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The surface acoustic wave amplitudes at the boundary of a piezoelectric half-space satisfy a
matrix relation which is characteristic of the medium. The elements of the matrix are functions
of slowness. In the paper, the singularities of the matrix are investigated at cutoff points of bulk
waves. An approximated formula is derived for the matrix in the neighborhood of the greatest
cutoff point, which also takes into account the singularity related to the Rayleigh wave. The results
of numerical calculations are presented for several piezoelectrics.

1. Introduction

The INGEBRIGTSEN effective permittivity [1, 2] of a piezoelectric half-space, a function
of slowness r, is an approximation of the exact effective permittivity Y (r) in the vicinity
of the singular point equal to the Rayleigh wave slowness. The counterpart of Y (r) in
the space domain, ie. the Fourier transform of Y (r), is a Green function defined at
the boundary of the piezoelectric half-space. The Green integral formula applied to the
electric potential at the boundary gives the surface electric charge density.

In the special case of SH waves, the Ingebrigtsen approximation has been improved
by including contributions from bulk waves [3]. Since only one component of the particle
displacement vector is different from zero, the contributions can be found in an analytic
way.

We consider the general case when all the three components of the particle displace-
ment vector may be different from zero, so that numerical calculations are necessary. For
this purpose we employ the ADLER form of the field equations [4], which proves to be
very useful in the analysis of piezoelectric interfacial waves [5, 6, 7).

We are interested in the approximation of the function Z(r) = C/Y(r) (C is a
constant) in the vicinity of the cutoff point of bulk waves; this is a branch point of Z(r)
in the complex plane of r. It is shown that the behavior of the function Z(r) near the
cutoff point depends on the shape of the corresponding slowness curve at that point.

Starting from the derived approximation of Z(r), we take into account the Rayleigh
wave singularity, and find an approximated formula for the function Z(r) that is valid
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in the whole range of r. The formula is verified by comparison with the exact function
Z(r) calculated numerically.

2. Function Z(r)

Let us consider a homogeneous piezoelectric medium and a system of coordinates
(#,y, z). The plane z = 0 divides the medium into two half-spaces: the upper (for z > 0)
and the lower (for z < 0). We assume that the field is independent of y, and that the
time and space dependence is given by the factor exp(jwt — jwrz — jwsz).

The field equations can be reduced to the system of eight linear algebraic equations, as
described in Ref. [7]. Let ¢, = 1,2,3 and (z;) = (z,y, 2). The following field variables
will be used: particle displacement w;, electric potential ¢, surface force T; = T3; (where
T;; is the stress tensor), and normal component Dj of the electric displacement D;. We
have

Hyp(r)Fp = qFk, (2.1)

where K, L =1,...,8, (Fk) = (jwru;, jwr$,T;, D3), and ¢ = s/r. For real r, which
we assume, the matrix Hx is real and non-symmetric. It depends on material constants
(see Ref. [7]).

The summation convention is adopted throughout the paper: summation is performed
over repeated indices (within their range) except when they are enclosed in parentheses.

After solving the eigenvalue problem defined by Eq.(2.1) we get eight eigenvectors
F{(r) corresponding to eight eigenvalues ¢/)(r) for J = 1,...,8. The J-th eigenwave
has the form

F) = FO exp(jwt — jwr(z + ¢¥)z)). (22)
The solution of the field equations is a linear combination of the eigenwaves.

The eigenvector £ will be called upper (lower) if Im g < 0 (Img™) > 0) or,
for Im¢") = 0, if the 2 component of the real part of the Poynting vector is positive
(negative). Img”) # 0 for J = 1,...,8 if r > r. where r is the cutoff slowness of bulk
waves.

Since the surface wave field vanishes at infinity, and there is no energy flux to the
boundary (no sources in the space), the solution F}f of the field equations in the upper
half-space consists of upper eigenwaves, and the solution F; in the lower half-space
consists of lower eigenwaves. At the plane z = (, the complex amplitudes of the two

solutions are ¥ i
== CrFg), (2.3)
J

where the plus (or minus) superscript of the sum symbol means that the summation is
performed over J such that 17“};’ ) is an upper (or lower) eigenvector. The coefficients C;
are to be determined from boundary conditions.

The field equations can be solved in each half-space separately, provided appropriate
boundary conditions are imposed at the plane z = 0. In general, all the boundary values
FK (or FK) should be given. However, we consider special solutions (surface waves),
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and therefore the field variables satisfy some additional relation at the boundary of each
piezoelectric half-space. Below, it will be shown that only four of the eight boundary
values may be arbitrary. ;

Let Ry = FI({J). If we change the order of the columns of the matrix Rk so that
the first four are upper eigenvectors and the last four are lower eigenvectors, then the
matrix can be written in the form

(2.4)

(Rics) = [R+ - ]

g 8=
wliere R*, R, S*, and S~ are 4 x4 matrices. Denote by L* the inverses of the matrices
> Using the notation (Fi£) = (UE, TE) for L = 1,...,4, we rewrite Eq.(2.3) as

Uk = RxsCF, T =53,CF (25)

for JJK =1,...,4, where C'} and C; are the coefficients of the upper and the lower
eigenvectors in Eq. (2.3). From Eq. (2.5) we find CF = L3, T, and then

ks ZE T, (2.6)
where the matrix
ZI:EL = R?{JLfL 2.7

depends on 7.

Equation (2.6) is a fundamental relation in the problem of surface wave propaga-
tion. It should be satisfied by the field variables at the boundary of each piezoelectric
half-space, irrespective of what boundary conditions are imposed there.

If the boundary of the piezoelectric half-space is traction-free then Te = 0 for

3

i =1,2,3. In this case, from Eq.(2.6) for K = 4, we have UF = ZET; or
jwrdt = ZEDE. (2.8)

In the following, we shall be considering the function Z(r) = —Z (7).

3. First order singularities

The function Z(r) is infinite at the singular point r; > 7 related to the Rayleigh
wave. Three other singular points for r < r¢ coincide with the cutoff points of the three
slowness curves (in Fig. 1 the slowness curves have appendices for r greater than the
corresponding cutoff points). The function Z(r) is finite at these points (see Fig.2) but
its first derivative may be infinite; therefore, the corresponding singularities will be called
first-order.

The idea of approximation of Z(r) in the neighborhood of a cutoff point is based
on the following observation. Consider the slowness curve with the cutoff point r. From
Fig. 1 we see that for r < 7. there exist two values of s, s* = ¢®)(r)r where ¢*)(r)
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Fig. 1. The real and imaginary part of the slowness s for bismuth germanium oxide
(Euler angles: 24°, 70°, 10°). The three vertical lines mark the cutoff points.
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Fig. 2. The function Z(r) for bismuth germanium oxide (Euler angles: 24°, 70°, 10°).
The three vertical lines mark the cutoff points.
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are the two real eigenvalues corresponding to the slowness curve. As r — r¢, these two
values converge to s. = ¢r; where ¢@ = ¢&)(r.). The double real eigenvalue ¢©®
splits into a complex conjugate pair of eigenvalues for r > ..

It should be noted here that the matrix Hxr(r) is defective for r = r¢: it has only
seven independent eigenvectors. This can be shown by differentiation of the equality

(Hxr - qDix) B =0 G.1)

(Ik 1 denotes the identity matrix) with respect to s along the slowness curve. In other
words, the two eigenvectors Ff) corresponding to ¢*)(r) converge to the eigenvector
FO corresponding to the double eigenvalue ¢(®. The eigenvector (" is upper, and
F‘}{) is lower in the neighborhood of r., because the real part of the Poynting vector is
normal to the slowness curve.

The values s* are changing fast for 7 — r¢ (the derivative of s*(r) tends to infinity),
and so do the two corresponding eigenvalues and eigenvectors, while the other eigenval-
ues and eigenvectors are relatively constant. Thus, it suffices to take into account only
the two eigenvectors F }(f), to find the approximated formulae for them, and to calculate
the function Z(r) with the use of Eq.(2.7).

Suppose we know the function s*(r) in the neighborhood of r.. Regarding the eigen-

vectors F}(t) as functions of the variable s, we can write, separately for s > sc and s < s,
the Taylor expansion
F&)(s*) = FO + F;0as*, (32)
where the higher-order terms are neglected; the dot denotes differentiation with respect
to s, f}'{(m denotes the common limit of F}'((i)(si) as s* — s, and Ast = st — g,
The slowness curve in the vicinity of r, can be approximated by an algebraic curve of
second order, such as circle or parabola. We get

Ast = tap(r),  p(r) =sign(r? — r)/r2 - r2 (33)
with a = (R./r.)'/? where R. is the radius of curvature R = (1 + (s")?)*?/|s"| for
r = 1, and the prime denotes differentiation with respect to 7. Since s = gr, we have

§=qr+gq, s =¢q'"r+2¢. (3.4)
The derivatives ¢’ and ¢” can be found by differentiation of Eq.(3.1) as follows.

Let E be the left eigenvector corresponding to the eigenvalue ¢("). We assume the
normalization

FOFD 21, FOFY -, (35)
for every r, and introduce the symbols
Q)= EQH, FP, - @i = DY, 7, (3.6)

Differentiating Eq. (3.1) once and twice with respect to 7, and multiplying the both sides
by EX" we obtain

¢ =@, 0 =Q¢” +2Y ", (3.7)
I#J
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where Cry = —(¢® — ¢U)=1QY”) for I # J, and
F = C3 O + DY) (38)

where ﬁg) =2 12:CLs F f), Cis = —13‘;” F I(,J). The above formulae are true for all
eigenvalues and eigenvectors (for 7 different from the cutoff values).

Using these formulae we find the radius of curvature R(r) (at two points of the
slowness curve), and Fiy)(st) = '(i)(r) /s'*(r). The next step consists in finding the
limits of these quantities, and of F (7-) for r — 1, ie. Rc = R(ro), Fy F*© and Fg FO,
In numerical calculations, this snmply means finding the values of the quantmes for 7
reasonably close to .

Inserting the eigenvector given by Eq.(3.2) into Eq.(2.7) we get the approximated
matrix

ZE (1) = 25D £ ZgDap(r) (39)

(the higher-order terms are neglected) where the constant matrices Zf:fg) and Zﬁg) can

be easily expressed in terms of F _5? ), 2 and the remaining six eigenvectors for r = 7,
(see Appendix). In particular,

Z(r) = Zy — Ziap(r), (3.10)

where the coefficients Zy and Z; are the elements (4,4) of the corresponding matrices in
Eq.(3.9).

The above formula is true in a close neighborhood of 7. To take into account the
Rayleigh singularity it should be replaced by

1 — czp(r)
Z(r) = Zg———= 3.11
(r) = Zog— ) (3.11)
with ¢; = 1/p(r), ¢, = 1/p(r;), where r; is the singular point and r; is the zero point of
Z (7). The coefficients ¢; and ¢, satisfy the relation

Ci—Cz = aZ1/Z0 ) (312)

so that only one can be exact. In all the examples presented in Fig.3 to Fig.6 we have
chosen the coefficient c; to be exact; the other one is calculated from Eq. (3.12). In this
way, the function Z(r) given by Eq.(3.11) is singular for 7 = 7; (as the exact function
Z(r)), equal to zero for r = r, (Where 7, is close to the zero point of the exact function
Z(r)), and its first derivative is infinite for » = r. (as the first derivative of the exact
function Z(r)).

Alternatively, we may choose the coefficient ¢, to be exact, and calculate the other
one from Eq. (3.12). The choice depends on what is considered to be the Green function
in view of Eq.(2.8): the Fourier transform of Z(r) or of Y (r) = 1/Z(r). Moreover, we
may choose both ¢; and ¢, to be exact, and calculate from Eq. (3.12) the coefficient Z;.
In this case, the approximation of Z(r) in the neighborhood of r. is a bit worse but
for r = r; its main features remain unchanged: Z = Z; and the first derivative of Z is
infinite.
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Fig. 3. The function Z(r) (exact: solid curve, approximated: dashed curve) for lithium niobate
(Euler angles: 0°, 90°, 90°).
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Fig. 4. The function Z(r) (exact: solid curve, approximated: dashed curve) for quartz
(Euler angles: 0°, 90°, 0°).

0.04

Z(r) &

Re Z

—y

-0.02
0 r [s/km] 1

Fig. 5. The function Z (r) (exact: solid curve, approximated: dashed curve) for bismuth germanium oxide
(Euler angles: 0°, 0°, 45°). The vertical line marks r..
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Fig. 6. The real part of the function Z(r) (exact: solid curve, approximated: dashed curve) for bismuth
germanium oxide (Euler angles: 0°, 0°, 45°) in the neighborhood of rc. The vertical line marks re.

4. Conclusion

The behavior of the approximated function Z(r) resembles that of the exact function
Z(r) in the whole range of r, and the values of the two functions are quite close to each
other. In particular, the real parts are both equal to zero for r > r, (this feature is absent
in the Ingebrigtsen formula which gives only the imaginary part of Z(r)). It should be
added, however, that the resemblance is less apparent for those crystal cuts for which
the cutoff point r. is not sufficiently distant from the two other cutoff points.

The approximation given by Eq.(3.11) is best near the points 7, r;, and r,. In the
neighborhood of rc, Eq.(3.11) reduces to Eq.(3.10). For 7 = r both the real and the
imaginary part of the first derivative of Z(r) have a square-root singularity.

Appendix
The constant matrices in Eq. (3 9) can be calculated as follows. Using the notation
(FE) = (UD,TD) for K, L = 1,...,4, we rewrite Eq. (3.2) as
Ug 7&) = = Uy 7O + Ue '(")A.s T(*) T(O) + T'(O)A.s (A1)

Each of the matrices R, and SE, (cf. Eq.(2.4)) can be represented as a sum of two
matrices. We have

RE, = BED + REDAs*,  SE, = 530 4 giWpqt (A2)
where R*(g) and S£ have one column equal to UD and T, respectively, and Rim

and SE) have all elements equal to zero except in one column which is equal to U} 0
and TL(U), respectively.
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The matrix L, is the inverse of the matrix S5, . If we put
L = B0+ L50s (A3)
where Lﬁ(f) is the inverse of S;g), then
Sg 0% =Ier¥ (SeP L) + 5ED I A, (A4)
(the higher order terms are neglected), and hence,
Lﬁ%) -J:(O)S:I:(l) ﬂ:({) (AS5)

for I,J = 1,...,4. Inserting R%, and LE, into Eq.(2.7), and neglecting the higher
order terms, we get Eq. (3.9) with

7D = BLE,  Zig) = RPL) + RPLY- (A6)
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