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The oblate spheroidal coordinate system was used for calculation of the acoustic power
radiated by a thin circular plate located in a finite baffle. It was assumed that the plate
was clamped at the circumference of the planar limited baffle and radiated into lossless
homogeneous liquid medium. The vibrations of the plate were forced by time harmonic
external pressure. The damping effects caused by internal friction in the plate material as
well as dynamic influence of the waves emitted by the plate were taken into considera-
tion. The formula for the acoustic power was derived by the application of properties of
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eigenfunctions of plate equation of motion.

Notations

plate radius,

expansion coefficients,

bending stiffness,

baffle radius,

propagation velocity of a wave in fluid,
expansion coefficients,

Young’s modulus,

surface density of the force exciting vibrations,
expansion coeflicients,

time dependent surface density of the force exciting vibrations,
time independent constant,

components of measurement tensor,

acoustic parameter, h = koa(b/a),

plate thickness,

m-order Bessel functions,

m-order modified Bessel functions,

wave number,

structural wavenumber,

mass of the plate per surface unit,

normal component,

acoustic power radiated by the plate,
normalised acoustic power radiated by the plate,
norm factor,

Flammer norm factor,

sound presure,

radial variable in polar coordinates,

coefficient of internal damping,
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radial spheroidal function of the third kind, l-order,

angular spheroidal function of the first kind, I-order,

Poisson’s ratio,

normal component of the vibration velocity of points on the surface of the plate,
vibration velocity of points on the surface of the plate for mode (0,n),
normalised coefficient of the vibration velocity,

transverse dislocation of points on the surface of the plate,

time dependent transverse dislocation of points on the surface of the plate,
characteristic function,

fluid-loading parameter,

parameter of the plate damping,

= kna is solution of the homogeneous plate equation of motion,

mutual impedance,

spheroidal coordinate,

length of acoustic wave in fluid,
area of the plate with baffle,
spheroidal coordinate,

mutual impedance,

acoustic potential,

time dependent acoustic potential,
angular frequency of the force exciting vibrations,
density of the plate material,

oo density of the fluid.
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1. Introduction

The problem of radiation of acoustic waves by circular planar sources located in a
limited baffle caught the attention of acoustic researches in the thirties [3]. It is well
known that for waves longer than the dimensions of the considered sources the obtained
results do not fully tally with characteristics calculated for the sources with infinite baffle
and Huygens- Rayleigh integral applied [1, 2, 4]. Detailed analytical investigations have
been made for the piston with uniform and parabolic velocity distribution [1,2,11 ] and
also for a freely vibrating membrane [12].

Most papers dealing with the influence of a finite baffle apply properties of the oblate
spheroidal coordinates system [1-4, 11]. Interest in acoustic radiation from sources on
oblate spheroidal baffles results primarily from the reparability of the scalar wave equa-
tion in coordinates in question and the wide variety of useful shapes that are natural to
this systems. For a circular plate supplied with a finite rigid baffle the oblate spheroid
is also particularly suited to the study of sound radiation, so the basic quantities that
characterise an acoustic field were calculated by the author in a similar way [6, 7, 8].
Spheroidal geometry offers a convenient system in which the curvature of the radiating
surface may be varied and the relative size of the vibrating surface to the baffle surface
may be changed. Of particular interest is the case in which the spheroid reduces to a
flat circular source (plate) in the zy plane. In this way the sound field around the plate
in question can be obtained by solving the separable Helmholtz wave equation in the
oblate spheroidal coordinates with Neuman’s boundary condition.

Properties of the oblate spheroidal coordinate system have been used to calculate the
acoustic pressure for the freely vibrating plate [8] and for the fluid-loaded plate excited
harmonically at low frequencies [7]. This paper gives formulae for the acoustic power
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of the plate clamped at a finite baffle and excited to vibrate by an external force. The
mathematical model of the plate includes internal dissipation and interaction with fluid.

2. Assumption of the analysis

Consider the fluid-plate configuration as illustrated in Fig. 1.
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Fig. 1. A circular plate in a rigid baffle with radius b.

A circular thin plate with radius a and thickness H is surrounded by an ideal liquid
medium with the static density go. It is assumed that the plate is made of a homogeneous
isotropic material with density o, Poisson’s ratio v, Young’s modulus E. The plate is
clamped in a flat, rigid and finite baffle with radius b and is excited to vibration by an
external time-harmonic force:

F(r,¢,t) = f(r,¢)e™ ™t = Foe™ ™, (2.1)
where Fy = const for 0 < r < a.

Taking into account only linear, harmonic and axially-symmetric vibrations of the
plate in a steady state, as well as the influence of a radiated wave on vibrations of the
plate and an internal damping inside the plate’s material, the plate differential equation
of motion can be described as follows [5, 9, 10]:

O°W (r, ¢, 1) 7]

+ R— [V*W(r, ¢,1)]

4
BV*W (r,¢,t) + m FTE 5

'
= R(r¢t) = 906—(7";!&,

where B = EH3/12(1—1?) is the bending stiffness, W (r, ¢, 1) = w(r, ¢)e™*“* — transverse
dislocation of points on the surface of the plate, m — mass of the plate per surface unit,
R - coefficient of internal damping, ¥ (r, ¢, 0,t) — acoustic potential on the surface of the
plate, related to the acoustic pressure p in the fluid by the equation [15]

p= "Qo"iwg’('r, QS: Z) (23)
and satisfies the Helmholtz equation

(V2+ k) =0, (2.4)

(2.2)
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with the condition
ov

on|,_,

= —v(r, ¢) = iww(r, @), (2.5)

ko denotes the acoustic wavenumber at the frequency w, v(r, ¢) — amplitude of surface
velocity distribution on the plate.

Using well-known formulae appropriate for harmonic phenomena and taking into
account only axially-symmetric modes of the plate, the equation (2.2) can be expressed
as [5, 9, 10]:

(k;'*V“ = 1) v(r) — e1kot(r,0) = —u%f(r). (2.6)

The parameter ¢, representing the influence of the wave radiated by the plate on its
vibration (fluid-loading parameter) can be described as [5, 7):

€1 = poc/mw . (2.7)

In the equation (2.6) the function of transverse dislocation of the plate w(r) has been
replaced by wanted surface distribution of the normal velocity v(r). The structural
wavenumber k;, in the vacuum at frequency w is defined by

ki = mw?/B, (2.8)
where B is the complex rigidity
B =B —iwR = B(1 —is,) (2.9)
and parameter &5
&2 =wR/B (2.10)

is a measure of the plate damping.

3. Solution of the Helmholtz equation

For the plate located in a finite baffle, the problem of determining the far-field acous-
tic pressure cannot be treated with the well known Rayleigh’s formula. In this paper the
solution of Eq. (2.4) in conjunction with (2.5) has been obtain by the use of the method
of separation of variables in the oblate spheroidal coordinate system (OSCS) [6]. Due to
symmetry of radiated waves with respect to z axis, the following equation for outgoing
waves has been obtained [14]:

Y, &) = ASS) (~ih,n) RS (~ih, ig), (3.1)
1

where S({,Il)(—ih, n) denotes angular spheroidal function of the first kind, R[(]?)(—z‘h,ig) =
radial spheroidal function of the third kind, h = kob and A4; - the expansion coefficients.
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The coefficients can be derived from Neuman’s boundary condition (2.5) which in oblate
spheroidal system has the form

a!p 1 a!p_ _U(Eﬂsn)s Tlo S n S 11
B R BE| = 0, Mo >n2>-no, (3.2)
S v(éo,m), —1<np<-n.

Applying the orthogonal property of angular spheroidal functions [14], we finally ob-
tain [8]:

bW,
| = g —— | (3.3)
ORG) (<ih,i0) |
o¢ ;
where N; denotes the norm factor [14] and
1
Wo = [ v(m)Sou(=it (34)

To

is the characteristic function in OSCS. The vibration velocity distribution in the oblate
spheroidal coordinate system v(n) is an unknown function. It will be determined by
applying the orthogonal series method.

4. Solution of the plate equation of motion

By applying the well known eigenfunction expansion theorem, one can derive the
solution of Eq. (2.7). In order to do it the vibration velocity distribution v(r) and the
external force f(r) will be expressed as the infinite series of eigenfunctions of the homo-
geneous plate equation

<

N
=

=
I

> enva(r), (4.1)

fr) =) fava(r). (4.2)

The quantity c,, denotes unknown expansion coefficients, while f,, can be determined by
means of the orthonormal property

f(r) :/f(r)u;(r)r dr. (4.3)

For the clamped circular plate the eigenfunctions v, (r) take the form [5, 9]:

it [Jo("fnf/a) 3 —%’;‘;10 (w/cn], (4.4)
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where v, = kna is solution of the equation Jo(yn )1 (¥n) + J1(Vn)lo(mm) =0,n=1,2, ...
and have an orthonormal property if

von = 1/ (aJo(kna)) . (4.5)
Regarding the following equation
Vi, (r) = kiv,(r) (4.6)
as a result we obtain

> e (k7 *kh — 1) va(r) — e1kotp(r, 0) ¥—anvn(r (4.7)

The equation (4.7) is now expressed in the oblate spheroidal coordinate system
(OSCS) with the use of the following transformation [14]

r=b[(1-n?)(&+1)] (4.8)

Using properties of OSCS and assuming & = 0, 7 = b(1 — n?), the obtained expressions
become appropriate for the plate in the finite baffle. The eigenfunctions are

on() =0 10 (V=) - T (5,2 T=F) | (e

Io(vn)

1/2

and they remain orthonormal if
von = b/(aJo(kna)). (4.10)

In turn, Eq. (4.7) is multiplied by the orthonormal function v}, (£y,n) and integrated on
the surface of the spheroid. Denoting the components of the left side of Eq. (4.7) as L,
and L, and its right side as L3, the following integrals are obtained:

I = [ / 5 cn k58 = 1) oo )5 6o
—e1ko f [ vco,moneo,m o, (4.11)

Ly = == f/ 5 oo o) do

In order to find the solutions of the above integrals we must take into account that the
element of spheroid surface do is equal to

do = hyhy dndyp, (4.12)

L,

where h,, h, denotes the scaling factors (components of measurement tensor) [14]:

E+n
hy = .‘/10_

by/ (1= n?)(1 + &)

(4.13)

=
€
Il
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As a result of this calculation, the previous equation (4.7) turns into a system of linear
algebraic equations [7, 9]

4 o0
(% — 1) — & Zi(mncn = i (4.14)

where )
2

vaHFgale('ym) (415)

fmz_

is the expansion coefficient of the external excitation into the Fourier series which has
been obtained according to expression (4.3) and quantity

T3 I
Wt ., Rop’ (=i, i0)
G —§j i o (4.16)
! N " BRD (Zihi0)/0€

means normalised impedance of the plate [7].

The solution of the system (4.14) is possible with the application of numerical meth-
ods. In order to determine expansion coefficients c,, the system (4.14) has been solved
using Crout algorithm, which enables us to find the velocity distribution on the surface
of the plate, in accordance with the analysed case.

5. Calculation of the acoustic power
The total acoustic power of the vibrating plate is calculated according to the defini-
tion [15]

= %[ pv* do, (5.1)
a
where p is the acoustic pressure and v* denotes the amplitude of vibration velocity
distribution, which is coupled with the velocity of the considered source.
In the case of flat circular sources vibrating in a finite baffle, the total acoustic power
can be calculated by the application of Eq. (5.1) in oblate spheroidal coordinate. In this
case the surrounded spheroidal surface ¢ = oo becomes the surface of a considered

vibrator system, including the baffle. In the oblate spheroidal coordinate system the
definition (5.1) can be expressed as

1
N = [ p0,my" (. (5.2
-1
The quantities that appear in the integrand function can be described as follows:

v*(n) =Y chua(n). (5.3)

where c;, denotes complex coefficients coupled with c, obtained above.
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Basing our calculations on the relation (2.3) and expression (2.6) together with (2.7)
and (2.8), the formula of the acoustic pressure of the circular plate with the finite baffle
takes the form [7]

oo o0

0,7) = —2igoh T L Soi(—ih, h,i0 5.4
»(0,7) i0o C,;CENBRU?)( S ((—ih, m)RS) (—ih,i0).  (5.4)

Symbol “/” in the second sum is associated with the manner in which the waves are
emitted by a system with the plate as a vibration source. In our analysis the acoustic
field is radiated by both upper and lower surfaces of the plate, so in the expression (5.4)
only odd index of | can be taken into account.

Introducing the transfer impedance [11]

e R (—ih, i0)

xi(—ih) = ’
( R (~ih,i0)

(5.5)

where R‘g?)/ (—ih,i0) denotes BR{{j)(—ih, i0) /¢, the acoustic pressure takes the simpler

form
0 7?) - QQOCZCnZ/

In order to obtain the pattern for the acoustic power radiated by a plate let us replace
the above quantities into definition (5.2)

(—th, m)xi(~ih). (5.6)

n=1

b &
N = 2nb anzcnz/—)a (ih) [ " ()Sou(ih, . (5.7)

Regarding expression (5.3), we obtain

1

W, i |
N = 27rb290c2cn2/—‘—x: —ih) Zcmfvm(n)Sm(—zh,n)ndn- (5.8)

ot -1

The integral that appears in the above relation can be separated into two parts, according
to the boundary condition (3.2)

= 27rb290c2 & Z/—x; (—ih) Zc:n
n=1 m

% [ f Vm (7)) Sor(—ih, m)n dn + f U (1) Sor (—th, n)n dn] (5.9)

-1 Mo

which leads to the change of integration limits after applying the following property of
angle oblate spheroidal functions [14]

Sou(—ih, ) = (~1)Soy(—ih, —1). (5.10)
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The calculations explained above result in:

[=.+] oo oo
W,
N =2mbgc Y Zc:ncnz ”’ ™ xi(~ih). (5.11)

n=1lm=l =1

In this way the final formula for the total acoustic power radiated by the plate located
in a finite baffle has been derived. It can easily be separated into real and imaginary
part because there is only one complex quantity x;(—:h) inside:

Re(N) = 2nb? OCZ Z ch an/Wnth: Re[xi(—ih)],

n=1m=1 =1

(5.12)

Im(N) = 27rb290c22c an/W"‘Wm‘ b (=ih)],

n=1m=1
where
1
Re[xi(—ih)] = ,
I [Rgi’/(—ih,iO)]2+[ R®/ (—ih, 10)]

(5.13)

R®) (<ih,i0)RZ) (~ih, i0)
2
(&S} (-z‘h,w)] + [R$ (=ini0)]

Im[x;(—ih)]

6. Figures and conclusions

It is convenient for calculations to introduce the normalised factor N, described as
the acoustic resistance when wavenumber kg — 0o [13]

o
N® = lim N = 27rbzgchcnc;. (6.1)

ko —+00

Then the normalised acoustic power can be calculated as follows:

Z Zc an/WnIWml (k)

NI = _]\]r__\_:: = n=1 m=1 . (6-2)
Z Crlri
n=1

On the basis of the above formula the real and imaginary part of the total acoustic
power radiated by the plate in question has been calculated. Since the series in the
formula (6.2) are infinite, the number of terms ensuring adequate accuracy of results
have been numerically determined.

The largest considered value of h was 15, for which it was found that the series
with index [ converged in approximately 30 terms. The number of terms required for
convergence of this series was always greater for the real part than for the imaginary
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Fig. 2. Acoustic power radiated by the circular plate in terms of the acoustic parameter h = kpb.
1 - plate without the baffle, a/b = 1, H/2a = 0.08; 2 - plate with the unlimited baffle — the curve
was calculated from formula (11') in [9], H/2a = 0.08.
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Fig. 3. Acoustic power radiated by the circular plate in terms of acoustic the parameter h = kob,
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part of acoustic power and increased when h = koa(b/a), the acoustic size parameter
increased.

The double series with indexes m and n converged very quickly. The expansion
coefficients c,,, c,, were computed with the aid of Crout procedure suited for algebraic
equations system like (4.14) and it was enough to take only the first few terms in practical
calculations. '

The validity of the obtained solution has been checked by comparing the no-baffle
case (the ratio a/b of the plate radius to the baffle size is equal 1) with plots given for the
plate located in the infinite baffle [9, 10], (Fig. 2), and it can be stated that for sufficiently
high frequencies the influence of the finite baffle on the acoustic field around the planar
sources can be neglected. It can be noticed easily (Fig.2) that for the parameters h > 10
obtained characteristics for both baffled and unbaffled plates (a/b = 1) are the same.

The effect of a flat circular finite baffle upon acoustic power radiated by the plate
has been illustrated by a family of curves in the Fig. 3. It demonstrates that the real and
imaginary part of N’ are strongly dependent upon the baffle size when the acoustic size
parameter h < 7. The curves have been calculated assuming that the ratio A/b of the
wavelength to the baffle radius was constant for changing values of the parameter a/b.
For h = 6 (Fig. 3), the local additional maximum appearing on each curve is caused by
diffraction on the edge of the baffle. It indicates that the finite baffle strongly influences
the radiated acoustic power in this range of frequencies. As h increases the Re(N') goes
to unity and the Im(N') goes to zero because of the chosen normalisation of N’ given
by (6.1).

Analysing the influence of “width” of the baffle, it can be seen that for the constant
ratio A/b, the acoustic power maximums for different values of the parameter a/b have
been moved towards higher frequencies in comparison with the plate vibrating in the
infinite baffle.
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