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MODEL OF AN ACOUSTIC SOURCE WITH DISCONTINUOQUS OPTIMAL ELEMENTS
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A new multi-elements model is considered. This model is composed of a sequence of
discontinuous elements. They are constructed basing on the zeros of the Tchebycheff’s
polynomial. In this case, the discontinuous elements, and consequently the discontinuous
model, are obtained. Such a model is particularly useful for modelling a source with corners
and arbitrary boundary conditions.

It has been proved that the new model is of better quality than other ones applied in the
BEM up to now. To confirm this conclusion, the error of the new model and their acoustic
fields have been compared with those of different other models.

In order to clearly demonstrate the advantages of the new model, a plane and fully
axisymmetric source has been taken into account, however the idea of the model with
discontinuous elements can be applied to more practical problems.

T;

We(z)
Mw;n41

]

vy

Pq(z)
M?’;nj,nij-}-l

Notations

nodes, to model My, 41; i =0,1,...,n,
polynomial of degree g,
one-element model of degree ¢ with n + 1 nodes; ¢ = n,
break points, j-subinterval (j-element) € [pj_1,p;), to Mp;nj,n‘.j_,_l; 322 13200y
nodes separately numbered on each element, to model M'P‘v"jv"sﬂ‘l; i=1,2,..n4,
piecewise polynomial of degree ¢,
n;-elements model of degree g with n;; + 1 nodes on each element; ¢ = maxn;;,
J

given any function, interpolating function,

wave number,

Bessel function of zero order,

infinite space solution of the Helmholtz equation for the point source [16] p. 641,
n-th divided difference of the function f(z) at the nodes =;, (3], (8] p. 193,

finite product, [3], [8] p. 193,

radius of the membrane,

from mathematical point of view.

1. Introduction

The first step of BEM is the discretization of the source boundary into elements [14]
(boundary = geometry and acoustic variables defined on the geometry). Next, applying
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the interpolation theory, the model of each element source is built. From the mathemat-
ical point of view, the model of the source constitutes the piecewise polynomials [11, 12].
Hereafter, for simplicity: model of the element = element, model of the source = model.

Because the elements may be connected in an arbitrary manner, the model, in general,
is a discontinuous function at singular points, i.e. at the points of discontinuity of the
physical variables and/or those of discontinuity of the geometry (corners). However,
the BEM requires, at these points, the existence of derivatives of the boundary [7, 17].
Under these circumstances the derivatives may not be determined and they require
special attention.

Two main techniques to circumvent to the singular points are proposed:

e by duplicating the singular point with a small gap between [15, 17]. However, the
problem arises how large the gap should be to ensure a good quality of the model,

¢ by using discontinuous (nonconforming) elements in which the nodes are shifted
inside the elements; in order words, the extreme nodes are not placed at the borders
of element [7, 9, 15, 17]; the problem arises how large the displacement of the node
from the corner should be. In [15] it was proposed to take a distance of 1/4 and 1/6
of the element length for linear and quadratic elements, respectively, but this was not
theoretically justified.

The aim of this work is to construct a model with optimal elements denoted by
Mp.o_n, i.e. optimal in the distribution of the nodes on each element. This was achieved
by applying the zeros of the Tchebycheff’s polynomial as the nodes; an idea of such
elements may be found in [3, 4, 5]. The Tchebycheft’s zeros are exactly distributed.
Such a model consists of a set of discontinuous elements. The new model turned out to
be better quality than other known models. To confirm this conclusion, the following
quantities have been calculated: the error of the models, their directivity functions and
the acoustic pressure near the boundary.

Two comparative models were taken into account: a one-element model of higher
degree and a multi-elements continuous model with evenly spaced nodes on each element.

For simplicity of the calculations, a plane axisymmetric membrane has been chosen
as the source.

2. Interpolation theory

Let f(z) be any given function. It is required to construct an interpolating func-
tion, f(m), which satisfies any (here Lagrange’s) interpolation condition, i.e. f(nodes) =
f(nodes).

In this paper two forms of f(z) are presented:

e a polynomial form; f(z) = W(z),

e a piecewise polynomial form; f(z) = P(z).

The W(z) and P(z) are two standard models for the f(z) function.
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2.1. Polynomaial interpolation
Let A be any partition of the interval [a, b], such that
A, a=2g <81 <" <Bj—1 <Zi*-*Tan=0> (2.1)

and the set of nodal values is {f(z;)}g = {fi}3-
One desires to find a g-degree polynomial W, (z) which satisfies the condition:

f@) =Wlz), q=n. (2.2)

There are several ways to represent an interpolating polynomial. It seems that the New-
ton form is the most efficient one [1] p. 3,

Wy(z) = Z fo..iPi(x). (2.3)
i=0
The interpolating polynomial Wy (z), among the nodes z;, is not identical with the
function f(z). Therefore, one defines the error of interpolation as follows:

Ew.ni1(z) = f(z) - Wq(m)' (2.4)

This error could be exactly expressed by one of the three formulas, [11] p. 118, but the
most known one is

f{"+1)(IC)

(n+1)! wt1(z),  ze € int(z, To, 71, .. ., Tn). (2.5)

Ewmn+1(z) =
The value Ey.,+1(z) cannot be calculated because f (n+1)(z,) is unknown. Therefore
two estimations of E,n41(z) are used. The first one is the estimation at the point z
and the second one the estimation over the interval [a, b]. They are given respectively by

My ns1
Ewins1(@)lleos < 5 Pars @), (2.6)
where
Ry ne1 = 1 (@)oo = s?pbllf(““)(:c)l, (2.7)
z€E|a,
and -
Epintr < (nf_’:-;)l,mp,nﬂ, (2.8)
where
M nt1 = |Prt1(®)lloo = sup |Prsa(z)]- (2.9)
! z€|a,b]

If the interpolation points are equi-spaced, M nt1 can be computed by the closed
formula, [10] p. 63: :

n+1
D = (b“i_a) (e DY (2.10)
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2.2. Piecewise polynomial interpolation

At first sight it would appear that by increasing the number of nodes, and hence
the degree of the polynomial, better interpolations to the function f(z) should be suc-
cessively obtained. However, in practice, between the nodes at the ends of the interval
[a,b] the interpolating polynomial of higher degree may oscillate quite violently (see
Runge’s problem, [1] p. 22, [11] p. 96). Thus it may reflect not truly the behaviour of the
function f(z).

An alternative approach is to use piecewise polynomial interpolation. Instead of look-
ing for a higher degree polynomial over all the interval [a, b], a polynomial composed of
a sequence of low degree polynomials is constructed that it is valid only locally.

Let A, be any partition of the interval [a, b], i.e.,

Ay a:;.m(,u,l<---<,uj,1<ﬂj<---<,unj:b. (2.11)
Furthermore, let A, be an arbitrary partition of the j-subinterval, € [u;_1, s;), Fig. 1,
Ay: pia S <y < o <Wing <Y <o < S G, (2.12)

and the set of nodal values {f(v:)}o” = {fi}o”, j = 1,2,..,n;, where n;; may be
different on each j-subinterval.

K M
; ® *— ® ——

VO vl s Vi s Vn

ij
Fig. 1. General distribution of the nodes on the j-subinterval.

A gj-degree polynomials Py, (z) and a g-degree piecewise polynomial P,(z) are de-
fined, on each j-subinterval and on the [a, b] interval, respectively,

Pyi(z) = Wy (z), T € [pj-1,14), @ =nij, (2.13)
Py(z) = Py;(z), §=1, Ly, G= mjaxqj , (2.14)

The polynomial Py, (z) fulfils the interpolation condition

E'.ﬂ;j (vi) = f(n) = qu (vi), Vi € [pj-1, 1j), (2.15)
or in the [a, b] interval
fnj,ﬂ;‘j (Vi) = f(yi) = Pq(yi)= vi € [G!., b] (216)

The error of piecewise polynomial interpolation ought to be expressed similarly as
pointed out above for polynomial interpolation. In this case, the error at every point of
the j-subinterval and of the interval [a,b] can be written respectively as follows

Epjny+1(z) = f(@) = Pg;(@), =€ [uj-1,45), (217)
Epinjnii+1(z) = f(z) - Pq(z), z € [a,b]. (2.18)
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Because of the reasons mentioned above, only the estimation of Ep;,, n, +1(z) at the
point  may be calculated, cf. Eq. (2.6),

sy 1@l € 222 1p () (2.19)
g = (ni; +1)! Tkl ’
where
Rynyt1 = [1FP 5D @)oo = sup  |f+)(z), (2.20)
z€[pj_1,45]

|-+ |lc = norm of C[u;_1,u;] space (Tchebycheff norm).
In practice, however, it plays a minor part. T'wo estimations are more important: the
estimation over the j-subinterval and that over interval the [a, b],

mf.ﬂ-.’j*H
1EP;jng+1lle = T 2 I Pmgtls TE€ (-1, 45), (2.21)
iJ .
@P;nj-,n¢j+l = mjax“E'P:j,nU-&-l”co; T € [a,b], (222)
where
Weng+1 = 1Pag+1(@)lloo = sup  [Poy1a(2)]. (2.23)
3 3] J
IEI.“j—]a.ugl
For equi-spaced interpolation points on j-subintervals we have,
Sﬁpmiﬁl == (‘u";—’%_l—) (nij +1)!. (2.24)
ij

With regard to the distribution of the nodes on each j-subinterval, two cases should
be considered: the first one, when two extreme nodes are placed at the ends of the
j-subintervals; vo = pj—1, vn,; = pj, and the second one, when these nodes are shifted
inside; vo > pj—1, Un,; < pj.

3. Models of the source

3.1. Acoustic source

For simplicity, let us consider the fully axisymmetric source, i.e. both the geometry
and acoustic variables are independent of the angle of revolution. Here, the membrane
placed in an infinite baffle is chosen as the source. In this case, the function f(z) may
be interpreted as a cross-section of the source, hence a = 0, b = .

An acoustic field of the source (exact acoustic field) has been described extensively
in Refs. [16] p. 594, [18] p. 187 or [2, 6]; the final expressions for the directivity function
and acoustic pressure near the source are given by,

Q(k,y) = ff(m)Jo(k:rsin'y)mdz, (3.1)
01-‘:, 27

olk, H,85) = ff(z) fG('r')dtp z d, (3.2)
0 0

respectively, where the geometric symbols are depicted in Fig. 2.
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Z

Fig. 2. Geometry of the problem.

3.2. Models of the source

Hereafter, the function f(z) ought to be interpreted as a cross-section of the model.
The error of the model constitutes the error of interpolation, i.e. Eq. (2.4) or Eq. (2.18).
Estimation of the model error on the interval [a,b], Eq. (2.8) or Eq.(2.22), is assumed
to be a direct measure of the quality of the model (see Sec.5.1 below). However, in
acoustics such a measure plays a minor part. It seems that the difference of the acoustic
field may be more useful (indirect measure of the quality, see Sec. 5.2 below).

3.2.1. One-element model Myy. Under the circumstances given above, the model
My is given by Eq. (2.3): My = W,(z) = fu(2). If Eq. (2.3) is substituted into Egs. (3.1)
and (3.2), the acoustic field of Myy is obtained; it is denoted by éw(k, v), pw(k, H,zp).
The error of the model Myy is given by Eq. (2.4) and the direct measure of the quality by
Eq. (2.8). In numerical calculations, the one-element model Myy with equi-spaced nodes
Te; is used as a comparative model. It is marked by Myy.r and z.; — B in Fig.3. All
the symbols ought to be completed by index n + 1; e.g. Mw.Rr.n+1-

3.2.2. Multi-elements model Mp. The model Mp is given by Eq.(2.14): Mp =
Py(z) = fnjnﬁ(z). If Eq.(2.14) is substituted into Egs.(3.1) and (3.2), the acoustic
field of Mp is obtained; it is marked by é'p(k, v), pp(k, H,zp). The error of the model
Mp is given by Eq. (2.18) and the direct measure of the quality by Eq. (2.22).

The multi-elements model Mp with equi-spaced break points p ; (all elements have
the same length) and equi-spaced nodes v, ; is called multi-elements regular model Mp.r
(in Fig.3 pe,; — V and ve ; — W). It is a comparative model in numerical calculations.
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Fig. 3. Distribution of the nodes and break points: 1 - Myy,p;5, | = Mp,g;2,3, 2 - Mp,0—_N,2,3-

Under conditions given above, instead of Eq. (2.3), Egs. (2.13) and (2.14), Mp.r may
be expressed by a simpler formula,
ﬂ'l'j
Poy(e) =Y feiPila), @€ [uj-1, 1), (3:3)
i=0
where f,; = f(ve;) and M;(z) are the shape functions; they can be easily found else-
where, [7] p.71. Up to now, this is a fundamental equation applied in modelling the
source in BEM. In this section the additional index n;, n;; + 1 has been dropped to
simplify the notation; e.g. the full symbol is Mp;Rr;n; n,;+1-

3.2.8. Multi-elements model with optimal elements Mp.o_n. The feature of Mp.o_n
are the equi-spaced break points p. ;, but the nodes are the Tchebycheff’s zeros.

Analysing formula (2.8), one can see that the error is a product of two factors. One
of them, My 1, depends on the properties of the function f(z) and is not amenable
to regulation, while the other one Mp .11, is determined by the choice of the nodes z;.
Thus the question of an optimal choice of z; arises so that M P.n+1 deviates less than
any other polynomial on interval [a,b]. This problem was solved by Tchebycheff, [3], [8]
p- 540, who pointed out optimal nodes, here marked as z7 ;. Detailed discussions of the
mathematical aspect of the nodes z7; can be found in (3, 4, 5, 6]. In these papers, zr;
were applied to construct the one-element optimal model.

Hereafter the idea of zp; is utilized to construct a multi-elements optimal model
Mp.o_n and z7; ought to be replaced by vr ;. Note, that the vy ; are non-uniformly
spaced. Furthermore, the external v ; are shifted from the borders of the j-subinterval
and these displacements are mathematically proved.

In the case under consideration the interpolating polynomial can be expressed by
Eq.(2.3). At such a particular distribution of the vr;, this formula takes a particular

form of
ngj

Py;(z) = Zfo,.iﬁ(x), Z € [pi-1, i), (3.4)
i=0
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where ’fn'.j is the Tchebycheff’s polynomial of n;;-th degree (the coefficient of ™ in
Ty, () is equal to unity); for further details, see Refs. [3] and (8] p.540. Next, the
Egs. (2.13) and (2.14) should be used.

In accordance with Eq.(2.5), the error of interpolation by Eq.(3.4) can be found
from a similar formula
fou(z) o
Ep.0-Nijn;;+1(2) = WTWH(W), T € [He,j—1) He,j)- (3.5)
For the same reasons as those after Eq. (2.5), two estimations, quite parallel to Eqs. (2.6)
and (2.8), can be applied,

By
Ep.o-nNiin.+1(x Coo M
” P;0 N‘J.nu'i'l( )IlOO,f = (n‘ij+ 1)|

Ty @ @€ luesrimes)  (36)
where M fmij+1 is expressed by formula (2.6) and

m}' nii+1
||EP;0—N;j,n,—j+1||oo < (n“—_:]_)'gm'l",ngj—fl: 2 € [feiais te i) (3.7)
ij .

The Mr,5,;+1 can be calculated analytically [13], p. 94,
mT,ﬂ.ijJ—l = (,ue,j - #e,j—l)nij+1 2_(27‘{3""1). (38)
The estimation of the error (3.5) over the [a, b] interval can be written as

@'P;O—N;nj.ni,‘-H = m:?x”E'P;O—-N;j.nij+1E|oo » z € [a,b). (3.9)

The Mp,o_ N model is given by Eq. (2.14) via (3.4): Mp,0-n = Py(z) = fnj ni; - Note
that this is a discontinuous model. If Eq. (3.4) is substituted into Egs. (3.1), (3.2), an
acoustic field of Mp.o_ i is obtained that is denoted by ép;o_N(k, v), pr.o-n(k, H,zp).
The error of the Mp,o_n model is given by Eq. (3.5) and a direct measure of the quality
by Eq. (3.9).

The multi-elements model Mp with equi-spaced break points p. ; and nodes vr; is
called the multi-elements model with discontinuous optimal elements Mp.o_n (in Fig.3
He,j — V and Vg = O).

In this section all the symbols should be completed by an additional index nj, ny; +1;
e.g. MP;O—N;ﬂj,ﬂij+1'

4. Numerical implementation

The aim of numerical calculations is to compare the quality of the new model Mp.o_n
with those of other models, i.e. with those of Myy. g and Mp.g. To do this the same total
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number of nodes and/or of the same degrees are assumed, see Fig. 3. To realise the task,
one takes into account:

Mw.R:s — l-element regular model of degree 4 with 5 nodes; the graphs
concerning this model are denoted by short dashed lines marked by 1,
Mp.p23 — 2-element regular model of degree 2 with 3 nodes on each element;

lines 1: short + long,

Mp,0-n;2,3 — 2-element model degree 2 with 3 nodes on each optimal element;
lines 2: short + short + long (bolted).
In all the figures the same kind of lines relates to the same model.

5. Calculations, results, conclusions

As a preliminary check of the quality of the models, the cross-sections of the source
and of the models are shown in Fig. 4; z € [0, z,/4], where z, = 1 is assumed. Inspection
of the figure reveals two conclusions:

o The model Mp.o_n consists of discontinuous elements.

\l\l]li[l|i\|I[lWIIiIITT}IIIIl]iI!

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
X

Fig. 4. Cross-sections of the source and the models: solid line — membrane, 1 — Mw.Rg;5, | - Mp;Rr;2,3,
2- Mp,o-nN;2,3

Hereby it is quite suitable to modelling the boundary with singular points, see Ref.
[7] p.87, p.237. Furthermore, the displacements of the nodes inside the element from
singular points are exactly determined.

o The model Mp.o—n is more convergent to the source than the others are.
In order to confirm this conclusion, two measures of the model quality are examined.
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5.1. Direct measure of the model quality

As mentioned in Sec. 3.2, the estimation of the model error on the interval [a, b] makes
up a measure of the model quality, Eqgs. (2.8) and (2.22). Here they are plotted in Fig. 5.
As expected, the estimated error of Mp.o_y is less than that of Mp.r. Because the
error estimation on the [a, b] interval is a direct measure of the model quality.
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Fig. 5. Estimations of the errors: line 1 - || Ew,p;5()lloo, 7, 1 = a5, U = [|Ep;rsj,3(2) oo,
1Y = |Bp;Rijslloc, 1Y = €piri2,3, 2 = ||Bpi0-N,j,8(2)lloo, £+ 2} = |BPi0-N3j3llcs 2 = €pio-n;2,3-

e The model Mp,o_n is of better quality than Mp,g.
Note that the estimated error of Myy.p is the least one. This is due to the fact
that Myy.r is a smooth model. However in the present paper, the comparison between

Mp.o_n and Mp.g plays a greater role.

5.2. Indirect measure of the model quality

To confirm the last conclusion, the models are compared in a different manner. For
this purpose one defines:

. AQ(k:'Y) = Q(kv'}‘) = Q(k': ’Y):

e Ap(k,H,zp) = p(k,H,zp) — p(k, H,zp).

These differences may be interpreted as indirect measures of the model quality.

The differences in the directivity functions are presented in Fig. 6. The results clearly
confirm the last conclusion. For a comprehensive study, Figs. 7 and 8 show the differences
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Fig. 8. Difference in the acoustic pressures Ap(k, H,zp) on the line parallel to the radius of the source,
H =0.1zy, k = 5; line 1 - |Apw.ns|, | - |Appiri23l, 2 - |App,o-N;2,3]-

of the acoustic pressures near the surface of the models. Generally, all the results support
the last conclusion. Only in the range k > 20, Fig. 7, the quality of Mp.o_ N is somewhat
poorer than that of Mp,r. However an explanation of this phenomenon is impossible.

The quality of the model with optimal elements can be further improved by applying
an optimal discretization
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