expression for transsmision coefficient may be obtain

22012 ; (19)
272 + Rw(l — Mz)(Zbl + Zbg) !
Under the assumption that the branches have the same cross-sectional area and length,
the expression (19) reduces to the form

a; =

2

% : (20)

7y V Ro (1= M5

where Z, is the impedance of single branch from Eq. (11). If the transfer of energy from
flow disturbances to acoustic field will be included in a impedance model of the branches
and, moreover, low Mach number flow will be assumed (M?<1), then
2
B, ix
o = |5 . (21)

B +1+jX

R,
A comparison of Egs. (15) and (21) indicates that values of o, calculated from the equa-
tions are identical when magnitude of resistance R,, for the system with co-axial branches
is twice bigger than that for the single branch system. This means that in the duct with
co-axial branches the growth of pulsations amplitude should be limited by stronger non-
linearity. Thus, it is reasonably to expect, that in this system a harmonic distortion will
be much greater compared with the single branch system.

Q; =

3. Experimental arrangements and apparatus

Measurements of frequency and pressure level of acoustic pulsations generated in
the systems were the aim of the experiment. The tests were performed in the laboratory
arrangements presented in Fig. 3. In these systems the duct was composed of the circular
pipe with the radius r; = 8 mm. The circular side branches with the radius r, = Smm
and variable lengths were connected with the ducts under right angle. The lengths used
in experiment were from the range 1 — 10cm with a step of 1cm. Since the aim of the
tests was to compare the results of measurements obtained in the systems, it was assumed
that the lengths of co-axial branches were the same and were denoted as d, likewise as
for the single branch system (Fig. 3). The point of junction of the duct and branches was
chosen at the distance of 3.2m from the duct outlet.

The systems were supplied with the compressed air at the maximum pressure 0.5 MPa.
The maximum velocity umax Of the air stream was measured by using a Pitot tube with
diameter of 1.6 mm and a liquid-column manometer in the shape of letter U. The probe
was mounted in the center of the duct outlet. The mean flow velocity U of the air in the
duct was calculated from formula [11]

49
U= 50 Umax - (22)
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Fig. 3. Experimental setups: a) duct with single side branch, b) duct with co-axial branches, and
c) position of Pitot tube and microphone at duct outlet.

The tests were carried out in the range of U from 40m/s to 128 m/s in which a generation
of acoustic pulsations was observed. The maximum value of U corresponds to a maximum
efficiency of flow installation. The Reynolds number calculated from Eq. (14) possesses
values from the range of 2-10° to 7. 10°. Thus, it should be expected that an air flow in
the duct was turbulent,

Acoustic measurements were made with the Briiel & Kjear instrument setup con-
sisting a 1” microphone and a high resolution signal analyzer 2033. The microphone was
mounted at the distance of 30 cm from the duct outlet. The line joining the centre of the
microphone and the centre of the duct outlet made 30° angle with air stream axis.

4. Analysis of test results

At mean flow velocity U from the range 40 — 128 m/s and lengths of branches d =
1—10cm the pulsations corresponding to the resonant modes fi, f3 and fs were observed
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in experiment. A used denotation of resonant modes is given from Eq. (13). Therefore,
f1 mode may be interpreted as fundamental resonant mode, while f3 and fs modes as
its third and fifth harmonic, respectively.

Experimental results collected in Fig.4a, b, c illustrate an influence of flow velocity
U on pulsations frequency f for these modes. Data obtained for the duct with single

f (kHz)

f(kHz)

f (kHz)

de10om 3 ywecceeaeem--mescsccccam-==""""

40 60 80 100 120
U (m/s)
Fig. 4. Dependence of frequency of resonant modes on flow velocity U for single side
) and sytem with co-axial branches (- - - -).

branch system (
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branch and co-axial branches are denoted by solid and dotted lines, respectively. As may
be seen, in the both systems the frequency f of acoustic pulsations grows with velocity U.
However, the observed increase in f for the duct with co-axial branches is for nearly all
lengths of branches smaller distinctly than for the second system. Moreover, pulsations
corresponding to particular mode appear for certain values of d at different ranges of
velocity U. Additionally, at length d = 4cm a pulsations of fundamental f; mode are
generated only in the duct with co-axial branches (Fig.4 a). Note that plots obtained for
each mode at the lowest values of d finish at velocity U/ = 128 m/s which corresponds to
maximum efficiency of flow installation.

For each resonant mode the different value of branch length d results in a various
frequency range of acoustic pulsations. With growing value of d a decrease in pulsations
frequency occurs which is accompanied by a shift of the flow velocity U to lower values.
This correlation explains the plots in Fig.5, which present a dependence of Strouhal
number §

_ 2f’f‘b

U
on the flow velocity U. As may be seen, for all modes generated in the both systems, the
maximum values of Strouhal number are close together (5 = 0.45 — 0.54). The biggest
differences are noted in minimum values of 5. When U is smaller than the maximum
value 128 m/s the minimum value of S is approximately twice smaller in the duct with
co-axial branches (¢ = 3cm in Fig.5a, d = 7 — 10cm in Fig.5b). For all remaining
values of d the flow velocities, at which generation of particular mode would be possible,
exceed the velocity U = 128 m/s making a precise determination of minimum value of 5
impossible.

The fact that for certain branch lengths d the values of Strouhal number are very
similar has a simple physical meaning. From Eq. (23) and the relation

Ue = U, (24)

(23)

where = 0.62 [5] and U, is the mean convection velocity of flow disturbances, one can
obtain .
= % (25)
In the above equation A = U,/ f is a distance between two succeeding flow disturbances
which cyclically shed from an upstream edge of branch opening. More precisely, A rep-
resents the distance between the two neighbouring points within turbulent shear layer
with the highest concentration of fluid vorticity or the distance between centers of two
succeeding vortices when the vorticity is accumulated into vortices. In the works [3, 9],
where an assumption of wave-like flow disturbances was made, A is called the hydrody-
namic wavelength. The presented experimental results show that A assumes values from
the range 1.1 — 2cm and increases with a growth of flow velocity U. The increase in A
with U is evidently larger in the case of the duct with co-axial branches.
The data presented in Fig. 6 a show a change of frequencies f, at which the pressure
level L, reaches the maximum value, with the branches length d. By solid lines are indi-
cated the results of frequency calculations based on Eq. (12). As may be seen, there is an
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Fig. 5. Dependence of Strouhal number S on flow velocity U for resonant modes;

( ) single side branch system, (- - - -) system with co-axial branches.
excellent agreement between experimental results and theoretical predictions. Therefore,
an important conclusion may be drawn that the acoustic condition of resonance (12) is
not influenced by air flow in the duct.

In Fig. 6b maximum values of sound pressure level L, of generated pulsations as a
function of d are presented. As it results from experimental data, maximum values of L,
are from the range 70 — 100dB and, as a rule, they decrease with increasing d.
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Fig. 6. a) Frequencies of resonant modes at different lengths of branches at maximum

sound pressure level; ( ) theoretical results, b) maximum pressure level of resonant modes.

As was well predicted by theoretical analysis (Sec.2), a process of sound generation
is associated with harmonic distortion. To illustrate this effect in Fig. 7 maximum values
of L, corresponding to harmonics of resonant modes f1, f3 and fs are displayed. For the
harmonics a different denotation is used. For example, f3, denotes the third harmonic
of f; mode, whereas fis; is the fifth harmonic of f3 mode or the third harmonic of fs
mode. From a comparison of data in Fig. 7 it follows, that in the single branch system the
harmonic distortion is much weaker than in the system with co-axial branches. It can be
clearly observed in the experimental data obtained for f; and f3 modes. At some values
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Fig. 7. Maximum pressure level of harmonics of resonant modes.

of d as much as four successive harmonics occur (d = 2, 3cm for mode fi, d = 6, 7cm
for mode f3;). Moreover, in some cases the level of harmonic component is higher than
the level of resonant mode (d = 2cm for f; mode, d = 5 — 7cm for f3 mode, d = 9cm
for fs mode).

As follows from previously presented data, the pulsations frequency f is generally a
function of the flow velocity U (Fig.4) and values of f calculated from the resonance
condition (12) agree with measurements only in the case of maximum level of pulsations
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(Fig. 6 a). These facts indicate, that in Eq.(11) describing the branch impedance the end
correction Ad is the parameter which must vary with flow velocity U. Because Strouhal
number seems to be a characteristic quantity of analyzed phenomenon, then it will be
reasonable to seek rather a relation between Ad and S.

2.4 1 . .y
single branch .

Ad /Ad,

24

- co-axial branches .

Ad /Ad,

0.0 T T T T T T
0.3 0.4 0.5 0.6

S

Fig. 8. Dependence of end correction Ad on Strouhal number S for systems with

a) single side branch, b) co-axial branches; ( ) best fit lines.

A dependence of nondimensional end correction Ad/Ady on the Strouhal number
for both systems is shown in Fig. 8. The values of Ad were calculated from Eq.(12), in
which the theoretical value Ady was replaced by unknown Ad

Ad:ﬂ‘(_k_@_

; (26)
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The wave number k was evaluated from experimental results

c
where f(d, U) is the frequency measured at given length d of branches and flow velocity
U. All experimental data were included in Fig. 8.

The used method of correlation gave a good result. Since sets of data points in Fig. 8
correlate reasonably well, an approximate relations between Ad/Ady and S may be
found for both systems. These relations describe equations of best fit lines drawn in
Fig. 8:

Ad/Ady = 1.53 - 14.25 + 28.25> (28)

for the system with single branch and
Ad/Ady = —0.32 + 1.95 + 3.252 (29)

for the system with co-axial branches.

5. Conclusions

In the paper the flow-excited acoustic pulsations in ducts with closed single side branch
and co-axial branches with the same lengths have been investigated. In theoretical part
of the work an acoustic response of the systems was examined by means of a simple
model of sound waves transmission along the duct. A conversion of fluctuating flow
energy to energy of resonant acoustic field was included in theoretical consideration by
a negative resistance. When this resistance was not present in impedances of branches,
the systems would operate like acoustic filters due to substantial reflections of sound
waves at frequencies near resonant modes. The acoustic response of the systems could
be unbounded unless nonlinearity was included.

The main findings of experimental investigations are the following:

1. Odd resonant modes of branches are excited successively with growing flow velocity.
Frequencies of these modes increase with flow speed but this growth is distinctly smaller
for the system with co-axial branches.

2. Pulsations in both systems reach maximum level at frequencies corresponding to
classical resonance condition for quarter-wave resonator.

3. The flow-resonant response of branches occurs within the range 0.25 — 0.55 of
Strouhal number.

4. The excitation of resonant modes is accompanied by high nonlinearity. It was
especially observed in the case of duct with co-axial branches as was well predicted by
theory.

5. Changes of the end correction of side branch resonators depend on Strouhal num-
ber.
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