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THE REAL ACOUSTIC POWER OF A PLANAR ANNULAR MEMBRANE RADIATION
FOR AXIALLY-SYMMETRIC FREE VIBRATIONS

W.J. RDZANEK and W.P. RDZANEK, JR

Institute of Physics, Pedagogical University
(35-311 Rzeszow, Rejtana 16a, Poland)

The real part of the acoustic power radiated by a planar annular membrane is considered
for axially-symmetric free vibrations. The membrane is located in a planar, rigid baffle and
radiate acoustic wave into a lossless and homogeneous fluid medium. Sinusoidal in time
processes are examined. The real power is obtained as elementary form for high-frequency
radiated waves.

Notations

¢ propagation velocity of an acoustic wave in a fluid medium of density go,
Jm(z) Bessel function of the m-th order,

k =ra/r,
kn =wn+/0/T,
ko =2m/A,

N acoustic power radiated by the membrane (3.1),
N' normalised power radiated by the membrane,
Nm(z) Neumann function of the m-th order,
p acoustic pressure,
r radial variable,
r1,r2 radii of the annular membrane,

S =mx(r-r?),

T stretching force of the membrane, referred to unit length,

t time,

v normal component of vibration velocity of points of the membrane surface,
vn vibration velocity of points on the surface of the membrane for mode (0,n),
W characteristic function of planar annular source for (0,n) vibration mode (6'),
T, n-th root of the equation (2.2),
an = Jo(zn)/Jo(kzn),

B = kori,

n =2zn/B,
1 transverse displacement of points of the membrane surface,
A wavelength in a fluid medium,

oo density of a fluid medium,

o surface density of the membrane,
wy, angular frequency of free vibrations, corresponding to mode (0, n).
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1. Introduction

Planar vibrating sources are important for problems of generation and propagation of
acoustic waves in a fluid medium. Most of research concentrates on analyse of rectangular
and axially-symmetric sources. Extensive universal research of axially-symmetric sources
are realised on acoustic wave radiation by: vibrating circular pistons (e.g. PRITCHARD
(5], PORTER [4]), planar angular pistons (e.g. THOMPSON [8], MERRIWEATHER [3]) and
membranes and circular plates (e.g. LEVINE and LEPPINGTON (2], RDZANEK [6] and
[7]). Those papers, concerning membranes and circular plates, includes problems: the
energetic aspect of radiating sources, acoustic interactions of particular elements of the
source surface, constituent elements of sources array, vibration form influence on the
resultant field radiated by vibrating array.

Up to now there were no elementary equations of acoustic power radiated by the
planar annular vibrating membrane.

The classical mathematical method was used and the equation of the form of the
Bouwkamp’s integral [8] for the real part of acoustic power radiated by a planar annular
membrane in case of axially-symmetric free vibrations. The considered processes were
varying sinusoidally with time. Use of LEVIN and LEPINGTON’S mathematical method [2]
based on Cauchy’s theorem of residua allowed the derivation of the equation of real part
of acoustic power of elementary form in special case for high-frequency waves’ radiation.
Frequency characteristics of described acoustic power are also presented graphically.

2. The annular membrane’s free vibrations

The membrane is tight on two circles with radii r; and 79, and r; < ro. We consider
axially-symmetric free vibrations sinusoidal in time. The transverse deflection of points
of the membrane surface n(r,t) = 7(r) exp(iwt) with boundary conditions 7(rs,t) =
n(ry,t) = 0 is represented by the n-th radial form of free vibrations

M)/ An = o (305 ) = e No (a0 ), (.)

~ No(zn) 1

where Jy, Np are cylindrical functions of null order correspondingly Bessel’s and Neu-
mann’s. The value z,, = k,r; is the n-th frequency equation’s root

Jo(kz,)  No(kz,)
Jo(zn) B No(zn) ’

where k = ry/ry > 1 and k,, = wp+/0/T, wy, is n-th free frequency, o is surface density
of the membrane, T is the stretching force of the membrane. The Table 1 includes some
values of the frequency equation’s roots (2.2) (compare [1]).

We calculate the constant A,, from the normalisation condition

(2.2)

T2

[rawrar =

T1

(r2 —-rd). (2.3)

B =
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Table 1. Roots z, of equation Jo(zn)No(kzn) — Jo(kzn)No(zn) = 0.

k
n 1 1.2 15 2 3 5
1 31.412314 | 15.701344 6.270239 3.123029 | 1.548459 | 0.7631913
2 62.830045 | 31.412615 | 12.559773 6.273438 | 3.129084 | 1.5571072
3 94246574 | 47.121681 | 18.845157 9.418203 | 4.703797 | 2.3464207
4 | 125.662802 | 62.830196 | 25.129431 | 12.561424 | 6.276664 | 3.1340324
5 | 157.078909 | 78.538490 | 31.413277 | 15.703999 | 7.848734 | 3.9208424
6 | 188.494956 | 94.246675 | 37.696903 | 18.846253 | 9.420391 | 4.7072157
We get than

Ap = Sz, (k2 - 1)1/2 d e ot }_1/2 (2.3")
WS g NZ(kzn)  N2(zn) : '

3. An integrai form of the acoustic power

Let the source of surface S of the normal component of the vibration velocity v

1
radiate acoustic pressure p. Than N = 2 / pv* dS is the acoustic power radiated by the

5
source. v* is here a value conjugate with a complex value v.
We calculate the acoustic power of the source of the axial symmetry on the basis of
the integral equation (compare the Bouwkap’s integral [8] and the paper [6])
m/2—ioco
N = moock? f W2(9)sind dd, (3.1)
0
where c is the velocity of propagation of the wave in a fluid medium of density in rest
stage oo, ko = 2m/) is a wave number, )\ is wavelength and
T2
W) = ['U(?‘)Jo(ko?" sind)rdr (3.2)
T1
is the characteristic function of planar annular sound source, constraints radii of which
are r; and 73, Un(r) = —iwpny(r) is the normal component of vibration velocity in the
case of (0,n) vibration mode. The integral (3.1) is calculated in the plane of the complex
variable ¥ = 9’ + 19", :
If kg — oo then p(r) = gocu(r), N(®) = Eggc/vz dS and than it is comfortable to

s
use for calculations the normalised radiation power N/N (%),
Inserting the characteristic function
Wa(9) 2 rd 1

= Wk 2 p2 s No(on) {anJo(kBsind) — Jo(Bsind)}, (3.3)
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calculated on the basis of equations (3.2) and (2.1), into the equation (3.1), we get
N 082 w/2—ico . . 2
R = [ {anJo(kﬁsmﬁ) - Jo(ﬁ31n19)} sind do,

N T a2 -1 sin? 9 — 32

(3.4)
0
where 6, = z,/8, B = kor1, an = Jo(z,)/Jo(kzn).
If we confine integration in equation (3.4) to real values 0 < Re(¥) < 7/2 and
substitute sin?’ = z, then we get integral equation

1
N = 262 / anJo(kBz) — Jo(Bz))® zdz (3.4
L 2% — 52 Vi-z2' '
0
where N] = Re{Nn/fo")} is the real component of the normalised acoustic power
radiated by the n-th axially-symmetric mode of the planar annular membrane.

4. The membrane’s radiation for the high frequency range

If 6, < 1 (62 < 1) then analysing equation (3.4') is much more easy. We use the
mathematical method of LEVIN and LEPPINGTON [2] and we introduce a function of a
complex variable

F(2) = {02 Jo(kBz) — 20 Jo(B2)} HY (kB2) + Jo(B2) HLY (B2) (4.1)

such that
Re F(2) = {anJo(kBx) — Jo(Bz)}?, (4.1)

where z is a real variable, H(gl) is the Hankel’s function of 1-st kind and null order.
The base of analysis is the equation which left side is the contour integral

z2F(z)dz 4
J V1= 7%(22 - §2)2

calculated for contour C' (Fig. 1) inside which the integrand is single-valued and regular
(comp. [9]). There are no contributions during integration both over a big circle when its
radius increases infinitely and over arcs of small circles around the points of branching
(z = 0, z = 1), when their radii decreases tending to null. At the point z = §, the
integrand (4.2) has a pole of 2-nd order.

On applying the Cauchy’s theorem concerning residua, we get the integral (4.2) of
the form

1 0o
zF(z)dz - zF(z)dz
Pb[ T _5) - miF'(8n) +_1[

(4.2)
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Fig. 1. The integration contour C for pattern (4.2) (comp. the paper [2]).

where the auxiliary function is introduced
2F(2)

) = e T ha)

and the integral P / is interpreted as a principal value. We take into account that

0
Re F(iy) = 0, then

1 1
(z) dz [ [ ando(kBz) — Jo(Bz)\® zdz
o[ [

] an No(kBz) [anJo(kBz) — 2Jo(Bz)] + Jo(Br)No(Bz) zdx
0

(o2 —42)2 z? -1

+ Re{mi F'(6,)} (4.4)
We also take into account that F(8,) = 0, Re F'(6,) =0, Im F'(8,) =
finally

in(l a?) and

aZ -1

.. $ik (4.5)
2624/1-62

Now we calculate the integral (4.4) inside of interval [1, co), applying the asymptotic
expressions

Re{mi F'(6,)} =

Jo(az)No(bz) ~ :r:\/_ {sin(b — a)z — cos(b + a)z}, (4.6)

[=e]

s = e {u-areo(5) e a
e Y
1
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In this way, we obtain instead of equation (3.4")

n = = o al T
M= i BB e - 0 {k e cos (246+ )

% cos(2ﬁ+£~)+2\/gan (sin((k~1)ﬁ+§) B cos((k+1)ﬂ+%))} (4.3)

k-1 vE+1

with error o(42373/2).

This equation is of an elementary form — convenient for calculations of the real power
of the annular membrane for high frequency of radiated waves if the membrane vibrates
with n-th axially-symmetric mode.

5. Concluding remarks

As result of theoretical analysis of the problem of radiation of a planar annular
membrane the elementary expression was derived for normalised real acoustic power
of axially-symmetric modes of free vibrations. This expression can be used for digital
calculations only if the condition z,, < 8 = kor; is satisfied.

There were given proper components which have essentially an “oscillating” character
of changes of the real component of power of annular membrane (Fig.2 and Fig. 3).

In case when the condition z,, < kgr; is not satisfied or when we need high accuracy of
results, one should perform numerical calculations based on the integral equation (3.4').
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Fig. 2. Normalised real component of acoustic power radiated by the planar annular membrane
versus [ for modes (0,n) and k = 1.2.
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Fig. 3. Normalised real component of acoustic power radiated by the planar annular membrane
versus [ for different k and mode (0,1).
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Fig. 4. Normalised real component of acoustic power radiated by the planar annular membrane
versus 3 for the mode (0,4) and k = 1.2 — obtained from the formula (3.4') (the solid line).
The curve obtained from the formula (4.8) is dashed.
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Equations (3.4') and (4.8), which have been derived for normalised real radiation

power of axially-symmetric modes of vibrations of annular membrane, can be used for
analysis of more complicated problems of radiation.

The example of their application is the analysis of the phenomenon of radiation of

an annular membrane with modification of the force exciting the vibrations.
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