ARCHIVES OF ACOUSTICS
22, 4, 411-421 (1997)

PROPAGATION OF SOUND WAVES OF FINITE AMPLITUDE IN A HORN
AT FREQUENCIES BELOW THE CUT-OFF FREQUENCY
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Institute of Physics, Pedagogical University of Rzeszow,
Department of Acoustics
(35-310 Rzesz6éw, ul. Rejtana 16a, Poland)

An investigation of the wave of finite amplitude in hyperbolic horn with annular cross-
section is described. The fluid in the horn is assumed to be nondissipative. The equation
of the sound wave propagation in the horn is solved for the case of frequencies below the
cut-off frequency. The analysis is given in Lagrangian coordinates.

1. Introduction

The problem of propagation of sound waves with finite amplitude in horns at fre-
quencies above the cut-off frequency was described in the papers [4, 10]. In this work the
case where the input wave has a frequency below the cut-off frequency but her harmonics
have frequencies above that of cut-off is discussed. Harmonics waves are then favoured in
propagation with respect to the fundamental and they can be amplified. This problem is
considered for hyperbolic horns with annular cross-section which are frequently applied
[2, 5-8, 10].

2. Analysis of the propagation equation of wave with finite amplitude for excitation
frequencies below the cut-off frequency

The equation of propagation of a wave with finite amplitude in a horn with arbitrary
shape has the following form [4]:
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where £ is the displacement of the acoustic particle, S is the cross-sectional area of the
horn, c is the sound velocity for small amplitudes, a is Lagrangian coordinate, 7 is the
adiabatic exponent, z = a + £ is Eulerian coordinate. Dots and commas in equation
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(2.1) denote differentiation with respect to time and to the coordinate a, respectively.
Equation (2.1) was formulated under the assumption that the horn is filled by a lossless
gaseous medium. In the derivation of equation (2.1) the nonlinearity of the equation of
continuity, Euler’s equation and adiabate equation was taken into account [4].
The following dependence between the cross-sectional area and position of the horn’s
axis determines the family of hyperbolic horns with annular cross-section [8]:
So

S= — cosh(mz +¢), (2.2)

where Sg = wdphg (Fig.1) is the area at the throat, m is the coefficient of flare of the
horn and ¢ is the coefficient of shape of the walls; € € [0, c0).
{

T E

Fig. 1. The longitudinal section of a horn defined by (2.2).

Let us assume that there are no refflection at the mouth of a horn and that a hypo-
thetical annular piston vibrating with harmonical motion is the source of waves at the
throat a = 0:

£(0,t) = k"' Acoswt, (2.3)
where k is the wave number, w is the pulsation and ¢ is time. The dimensionless amplitude
A = 2nM, where M is the Mach acoustic number [11].

It is known [10, 11] that even for relatively high intensity of the sound we have 4 < 1.
Therefore the displacement £ of the acoustic particle has the form of a power series of
the amplitude A:

£(at) =k [A-py(at) + A2 py(at) +...], (2.4)
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where ¢, (a,t), @,(a,t),... corresponds to succesive harmonics. The functions ¢, (a, t),
v, (a,t),... must reduce for a = 0 to

,(0,t) = const,
©5(0,t) = ¢3(0,t) =...=0.

In the case of hyperbolic horns with annular cross-section the functions ¢, (a,t), ¢,(a,t)
fulfil the following equations [10]:

(2.5)

1 =
@] +m[tgh(ma + €)] ¢} + m® [1 — tgh*(ma +¢)] ¢, — A= 0, (2.6)

1 ..
@4 +mltgh(ma + )] @ +m? [1 - tgh’(ma+ )] @o = 56, = $(at),  (27)

where
W(at) = 0,6 Mtgh(ma+5)+@f¢ . Y Piet
’ Y1 e2 171 ge2 k
,m* tgh(ma + €) [1 — tgh®(ma + €)]
+ 7 o
m?2 [1 — tgh®(ma +¢)
— P19 [ % ] (2.8)
Substituting to equation (2.6)
0 (a,t) = ¢1(a)- e (2.9)
we obtain the equation of the first harmonic wave:
2
¢y + mltgh(ma + )] + | —5—— + k*| ¢ = 0. (2.10)
cosh®(ma + ¢€)
For frequencies above the cut-off frequency the solution of this equation is [10]:
b1 (a) By ei-f-{‘(ma-i-e) 3 By e—if(ma+e) , (2_11)
y/cosh(ma + ¢€) v/cosh(ma + ¢)
where B; and B, are constants. K can be presented in the following form:
. 1. @ 1/2
© K= {lczorrf2 ~1 + - [tghe — tgh(ml +5)]} . (2.12)
Here [ is the length of the horn (Fig.1). -
In the case of frequencies below the cut-off frequency K = —ix [9] and the solution
of equation (2.10) can be presented in the form
¢1(a) = ____Bl—ei(maﬂ) + —Bz___e—i(maﬂ’) , (2.13)
cosh(ma + €) cosh(ma +¢€)

where

T PN v
¥ =4 - — - — - : 2.14
X {4 k*m vy [tghe — tgh(ml +s)]} (2.14)
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Subsequently, taking into account the formula (2.9) and considering only the real part
of the solution, the following equation can be obtained for the wave propagating from
the inlet to the outlet:

Bae—X(ma+e) Be—X(ma+e)
wq(a,t) = e e R SO e i, (2.15)

cosh(ma + ¢) y/cosh(ma + €)

The constants Bs and By can be determined from the boundary condition (2.5):
B3 = Vcoshe eX® | By=0 (2.16)

and the formula (2.15) may now be written

coshe .
1) = | ————— e X0, f 217
1(a,) \/ cosh(ma + ¢€) . SHAE (2:30)

With the help of (2.17), the right-hand side of (2.7) can be presented as follows:

¥ = o(a) [l + cos 2wt] , (2.18)
where
e~2Xma cosh e "
o= 4 cosh(ma + ¢) [Dl tgh'(ma-+e)
+ Dy tgh®(ma + €) + D3 tgh(ma + €) + D4] (2.19)
while
15m? 9xm3
i 2T ok
37 _ ao?
s W —mk(y - 2), (2.20)
m’(3x — 2%°)

Dy = 2m~kx + z A
The term v(a, t) is a periodical function of time with pulsation 2w. Therefore the function
,(a,t), as an integral of equation (2.7), has also pulsation 2w. The function ¢,(a,t),
which corresponds to second harmonic is a sum [3]:

@a(a,t) = pqy(a,t) + yp(ast). (2.21)

The component ¢, (a, t) is the general solution of a homogeneous equation coupled with
equation (2.7). In the case where the frequency of the second-order harmonic is above
the cut-off frequency, the function ¢, (a,t) has a form similar to (2.11):

Ci

——cos [2wt — K1(ma +¢€
cosh(ma + ¢€) [ 1 )

P21 =

e A sin 2wt — K1(ma + e)], (2.22)

\/cosh(ma + €)



PROPAGATION OF SOUND WAVES OF FINITE AMPLITUDE 415

where
o 1 1/2
K= {4k2m i [tghs — tgh(ml + 5)]} . (2.23)

The component ¢,,(a,t) is the particula.r squtlon of the equation (2.7) and has a form
similar to the term v (a,t) (2.18):

Pos(a,t) = gla) + f(a) cos 2wt . (2.24)

Introducing (2.24) into equation (2.7) we obtain equations for the functions g(a) and f(a):

m2

9"(a) + m[tgh(ma + €)] g'(a) + gla) = ofa),  (229)

cosh®(ma + ¢)

f"(a) + m[tgh(ma + £)] f'(a) + [ : + 4k2] fa) = o(a). (2.26)

cosh?(ma + ¢)

The solution of the equation (2.25) can be presented in the following form [3]:

g(a) = g2(a) f o(a)da — %gl (a) [o‘(a) - sinh(ma + ¢) da

+ Cg1(a) + C2g2(a),  (227)
where
1
g1(a) = m ) (2.28)
g2(a) = % tgh(ma + ¢). (2.29)

The solution of the equation (2.26) is expressed by
1@ = sa) [ LD da - fy) [ LT da v Oufs(a) + Cafale), (230

where
cos [K1(ma + ¢)]

fila) = ey i (2.31)
]

sin[Ki(ma+e¢

~—

—

fa(a) = /cosh(ma +¢) (2]
Wia) = —2t (2.33)

cosh(ma +¢)
Finally the displacement of the acoustic particle in the hyperbolic horn with annular
cross-section, for frequencies below the cut-off frequency, can be presented as follows:

E(a,t) = k7 Apy(a,1) + k71 A [z (a,) + g(a) + f(a) cos 2], (2.34)

where ¢, (a,t), @4, (a,t), g(a) and f(a) are expressed by formulas (2.17), (2.22), (2.27)
and (2.30), respectively. The constants Ci, C> can be determined from the condi-
tion (2.5).
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3. The exponential horn with annular cross section

In this important particular case ¢ — oo and the formula (2.2) has the following
form:

S = Spe™*. (3.1)
The cut-off frequency for the exponential horn is [4]
mc
o B 3.2
fo= 2 (32)

The solution (2.17) of equation (2.6) for the frequencies below the cut-off frequency is
simplified to the form

my,/m2 2,
@ (a,t)=e (2+ - k) coswt . (3.3)

The equation (2.7) for the second harmonic is
)
Py +mpy — C_2<P2 = Y(a, 1), (3.4)

where the right-hand side of this equation has the following form:

W(a,t) = {N [(7 + 1)k -”;—2] +2 [(5 - T;]} e—(m+zw)a1+cTos2wf, (3.5)

2
N=mlimx=1/> - k2. (3.6)
£—00 4

The particular solution of equation (3.4) can be presented in the following form:

Here

¢22(a,t) = [C + D cos 2wt] e~(m+2N)a (3.7)

The coefficients C' and D can be found by introducing ¢,,(a,t) into equation (3.4):

5 _ 2.2
%N (v + Dw?e — m?*c®] + mc (-—4—’19.)2 - ﬁzli)
2 3.8
¢ 2mwcE N 4+ m2we? — 4w3 ! (3:8)

_ 2.2
—;—N [(y + Dw?c — m?c®] + me (5—4—'}@2 - %)
= . (3.9
b 2mwe? N + m2wc? iy

Note that for a frequency f < f.

m

C>D~——. 3.10

yP (3.10)

In the case where the frequency of the second harmonic is above the cut-off frequency,

the general solution of a homogeneous equation coupled with equation (3.4) has the
following form:

¥a1(a,t) = Pe™™ + Qe ™%/2 cos(2wt — Nya), (3.11)
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where

" m?2
Ni=m lim K; = /4k? — — . (3.12)
£E—00 4

The sum of (3.7) and (3.11) represents a solution of equation (3.4). Next, from the
boundary condition (2.5), the constants P and @ can be found. Thus at a =0

@21 (0,8) + (pg0(0,¢) = P + Q cos2wt + C + D cos 2wt = 0. (3.13)
This condition is fulfiled at all times when
P=-C, Q=-D. (3.14)

Finally, for excitation frequencies below the cut-off frequency, the displacement of the
acoustic particle in the exponential horn takes in the second approximation following
form:

§(a,t) = k-lAe"‘(%q'i'N)ﬂ coswt + ku-lAZ{ce*ma (EAZNG & 1)

— De~7e [cos (2wt — Nya) — e~ (B+2N)2 cog 2wt] } (8.15)

It can be noticed that in above formula the term
k~1A2C e™e (e72Ne — 1) (3.16)

occurs. This term is independent of time and signifies that during the acoustic motion,
a layer of air inside the horn oscillates about a mean position which is not its position
of rest but is displaced in the direction of propagation of the wave.

By differentiating equation (3.15) with respect to time the vibration velocity of a
particle can be obtained. The vibration velocity is a sum of two components: the first
one is the term with pulsation w (first harmonic):

v = —AcelB+N)e sinwt | (3.17)

The second component with pulsation 2w (second harmonic) can be presented as follows:

vy = 2cA’De™ %3¢ [sin(?wt - Nya) - e~ (B+2N)agip 2wt] : (3.18)
‘When the distance from the source at the throat is big enough that
e~(B+2N)a 4 (3.19)

and the only important part of the second harmonic wave in formula (3.18) is
vy ~ 2cA?De™ 7% sin(2wt — Nya). (3.20)

In this case the ratio of the amplitudes of vibration velocities of both harmonics is
equal to
_ 2cA?|D]e~ %o
- Ace—(%‘+N}a
The square of this ratio gives the ratio of the radiated powers.

= 2A|DjeM*. (3.21)
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At the end the exponential horns with the same dimensions of the throat and of the
mouth but with different lengths are taken into account in the numerical example:

— width of the channel at the inlet kg = 1.5-10"% m,

— diameter of the annular channel dy = 107! m,

— width of the channel at the outlet h; = 107! m,

— lengths (coefficients of flare, cut-off frequencies):

1
Iy = 60-10"%m (ml =7=, f, =190Hz),
m

)

l; =42:10%m (m;, 0L, g, =270 Hz),
I = 28-10~?m (m3 =15 )
)

ly =21-10"2m (m4 =20

ls = 15-10~2m (ms =B, fo= 760Hz).

For the acoustic particles at the mouth of the horn the termin the formula (3.19) can
be written as follows:

§ = e (B+2N) (3.22)

In Fig.2 ¢ as a function of frequency for expotential horns with the above dimensions is
shown. We can see that practically § < 1. Thus, the ratio of the amplitudes of vibration
velocities of both harmonics can be calculated from formula (3.21) which can now be
presented in the form

n = 4rM|D|eNt. (3.23)

The relation between the ratio n and the vibration frequency of the piston at the
throat, in the range of frequency %fc < f < f, for the horn with length / = 0.6m is
presented in Fig. 3. The five curves in Fig. 3 correspond to five values of the Mach number,
from M = 0.002 (intensity of sound level at the throat Jy = 156dB) to M = 0.015
(Jo = 173dB). The relation n = n(f) for the horn with length | = 0.15m is presented
in Fig. 4. The graphs of the functions n = n(f) for horns with another lengths resemble
the graphs in Fig.3 and Fig. 4, and therefore they are not presented here.

It is shown in Fig.3 and Fig.4 that, for frequencies below the cut-off frequency, the
amplitude of vibration velocity of the second harmonic increases in comparison with that
of the first one when the frequency decreases. This increase is faster when the amplitude
of the piston which initiates the wave is greater.

It can be seen comparing these results with the results of the [10], that for frequencies
below the cut-off frequency the second harmonic is more amplified than for the frequen-
cies above the cut-off. Assume e.q. that the length of the horn is 0.15m (f, = 760 Hz)
and Mach acoustic number is 0.01 (Jo = 170dB). In this case for frequency f = % T
from the (Fig.4) we obtain n ~ 60%, but for frequency f = 2f. we have n ~ 5% (see

(10]).
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Fig. 2. The coefficient & [see (3.22)] for the horns with different lengths.
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Fig. 3. The ratio of the vibration velocity amplitudes of the second harmonic to the first one
for the acoustic particles at the horn mouth. The length of the horn I = 0.6 m.
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Fig. 4. The ratio of the vibration velocity amplitudes of the second harmonic to the first one
for the acoustic particles at the horn mouth. The length of the horn / = 0.15 m.

4. Conclusions

In the acoustic waveguide the waves with frequencies below the cut-off frequency,
once they reach a certain level, are easily replaced by their harmonics which are strongly
amplified. This effect can be evaluated for hyperbolic horns with annular cross-section
on the basis of the results of this paper in case where the horn dimensions and amplitude
at the throat of the waveguide are known.
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