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The paper presents, basing on the results obtained for the single tone and multitone
excitations, the theory of the white noise propagation in and radiation from a cylindrical
duct. The duct is assumed to be semi-infinite and hard walled, the excitation axisymmet-
rical and with no mean flow.

Solution of the wave equation with adequate boundary condition constitutes a base of
the carried out analysis. It allows for propagation of certain number of wave modes, which
cut-on frequencies are below the excitation frequency. Anyhow, when more than one mode
are present the analysis of the sound field complicates, as it requires the knowledge of
modes complex amplitudes.

To make any quantitative comparison between the theory and experiment possible two
extra assumptions are incorporated into the theory: on the equipartition of the density of
energy between all modes admissible at a given frequency and on their random phase. The
second assumption results in the necessity of describing the acoustical field by means of
the expected value, the variance and the standard deviation of the pressure, the intensity,
the power output etc.

The paper contains the directivity characteristics of the pressure and the intensity and
evaluation of the power output for the one third octave (tierce) band white noise.

1. Introduction

The aim of the presented paper is to extend the theory of sound wave propagating
in and radiating from a circular duct on a case of narrow-band white noise excitation.

The theory of propagation of acoustic waves in a semi-infinite duct predicts that at a
given frequency only some waves can propagate without damping [2, 3, 15]. The quantity
which is the most convenient for investigations on this problem is the non-dimensional
wavenumber, ka, being a product of the wave number k and the duct radius a, and
s0 combining the wave frequency with the duct size. Apart from the plane wave which
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propagates at any ka the occurrence of any higher mode is specified by the so-called
cut-on frequency. Propagation of the plane wave or single higher mode, in a duct excited
with a single tone signal has been considered by many authors, who applied the so-called
time independent form of the velocity potential [11, 25, 26, 6, 8, 9, 13, 14, 22].

In the following we consider a case in which the duct is excited with a narrow-band
white noise. That means that the velocity potential has to be written as a sum over all
allowed modes and an integral over frequencies.

The theory of sound field inside and outside the duct has been a subject of our interest
since long. Especially, we have analysed the far field of a single higher mode by means
of the directivity patterns (pressure, intensity, power-gain function) [17]. Next step has
been to derive the directivity characteristics for an arbitrary superposition of modes,
what has led to a conclusion that directivity strongly depends on complex amplitudes
L.e. on the modulae and phases of the excited modes [18].

That means that a set of numbers representing the modulae and phases has to
be inserted into mathematical formulae to make any predictions about the radiation
characteristics, the power output etc., or comparison with the experimental data possible.

To deal with these drawbacks the model composed of two assumptions [21] is pro-
posed

— the total energy is shared in equal parts between all excited modes,

~— phases are independent random variables with the uniform distribution in the
range [0, 27].

The first assumption, often called “equal energy per mode” has been successfully
applied by many authors [1, 14, 19, 21|, the second assumption seems to be well physically
justified — if there is no knowledge what exactly the phases are the best solution is to
assume them being random [21].

2. Analysis technique and results

2.1. Mathematical background. Solution of the wave equation for the single tone
excitation

Mathematical tools applied to obtain a solution of the problem are rather compli-
cated and include the theory of two-valued analytical functions, application of the Green
function in the cylindrical coordinates, the solution of the Wiener - Hopf integral equa-
tions by means of the factorisation method, the saddle point method etc., so there will
be reminded only in short.

Consider the wave equation for the acoustic potential A®(r,t) = ¢c~20,%(r,t), with
adequate boundary condition given on the duct surface (Fig.1) vy = —9y®|s = 0, and
assume an axisymmetrical harmonic excitation of given frequency w.

First, the solution of the wave equation for a single [ mode propagating towards the
outlet will be reminded - in cylindrical coordinates g, ¢, z, for inside of the duct [26]

JO()'J'IQ/a e—imz 4 Z L . i JD P‘ﬂg/a') eitnz| —iwt (2_1)

b (w,0,2,t) = Rl
1w, 0,2,1) Jo () Jo(ftn)
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R=0.35m
= ANNNNN— 2
Fig. 1. Geometry of the problem.
and in spherical coordinates R, 1, ¢, in the far field outside the duct [17]
pilkR—wt)
Sﬁ(w,R,‘ﬁ,t) = d:('t?) R (2.2)
The incident wave, [ radial mode, described by the first factor in (2.1), propagates
with the radial wave number vy, = /(ka)? — u?/a, where ; is the I-th zero of the

Bessel function J;. Terms under the summation sign represent waves appearing due
to diffraction at the outlet, where R;, is the reflection/transformation coefficient. The
number of admissible modes depends on the dimensionless parameter ka, called also the
non-dimensional wavenumber. The index of the highest mode, which propagates without
attenuation fulfils the condition uy < ka < pn41. For a duct of radius a the cut-on
frequencies w; are equal to w; = couy/a, where ¢g is the sound speed.

In the far field outside the duct the incident [th mode propagates as a spherical wave
modified by the directivity function d;, which in general is a function of R, 9. In the
following we will concentrate on the infinite distance approximation (kR — c0), when
the directivity function, derived by means of the saddle point method, is a function of
only the angle 9 [17] (Fig. 1)

di(9) = —;—ka sindJ; (ka sin 9) F, (ka cos ). (2.3)

The method itself, successfully applied to many acoustical problems, is described
n [12]. Mathematical considerations leading to (2.3), reported in [17, 22], especially
deriving the Fj(w) function, which in fact is the Fourier transform of the discontinuity
of potential ®(p, 2)|,—a+ — ®(0, 2)|p—a— at the duct wall, are rather complicated.
Assuming a unit amplitude of the incident wave we obtain [17]

Li(m)

= @)

(2.4)
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while L (w) are functions which are solutions of the Wiener - Hopf equation [12]‘

e 1/2
Li(w) = (k £ w) [HD (va)Jy (va) ] LEL | eds), (2.5)
i Tw
and
1 f (v
X(w) = ReS(w) = —P f ,(” L (2.6)
m w' —w
Zk
9 i00 ( , )
- _ 2w w(v'a o A
Y(w) = ImS(w) = = /—wz—w’zdw + tw(va)signw. (2.7)
0

P in (2.6) stands for the principal value, w? + v® = k?, while the second term in (2.5)
comes from circuiting the singular point w’ = +w on a semicircle. Functions £2(va) and
w(va) are equal to

2(va) = arg HY (va) + /2, (2.8)
w(va) = 2(va) = 2(pn),  pn <va < pingy . (2.9)
The L (w) function for w = 7, exists only as a limited value for w — +, and is
equal to
( 1/2
ok [ T REE)  edsw, 1=0,
2 i=1 Vi~ k
Li(m) = 4 E 1/2 (2.10)
Uetywe [ i %t n | gsew g,
Hi A, BN
L il

where v = k.

Because of mathematical complexity of the problem a set of numerical programs
has been derived, which enables us to present the reflection coefficients, the directivity
functions etc. graphically and to carry out a thorough analysis of the sound field of
interest.

Previously we assumed a unit amplitude incident wave. As was mentioned before,
the theory foresees and the experiments, in which the power spectra density [1] and the
directivity characteristics [21] were measured, confirm excitation of all admissible modes.
If N indicates the highest Bessel mode and A; is a complex amplitude, we can write the
potential in the form

N
=1 AP . (2.11)
=0



THEORETICAL AND EXPERIMENTAL ANALYSIS OF THE BAND NOISE RADIATED 401

2.2. The white noise excitation

Basing on the results obtained for excitation with a fixed frequency [21] we will
extend the formulae for the potential, the mean pressure and the intensity on the case
of continues spectrum of frequencies.

For the white noise we obtain

o7 1) = f B(w, 7 1) o(w) dw (2.12)
wEB

where g(w) is the spectral density of energy and B is the band width. In the following
we assume constant spectral density p(w) = 1.
Thus, the acoustic pressure, p = pod;®, can be expressed as

lE ) L f oo 7 B, (2.13)
wEeB
where
gilkR—wt—m/2)
p(w, R,9,1t) —QowIZA w)d;(w, R ﬂ)T
’ N
= Y P(w,R,0)e' vt | (2.14)
=0

is an extension of the formula for a single tone excitation [21].
The pressure real amplitude P, and phase 6, were expressed by the modulus and
phase of the complex amplitude A; = |A4;|ei?t:

Pi(w, R, 9) = Lw|A)(w)|di(w, R,9), 6 =kR+¢ — /2. (2.15)

According to the first assumption, for each frequency w the modulae of amplitudes
are related as follows

Ay(w) Ym (W)

According to the second assumption, for each frequency, phases are stochastically
independent random variables.

Below presented formulae are valid in an infinite distance approximation (kR — 00).

To indicate this the variable R is omitted and we write, for example, I(9) instead of
I(R,9)

y N(w) N(w)
= — PP - . 2.17
10)=5— > F+2 3 APncos(or— dm)| do (2.17)
wEB =0 l<m

Note that the intensity depends on the phase differences between modes of the same
frequency w.
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Note that the same results can be achieved exchanging operation of summation over
some discrete frequencies [20] for integration over a certain frequency band.

For constant power spectral density, choosing the amplitude of the principal mode
(plane wave, m = 0) at the mid-frequency wy as the reference amplitude we obtain

N(\’JJQ) +1

|A0(w)!2_ N( )+1

(£2)" 1 40(wo) . (2.18)

As was mentioned before, the second assumption on the random phase results in
the necessity of carrying out the field analysis by means of the expected value E(),
the standard deviation £() etc. Below, their final formulae for the intensity I(d), the
intensity directivity function s’(9) and the power output P, calculated basing on the
results obtained for multifrequency excitation [20] are presented.

The expected value and the variance [10] of the sound intensity are equal to, respec-
tively

N(w)
E(I(0)) = 2906 f tzgp, (2.19)
weB
and
{ N(w)
war(I(9)) = 5= f S (P P)? do. (2.20)
weB zrér?n

Theoretical results were compared with experimental data for the one third octave
(tierce) white noise with the mid-frequencies fy = 8 kHz and fo = 10kHz.

B
7.08 8.0 8.91 f(kHz)
4 »
] I I
p = 3.83 5.18 5.86 6.52 p2=7.02 ka

Fig. 2. Third-octave passband in the first experiment. Note constant density of energy distribution.

The first band, Fig.2, covers the range of frequencies from 7.08kHz to 8.91kHz,
which for considered duct 0.04 m in radius corresponds to the values of the dimensionless
wavenumber ka from 5.18 to 6.52, so the number of modes remains constant, N(w) = 2,
in the whole band. The second band, Fig.3, lowest and uppest frequencies are equal
to 8.91kHz and 11.2kHz, so the ka parameter changes within the range [6.52 + 8.22],
crossing the third root, us = 7.02, of he Bessel function J;. Thus, the number of modes
excited in the duct changes within the band being equal N(w) = 2 for ka < p» and
N(w) = 3 for ka > ps.
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Fig. 3. Third-octave passband in the second experiment.

3. Physical quantities describing the far field

3.1. The intensity and the pressure directivity characteristics

The relative intensity directivity function was defined [20] as the intensity in a given
direction referred to its expected value on the axis (the forward radiation) s’(d9) =
1(9)/ E(I(m)).

The next two formulae present its expected value and the standard deviation [10, 21]

N{w)

> P(w,9)dw

E(s'(9)) = Egg;; el ;,(::) , (3.1)
Y. Pl(wm)dw
wep =0
N(w)

2[ > (P Pn)?dw
e(s'(9) = YRIUW) _ N “CP iim . (3.2)

E(I(9)) N(w)
> P

wEB =0

Defining the pressure directivity function as the pressure in a given direction referred to
its expected value on the axis (the forward radiation) s?(9) = ppms(9)/ E(prms(m)), and
basing on considerations enclosed in [21] we obtain

E(sP(9)) = /E(s'(9)), (3.3)

e(s?(9))

14

%6(31(19)). (3.4)

Theoretical results, calculated with the help of the presented model assuming addi-
tionally equipartition of energy between the modes composing the incident wave, and
their phases constituting, for each frequency, a set of mutually independent random
variables, compared with experimental data are presented on graphs.

Analysing Figs.4—7 one sees that the accordance between theory and experiment is
quite good for the forward radiation, when rays bent from the axis of no more than 30 deg
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Fig. 4. Relative intensity directivity function s!(19) for the third-octave white noise band excitation

with nominal centre frequency fo = 8 kHz). The expected value E(s!(9)) (continuous line), values of

E(s"(9))(1 + €), (dashed lines) & being the standard deviation. Stars indicate the experimental data
and bars the measurement errors.
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Fig. 5. Same as Fig. 4, but for centre frequency fo = 10kHz.

are considered (range 150—-180deg on drawings, note that angle 180 deg corresponds to
the forward radiation) and deteriorates for smaller angles. The last effect is especially
visible on Figs.5 and 7, that is for the band with the centre frequency equal to 10kHz,
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Fig. 6. Relative pressure directivity function s?(9) for the third-octave white noise band excitation
with nominal centre frequency fo = 10kHz. The expected value E(sP(¥)) (continuous line), values of
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Fig. 7. Same as Fig. 6, but for centre frequency fo = 10kHz.

theoretical predictions exceeding experimental data. It may stem from the tendency of
the physical system to occupy the state of the lowest possible energy and the fact, that
the directivity characteristic representing the most probable state lies below the line of
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the expected value [24]. Besides all that, the agreement achieved assuming the random
phase is much better than the one applying all-modes-in-phase model, for which the
theoretical values are even bigger. It is evident as the expression in bracket in Eq. (2.17)
Nw) 1°
takes then the form | 55 B
1=0

The inconvenience of applying the methods of the theory of probability results in
better agreement between the theory and experiment.

3.2. The power radiated outside and its space distribution

There are at least three different methods of evaluating the power radiated outside:
integrating the normal component of the intensity over the duct outlet or over a sphere in
the far field outside or integrating as before, but the mean square pressure p?, , divided
by the specific impedance of the environment ggc.

A certain procedure of carrying out experiments corresponds to each theoretical
method. In the first and second we measure the axial I, and radial I components of
the intensity on the duct outlet and on the sphere, respectively, while in the third we
measure the mean pressure p,,,s on the sphere in the far field.

Because of assumed random phases we should compare the experimental data with
the expected value of the power output and the measurement error with the standard
deviation.

In the following we will largely refer to our two previous papers [19, 20] in which the-
oretical and experimental results for the power output for the single tone and multitone
excitations were presented and which contain the detailed description of the three meth-
ods of evaluating the power, the experimental conditions and the discussion of measuring
eITors.

In short, the power radiated outside was derived from the data of

~ the intensity measured on the duct cross-section — Py,

— the intensity measured in the far field outside the duct — Py,

— the mean square pressure measured as previously — P;r;.

In [20] the formulae for the expected value of the power output corresponding to
these three methods were presented. They can be easily extended on the case of the
white noise excitation applying the formulae for the expected value of the pressure (3.3)
and the intensity (3.1) directivity functions and substituting

Pi(w, R,9) = £22 ((ﬁ((;";’fl)lf:’c di(w, ), (35)

calculated from (2.15)-(2.16), (2.18) for |Ag(wo)| = 1.
Focusing on methods applying the far-field relations, which are of our main interest,
two formulae for deriving the power output will be reminded

E(P11) = 2wR:E(I(m)) f E(sD(9))sind d9, (3.6)
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27 R
E(Prp) = gﬂ PE1ms(T)) f 2 sind do. (3.7)

The standard deviation is calculated according to formula ¢(P) = v/'varP/E(P), where

N(w) 2

var(P) = E(P?) — EX(P) = ('”Rz) /Z /Pngsinﬂdﬁ . (3.8)

OoC

exchanging in the expression for the variance [20] summation for integration over fre-
quencies.

Another difficulty which arises when comparing theory with experiment comes from
the fact that the assumptions of the model allow only for determining the relative am-
plitudes of modes and thus we have to incorporate one experimental data into the the-
oretical formulae to derive the so-called scale factor. In the presented analysis a point
on the axis (9 = 180°) served as a scaling point, so we substituted theoretical value
E(I(r)) by I(r) and E(p?,,,(m)) by pZ,,.(m). Tilde over a symbol means, in this paper,
the experimental value.

Discussion of errors carried in [19, 20], which results are valid also in the considered
case, led to expressions for the measuring error and the method uncertainty (the last
stemmed from the assumption on random phase) and allowed for deriving a criterion of
correctness of the proposed model [19]

ALp < Ls, (3.9)

where ALp = |10 log E ('P’)/§| is the method uncertainty, while the total error of the

experiment, in decibels, is equal to Ls = —10log(1 — § — das/1 + ep + &), where E(P')
denotes the expected value of the power obtained by replacing the theoretical value
E(I(w)) by the adequate experimental data I (), P denotes measured power, § — error
in the intensity or the mean square pressure data, while dos denotes error in surface
estimation when approximating the integral by a finite sum. The relative error in the
pressure and the intensity measuring data is assumed to be the same in all measuring
data, not exceeding 0.2, same as the maximum of the surface error.

The experimental results for the power radiated outside, for the third-octave white
noiseband with nominal centre frequency fo = 8kHz and fo = 10kHz, obtained by
means of three methods are depicted in Table 1.

Table 1. Values of the sound power level Lp measured by means of the three methods, estimated
from the theory L E(P') the uncertainty ALy resulting from the applied theoretical model
and the measuring error L.

nominal centre frequency experimental theoretical uncertainty error
fo Lpp | Lepp | Leppy | Leee! ) E(‘P”I) ALppy | ALppyp | Lépppar
(kHz) (dB) | (dB) | (dB) (dB) (dB) (dB) (dB) (dB)
8.0 78.9 | 80.0 | 77.6 80.1 77.2 0.1 0.4 4.1
10.0 81.0 | 80.1 | T76.7 83.5 80.2 34 3.5 4.0
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The Table includes only the method uncertainty ALp and the measuring error Ls
for measurements taken in the far field because the upper frequencies became too big for
the used microphone probe (the two 1/2 inches microphone sound intensity probe type
face to face with the 6 mm spacer in between) what affected the experimental error.

From the results presented in the above table we conclude that the relation ALp < L;
is fulfilled for both tierces and for all measuring methods. As the experimental data
fulfil the criterion of correctness we can say that at least they do not contradict the
assumptions. Similar results were obtained for the single tone [19] and the multitone
[20] excitation.

Many applications demand the knowledge of the space distributions of the energy
radiated from the duct outlet, which is described by the power-gain function, G(9, ¢),
referring the amount of energy radiated into a certain solid angle to the total energy
radiated outside.

For axisymmetrical excitation, according to the definition, we obtain

I(9)

- 2
g(ﬂ) = 47TR ’p_(raE)—' (310)

Experimental results versus the angle 9 are presented in Table 2, pointing at a strong
radiation in the vicinity of the axis.

Table 2. Experimental results for the power-gain function versus angle ¥ on a front hemisphere,
as data for backward radiation were negligible small.

angle | nominal centre frequency | nominal centre frequency
deg fo = 8kHz fo =10kHz
J G g
90 0.50 0.26
95 0.43 0.15
100 0.81 0.18
105 0.81 0.17
110 0.96 0.17
115 1.08 0.24
120 1.38 0.38
125 L7 0.49
130 2.15 0.96
135 1.54 1.01
140 1.23 0.80
145 1.43 0.81
150 1.78 1.34
155 4.23 3.36
160 7.84 8.67
165 10.22 15.06
170 13.95 30.86
175 16.19 43.41
180 18.59 49.84

i

The integrand of G(«, ¢) over the entire solid angle is equal to 4, so the integrand
of (3.7) over the angle 9 is equal to 2. The results obtained from the experimental data,
when replacing integration by summation, are presented in Table 3 and show very good
agreement with the theory. If the experimental data fulfil this condition we can say that
they do not contradict the assumptions.
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Table 3. Experimental results for the power-gain function,
when the theory predicts the value equal to 2.

nominal centre frequency 3 Gi(9)sin9 A9
fo [kHz]
8.0 1.983
10.0 1.953

4. Conclusions and possible applications

The paper presents a certain model for qualitative and also quantitative description
of the narrow band sound field radiated from axially excited cylindrical duct in the ab-
sence of the mean flow. The last two assumptions were set because of some limitations of
the experimental set-up to make comparison with the experiment possible. Nevertheless
the results can be generalised by solving the wave equation with sources. The starting
formulae were derived for the semi-infinite duct and take into account diffraction phe-
nomena at the open end. Thus they are valid for the duct long in comparison to the
wave length and with only one outlet — provided at the other end with sound absorbing
material. These features are found in many duct-like devices, to mention only heating
and ventilation systems, cars and planes exhausts, factory chimneys etc., what makes
investigation on the problem interesting from both, theoretical and practical, points
of view. In the light of the above we expect many potential applications in problems
requiring the knowledge of the directivity characteristics or the power output.

The experimental results presented in the paper show that good agreement between
the theory and experiment has been obtained, what in a way verifies the model we
proposed. Considering the directivity characteristics, the random phase assumption ap-
proaches theoretical predictions to measurement data much better than commonly used
all-modes-in-phase assumption.

Especially good agreement was obtained for the power output, which we found very
promising in applying the circular duct as a reference source. As was shown in Table 1
the power estimated by means of the model and single measurement on the axis in
the far field differs from the one calculated following one of the well known procedures
described above less than the experimental error. There from origins the idea to estimate
the power output basing at only one measurement on the axis.

The paper is considered to be a step forward in deriving a procedure of evaluating, or
at least estimating, the power radiated outside measuring the pressure or the intensity
in only one point. It needs preparation of a set of numerical programs computing the
expected value and the standard deviation along the formulae (3.6), (3.8), (2.15), but
we hope to present it in the next paper.
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