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The phenomenon of drift of small particles suspended in a gaseous medium in which the
acoustic wave propagates, is known since long. In the present work, which refers to [7], we
present an outline of a theory allowing for full interrelation of all quantities characterizing
the particle, the medium and the acoustic field.

1. Introduction

In the paper published in 1963 by ROMAN WYRZYKOWSKI [7] there is at the be-
ginning a serious printing fault, which spuriously could missinterprete the results. The
theory of sound coagulations of aerosols, formulated by Roman Wyrzykowski allows to
obtain formulae, which give mutual dependance between the acoustical data and the
data of the aerosol. In this paper we present this theory in new shape, of course with
the assistance of the author.

The coagulating action of the acoustic wave on aerosols is known since long [1], as
well as theories explaining partially this phenomenon [2-5].

We will assume in the following that the coagulation occurs always in the polydis-
persion aerosols, as even monodispersion aerosols become polydispersional as a result of
heat motions. Particles of greater dimensions vibrate in the acoustic field with smaller
amplitudes, while smaller particles amplitudes are greater. As a result, relative velocities
occur which in turn result in collision of particles (if only the amplitude of vibration is
sufficiently great; a problem which will be discussed in the following) and in the so-called
inertial sedimentation (coagulation) of small particles on bigger ones.

In practice, sedimentation of aerosols takes place in a settling tank, which is a tower
long enough to assure that the dusted gas, turning round along helical lines, spends
necessarily long time (3 to 5 seconds) in the acoustic field, produced by a generator
located at the top of the purifier [6, 8].
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2. The amplitude effect, or proper acoustic coagulation

In the present section we will deal with the problem of selection of acoustic field
parameters such that for a given aerosol one would obtain amplitude of vibration great
enough for occurrence of the acoustic coagulation.

The average distance between aerosol particles may be estimated temporarily as

1
3no ’
where ng is the number of particles in 1 cubic centimeter of the gas.
In reality, we deal with some statistical distribution in both mutual distances and

velocities of particles. We assume that in unit volume of the gas, the number of particles
which are able to get in contact with each other is expressed by the integral

lo = (2.1)

A
fnmdh (2.2)
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where n(l) is the distribution function, and A is the amplitude of particle vibrations:

(= <]

/n(l) dl =ny. (2.3)
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The aerosols conform themselves in general to the Gauss type distribution, therefore
we apply
I-1p\2
n(l) = 'nme_(—rn) ] (2.4)

The efficiency of the dust removal process as an result of what we call here the
amplitude effect, may be described as

A
f n(l) dl
A = e (2.5)
[ n(l) di
0
By substitution of Eq. (2.4) into (2.5), the constant n,, is being reduced, and the L

constant will be determined from experimental data.
Making use of definition of the error function:

Erf(z) = w% [e_tz dt (2.6)
0

we may write
lo lo
il el 1
Erf(L)+Erf [L(i,/) )]
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where 1) denotes the relative amplitude of particle vibrations:
A
Y= = (2.8)
0
We calculate the value of the L constant by means of the following consideration: it is
known from experiment [6, 7] that even at ¢ = 1.5, the efficiency of acoustic purification
is very high. Therefore, adopting arbitrarily the value n4 = 0.99 we obtain, by means of
numerical solution of Eq. (2.7),
lo
— =33 2.
; (2.9)
and i
na=3 {1+ Erf[3.3(¢ — 1)]}. (2.10)
Equation (2.10) is an estimation formula, but one thing is for sure: the efficiency
of acoustic dedusting depends on relative amplitude (2.8), therefore it is worthwhile to
calculate this quantity here.
The vibration maximum velocity amplitude of an aerosol particle in the acoustic
field vg is expressed with the so-called drag coefficient ;1 and with the vibration velocity
amplitude of the medium Uy by means of a simple formula [5]:

Vg = ,U.Ug, (2.11)

where
1

"= V14 (wr)?
w is the angular frequency of vibrations, 7 is the particle relaxation time given by
(assumed applicability of the Stokes law):

(2.12)

2
T (2.13)
9n
0p is the density of the aerosol particle, being r its radius and 7 the medium viscosity.
In dust removing devices we use in practice the plane wave, the intensity I of which
is expressed by means of the formula [3]:

I= %QQCQU(?, (2.14)

where po is the rest density of the medium, ¢o is the acoustic wave velocity in this
medium. Therefore, assuming that in practice the wave intensity is given, we have for
the value of the medium vibration velocity amplitude:

et g (2.15)
O0Co

By Egs. (2.11) and (2.15), the maximum amplitude of particle vibration is:

2
Aot ET, (2.16)
w \l @oCo
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and the dimensionless relative maximum amplitude ¢ (2.11), (2.8):

=22 . (2.17)

In practice, we define usually the mass concentration of an aerosol s as the mass of
dust particles contained in unit volume. We have obviously

3 s
473,

(2.18)

Substituting (2.18) to (2.17), we obtain the relative amplitude in its final form:

L2 2 o) 3o (2.19)
oco \[ 4mop

During the process of dust removal, the above value should remain constant. For
given acoustic wave, parameters u and w are defined, therefore we have a condition:

I-5*/* = const. (2.20)

Thus, greater concentrations require smaller intensities and vice versa, which was
confirmed by numerous experiments [7]. On the other hand, establishing all parameters
except for the angular frequency w, or frequency of vibrations v, substituting Eq. (2.19)
into (2.10) we obtain the dependence na(v).
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Fig. 1. An example of dependence 14 (v) for conditions typical for acoustic dust removal process,
described in the legend of the graph.
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Figure 1 represents an example of this dependence for conditions typical for acoustic
dust removal process, described in the legend of the graph. One can see that 14 is prac-
tically equal to unity up to several kHz and then rapidly falls to zero. This phenomenon
is also well known from experiment [7]. From Egs. (2.19) and (2.10), we may calculate a
maximum value of the wave frequency which gives the value of n4 yet close to unity.



ON THE RELATION BETWEEN THE INERTIAL COAGULATION ... 441

3. The inertial coagulation

Presently we proceed with consideration concerning the second factor influencing
the overall efficiency of the acoustic coagulation the efficiency of the process of inertial
sedimentation of smaller particles on bigger ones. Denoting this efficiency by n; we may
write the overall efficiency of the process n as

n=1ni-na- (3.1)

Numerous examinations show [1] that the quantity 7; is a function of the so called Stokes
number, which for bigger particle of radius R is given by

Tl
I 2
nsg = °R 3 (3 )

where 7 is the relaxation time of the settled (smaller) particle, v,, being the maximum
amplitude of relative velocity of particles.

The problem of the n;(ns¢) dependence has been discussed in numerous experimen-
tal and theoretical papers, based on assumption of potential flow-around and viscous
flow-around [5]. In any case, this is a function growing from 0 to 1, however it reaches
the upper value for ns; & 1 according to experimental data, and 2-3 at theoretical
curves. Therefore, in practice the problem is reduced to the value of the Stokes number,
Eq. (3.2). We start form an analysis of relative velocity amplitude v,, as a function of
angular frequency w. From Eqgs. (2.11) and (2.12) we see instantly that the function has
to have a maximum — for w = 0 any particle, small or big, has the same velocity ampli-
tude Up, while the relative velocity is zero. At w — oo, the velocities of both particles
tend to zero, and therefore the relative velocity is equal to zero also in this case.

For simplification of the following calculations, we assume that the relaxation time
of the bigger particle is expressed by:

Ty =T (3.3)

where obviously a > 1.
Based on Eq.(3.4), we write formula for vibration velocity amplitude of the bigger

particle:
Uy

T UTrerarr? (3.4)
and of the smaller one:
Ha (3.5)

= VI+wir?

The amplitude vo; is shifted in phase with respect to Uy by an angle ¢, defined by
equation:

@1 = tan"}(wart) (3.6)

and amplitude vgs is shifted by an angle

2 = tan" ! (wT). (3.7)
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Obviously, the relative velocity of both particles is shifted in phase by an angle ¢:

e B (3.8)
or by an angle, tangent of which is equal to:
wr(a —1)
t e 2
any = 7 T oirial (3.9)

The velocities vg; and vgy should be subtracted geometrically (because of the phase
shift), therefore, introducing the relative drag coefficient .,

U
= — 3.10
Hw Uo ( )

we may calculate it out from equation

2 _ 1 5 1 2cosp
Fo = T¥ e T 140~ /11 Patrivl £ oir?

(3.11)

pw(wT) has, as one can easily prove, a maximum for the same value for which the function
tan p(wr) has its maximum, which makes the following calculations much easier. Namely,
we have a condition:

1 2.2 b 2.2 T |
Ltantpz(a 1)(1 + w?r?a) - 2wra(a ):0, (3.12)

d(wT) (14 w?r?a)?
or, after performing elementary calculations, we have from (2.13)
1 r
== 3.13
wT =y (3.13)
This value of wT refers to
la-1
= — 14
(tan ) max 2 Ja (3.14)
2/a
= 3.15
(08 ) max at+1l’ ( )
and a5 iy
Hw max = N (3.16)
For value wr given by Eq. (3.13) we have the Stokes number equal to (3.13):
TU()
= 3.17
nst S f(a)a ( )
where o1
= -(3.18
fa) = =g (3.18)

Figure 2 represents the dependence 74 (v). The function has a maximum, which we
presently calculate form the condition

=0, (3.19)
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Fig. 2. The dependence f(a).

or

1
(a+1)va - (a—1)va—(a-1)a+1)5=
Vo _
PESIER =0. (3.20)
We adopt here
Qextr = 2+ V5 = 4.236 (3.21)

as the other solution would be negative, which makes no sense. Therefore, the maximum
value of frax(a) is equal to (3.18):

Fmax(c) = 0.305 (3.22)

and the respective value wr (3.13), referring to the maximum of relative velocity, is

i e (S (3.23)

V2+5
and
fiw max = 0.618. (3.24)

Taking into account that the real processes are realized statistically, one should assume
that the inertial coagulation o < crexer (3.21) is very little probable. At the value of cextr
we have an optimum course of the process. At a > Qextr, as can be seen from Fig. 2,
function f(a) decreases very slowly. The condition ngy > 1 now takes the form:

TU{)

—0.305 > 1. (3.25)
2r
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The condition (3.25) includes the wave intensity, as by Eq. (2.15) we have

T 21
; ——>1 :
0.305 57\ 2oc > 1, (3.26)

or, by raising both sides of Eq. (2.2) to second power,

2

I
0.465 - — > 10. (3.27)
r< opC

Finally, we obtain a condition for the wave intensity in the form:

,r2

I>2L5-—ooc. (3.28)
T

For average industrial aerosols we have the following values: 7 ~ 10~® [cm?] and
72 ~ 107% [s?] [7], which give, by adaptation of value of goc = 42 [g/cm?s] (corre-
sponding to the air in normal conditions):
W
3100 £ =107 =, (3.29)
cmes cm
The calculated intensity value is tens thousand times weaker than the intensity required
for occurrence of proper acoustical coagulation, i.e. related to the amplitude effect.

4. Conclusions

The described phenomenon is fully “responsible” for coagulating action of the acous-
tic field, and provides, with great excess, conditions in which the efficiency of the inertial
coagulation may be considered as equal to unity.
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