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The axisymmetric problem of scattering of a finite sound beam with an annular cross-
section by an acoustically soft or immovable rigid sphere immersed in a fluid medium
is considered. The pressure in the incident quasi-plane wave is represented in terms of
the partial impact parameters by the superposition of the spherical harmonics with the
Lorentz multipole resonance distribution. The analysis of the total scattering cross-section
vs frequency and wave beam parameters is performed. It is shown that a high-resolution
of the total scattering cross-section resonances corresponding to the Franz creeping waves
is achieved when the base rays of the incident wave are grazed on the sphere and the beam
is narrowing. The particularities of these resonances are considered for the case of soft and
rigid spheres.

1. Introduction

The problem of interaction of the sound waves with spherical objects in a liquid
has been considered by many investigators for a long time. Although the formal solu-
tion of the corresponding mathematical problem is relatively simple, its interpretation
meets with some difficulties caused by the complexity of the physical phenomena of
the acoustic scattering process (see, e.g. [3, 4]). It is known that the structure of the
echo-signal from a deformable solid sphere is formed by the geometrical waves of the
reflection and transmission as well as by the reradiated diffractive (surface and creep-
ing) waves excited when the sound rays incident on the obstacle’s surface at critical
angles or grazely. The isolation from echoes or others contributions can be made using,
for example, the resolution property of the angular spectra of the incident wave that
is peculiar for finite wave beams [9, 15]. Thus, insonifying nondeformable spheres or
circular cylinders by well collimated and centrally incidented bounded acoustic beams,
the differential cross-sections vs circular frequency and the beam width were studied [6,
7, 13). In particular, differences between the sonar cross-sections for the acoustically soft
and rigid objects were found [13]. It was shown that the structure of those cross-sections
are formed by a superposition of specularly reflected waves and of the waves reradiated
by the edge points of the sound spot on the scattering surface as well as of the Franz
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creeping waves. In order to investigate the spectral properties of the diffracted waves of
the any type in a “clear” form, it is necessary to concentrate the incident sound beam
in the neighbourhood of the critical point of wave excitation on the scatterer’s surface.
Then the contribution of this wave in the total echo will be most intensive. Hence, in
several experiments an elective reradiation of the surface acoustic waves of Rayleigh and
Lamb types was observed when a finite sound beam incidents on solid and hollow elastic
circular cylinders [2, 9, 18], or of circumferential waves of the Franz and Stoneley type
when a solid cylinder is insonified almost grazely by a narrow beam [9, 17]. Analogously,
in optics rainbow and glory were observed by oblique illumination of a water droplet by a
laser beam [5], however the explanation of these phenomena presented most extensively
by H. NUSSENZWEIG [10, 11] was carried out utilizing the plane wave theory neglecting
the finiteness of the wave beam dimensions.

In this paper we propose a method based on the selection of the Franz creeping wave
by means of a sound beam with a ring cross-section. Note that using of an annular
acoustic beam makes it possible to obtain a non-specular reflection from an elastic
sphere [12, 14] that was first established experimentally by S. SASAKI [6] when an
entire ultrasonic beam was directed on a plane water-metal interface. Note also that in
(12, 14] the pressure distribution across the beam section was assumed step-wise that
did not permit to describe the scattering of the sound beam incidented tangentially on
the sphere. This demerit is removed by the introduction of an annular wave beam with
modal Lorentz cross-section distribution of the acoustic pressure amplitudes.

2. Solution of the problem

Let us assume in an ideal (nonviscous and nonheat-conducting) compressible fluid
an acoustically impenetrable (soft or immovable rigid) sphere of radius a, the centre of
which is simultaneously the origin of the spherical coordinates r, 8, . Suppose that a
harmonic sound wave (with time dependence of e~#*, where w is the circular frequency
and t is the time) excited by a keen-directive transducer into the direction # = 0 incidents
on the sphere. Then the acoustic pressure in the incident wave beam may be described
as follows:

Pinc(R,%,w) = A(Y,k)R'e* T + 0 [(&/R)’]  (R> &), (1)

where A(, k) is the axisymmetric directivity with acoustic axis passing across the center
of the target, k = w/c is the wavenumber, ¢ is the sound velocity in the fluid; R, %, ¢
are spherical coordinates with origin in the center of the transducer; the active surface
characteristic linear dimension of the latter is &. Furthermore

\/62 +22 = \/,,2 + 2rz§ cosd + (z9)?,
&l g = (z1,22), $3:RCOS¢=$3+TCOSB,

R
§

where zJ is the distance between the centre of the transducer and that the scatterer, £
and z3 are the radial and axis coordinates of the beam cross-section, respectively.

(2)
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If the sound beam is sufficiently narrow, then from Eq. (1) we get the following
expressions for the quasi-plane wave [15]:

Pine(r,0,0) = AR)R(E/2, K™ ™0 + O [1/(kaQ)?] (ka3 >1)  (3)
DPinc(r, 0, w) = A(k) i i'(21 + 1) Ry (k)i (kr) Pi(cos 6). (4)
=0

Here the function A(k) is defined from the condition:
A(v, k)(23) " exp(ika3) = A(k)R(¢/x5, k)
(W ~tgy=¢E/23, P <1)

and corresponds to the Fourier-spectrum of the incident pulse modulation, R(£/z3, k) is
the directive pattern of the quasi-plane wave,

Ri(k) = Ri(e/z3, k) (6)

is the coefficient determining the directivity of the partial wave with the impact param-

eter oy = 1/I(l + 1) /k and the angular moment [, that satisfies the inequality g < z%;

Ji(kr) is the Bessel spherical function of order [, P;(cos#) is the Legendre polynomial.
Thus, the acoustic scattering pressure is determined by the formula

Pec(r, B,w) = f(B,k)r‘leikr +0 [(a/r)z] (r>a) (7)

as r — 00, where

(5)

£(8,k) = k1Y (21 + 1) fi(k) Ru(k) Pi(cos 0) (8)
=0
is the scattering amplitude (or form function) and f;(k) is the partial scattering ampli-
tude
filk) =i25i(z)/ 00 (@)  (z=ka, 1=0,1,2,..), (9)

where htu)(:r:) is the Hankel spherical function of order ! of the first kind, 2 = 1 and
2 = d/dz for the soft and rigid spheres, respectively.

In the experiments, the total (effective) scattering cross-section oy (k) is an important
characteristic [1] which, in the case of a sphere insonified by a finite wave beam, is written
as follow [15]:

(oo}
ou(k) = 251 Y |Ru(k) Pau(k); (10)
=0
here g,(k) is the partial cross-section corresponding to the plane wave scattering:
ou(k) = @n/B) @+ DR (1=0,1,2,..) (11)
and
Zo =5 [ IR/ R dt, 12)
ao

where o is a square of the beam cross-section over which the averaging of the incident
Poynting vector is carried out.
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Let suppose that the directivity pattern of the quasi-plane wave near the scatterer
have the the Lorentz form

/2
R(¢/23, k) = L
where z3v is an effective beam width.
Because
/2
Ry spaia Bl (14)

(60 — @) /2§ +iv/2’
in accoudance with Eq. (8), the essential contribution to the scattering amplitude f(8, k)
will be due to the partial waves with impact parameters satisfying the equality

o =% - (15)

Equation (14) corresponds to a single-level representation of the angular spectra of the
incident wave amplitude.

3. Analysis of the results

On the base of the Eqs.(10)—(15), the calculation of the effective cross-section
o (k) = Zyos(k)/a® were performed as a function of the nondimensional frequency z for
the case of the acoustically soft sphere (Figs. 1, 2) and the acoustically rigid immovable
sphere (Figs. 3, 4).

The plots show that when a solid cylindrical beam (nondimensional impact parameter
20 = fo/a is equal to zero, Zy = In2) or a ring cylindrical beam (Zy, = w/4) with
0o < 0.5 incidents on the spherical surface then the cross-sections for wide beams (0.5 <
70 < 1, 90 = 9v/a) qualitative unimportant are distinguished from the corresponding
cross-sections of the plane wave incidence case [1]. However with the increasing sound
spot dimension the frequency dependence of of (k) is getting an oscillatory character
with increasing an amplitude more and more because of the narrowing Fresnel zones
of the different phases that are formed on the insonified sphere side [6, 7, 13]. Then
also the minimal levels of o} (k) approach the zero value. The increasing beam impact
parameter (gp — 1) and the decreasing effective width ~yo yield amplitude fluctuations
of o (k) displayed in the almost whole frequency range that is considerable. The values
of (k) for the soft and rigid spheres are clearly distinguished between earth by the
phase modulation. Note that in the case of the plane wave scattering similar differences
are not observed because the cross-section of (k) approaches the asymptote 2ra® in both
cases of the soft and rigid obstacles.

A specific scattering of the narrow sound beam occurs when base rays incident grazely
on the spherical object (o = 1). Then the general amplitude level of of (k) is unimpor-
tant because only one half of the whole energy transported by the beam is lost in the
interaction process. Furthermore, with narrowing beam the role of the specular reflec-
tion sharply decreases. Then, the amplitude oscillations, which are observed leading
off with 3, > 0.5, become specially expressive and periodic and disappear slowly for
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o ~ 1 (Figs.2, 4). The resonance positions on the frequency scale with a step of Az ~ 1
determining the phase and group circumferential wave velocities indicate resonances cor-
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responding to the Franz creeping waves. Here these waves are separated very explicitly
when go = 1 and 9 < 1. It has also shown that within a considerable frequency range
the resonance amplitude of of (k) for the soft sphere is almost twice as much than for
the rigid one.
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4. Conclusions

One of the effective methods of selection of the different contributions to the echo-
signal from obstacles immersed in a fluid (gas) includes the control over the parameters
of an incident bounded sound beam. For the spherical scatterer case by directing the
acoustical axis of the transducer to the target center, this beam can be chosen axisym-
metric with a ring cross-section. By scanning of the beam based rays on the obstacle
spherical surface from the pole to the equator as well as by narrowing gradually the
beam ring width an analysis of the generative mechanisms of the reflective and diffrac-
tive waves can be made. The acoustic beam pressure is described by spherical harmonic
superpositions with the Lorentz partial amplitude distribution. The computations of
the total scattering cross-section o; as a function of the frequency show the resonance
character of this value under grazed insonifying (with succesive narrowing of the hollow
beam ring) acoustically soft and immovable rigid spheres. The distances between the
resonances indicate that these resonances belong to the Franz creeping waves. The res-
onance amplitude level of this waves scattered from the soft sphere is two times larger
than that from the rigid one. Another information is contained in the behaviour of the
envelope of these resonances. This is the oscillating function with different particularities
for the soft and rigid scatterers.
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